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Abstract
An adaptation of a quaternionic proof of the Sum of Four Squares Theorem over
Q(
p

5) is used to show that a particular non-classical quaternary quadratic form is
universal.

1. Introduction and Notation

Universality of a quadratic form is a property of interest in number theory. It
means that every totally positive integer of the number field can be represented
by the quadratic form with arguments from the algebraic integers of that field.
In previous papers the author was able to demonstrate the universality of certain
quadratic forms over a number field of low discriminant. In one case the property
was demonstrated for a non-classical form, that is a form whose cross product terms
are not all even. See Deutsch [3, 4, 5, 6] for the specific examples. Here, another
non-classical form of smaller “size” is shown to be universal over the ring of integers
of Q(

p
5).

The demonstration uses certain rings of quaternions. We use the notations of
Deutsch [4, 6] in describing quaternions and related algebraic structures. An abbre-
viated review of notation is proper at this point. Bold characters are quaternions,
while an overline ( ) denotes a quaternion conjugate. N stands for the quaternion
norm, also known as the reduced norm. It is the product of a quaternion with its
conjugate. In this case, the order of multiplication is irrelevant.

Greek letters are used for elements of real quadratic fields, and a superscript
star (⇤) is used for the quadratic field conjugate. We are particularly concerned
with the algebraic integers in Q(

p
5), and use the notation O(

p
5) for this ring. For

R a ring with unity, the R–module over the quantities a1, a2, . . . , an is denoted
R [a1, a2, . . . , an]. See Baake and Moody [1], Vignéras [8] and Deutsch [4, 6] for
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further notations and definitions. Also Lee [7] has determined all universal classical
quaternary quadratic forms over Q(

p
5).

2. Hessian Discriminant

The discriminant of a quadratic form f(x1, x2, . . . , xn) is defined as the determi-
nant of a particular matrix constructed out of the coe�cients of f . Let

f(x1, x2, . . . , xn) =
nX

i, j=1

ij

ai,j xi xj . (2.1)

Then the associated matrix M = (mi,j) has coe�cients

mi,i = ai,i , for i = 1, . . . , n and mi,j =
ai,j

2
, for i 6= j, 1  i, j  n . (2.2)

The discriminant of f is defined to be the determinant of M . Here we limit con-
sideration to the case where all the coe�cients are in Z. The process produces
rational integers for classical quadratic forms, that is, those that have even coe�-
cients on the cross products. For non-classical quadratic forms the coe�cients of
the cross products are integral but not all even. In the general case we may end up
with the discriminant equal to a fraction. As an alternative, we define the Hessian
discriminant as the determinant of the Hessian of f .

H-disc (f) = det
✓

@2f

@xi @xj

◆
i, j =1, ..., n

. (2.3)

The notation H-disc or H-discriminant can be used. The matrix has integral entries
for non-classical quadratic forms. Its determinant is integral, and the value is equal
to 2n times the traditional discriminant of f . Under this definition the sum of
four squares has the H-discriminant 16, while the G function of Deutsch [6] has
H-discriminant 9. Recall

G(x, y, z, w) = x2 + xy + y2 + z2 + zw + w2 . (2.4)

Another nonstandard definition of discriminant has been made for ternary quadratic
forms. See Berkovich [2] for details.

3. The Quadratic Form K

A computer search uncovered some quadratic forms of small Hessian discriminant.
Investigation showed that at least one of these forms was likely to be universal. Set

K(x, y, z, w) = x2 + y2 + z2 + w2 + xy � xz � xw . (3.1)
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An easy computation shows that the Hessian discriminant of K is 4. It is helpful
to note that K is a norm form. Recall h = (1 + i + j + k)/2. Computer algebra
shows the following Lemma.

Lemma 1 We have

K(x, y, z, w) = N(x + y h + z jh + w kh) . (3.2)

For R any ring with unity contained in the reals R, R [1, h, jh, kh] is closed
under multiplication by Table I. Hence it is a subring of the quaternions.

1 h jh kh

1 1 h jh kh

h h �1 + h 1� h + jh + kh �1� jh

jh jh �1� kh �1� jh �1 + h� jh� kh

kh kh 1� h + jh + kh 1� h �1� kh

Table 1: Multiplication Table for Z[1, h, jh, kh]

Recall that the norm of the product of two quaternions is the product of the
norms of each element. Computer algebra yields the following Lemma.

Lemma 2 Let

q1 = a1 + b1 h + c1 jh + d1 kh and q2 = a2 + b2 h + c2 jh + d2 kh (3.3)

be quaternions in the ring R [1, h, jh, kh]. Then their product is

q = q1 · q2 = A + B h + C jh + D kh (3.4)

with

A = � d1 d2 � c1 d2 � b1 d2 + c2 d1 + b2 d1 � c1 c2 + b1 c2

� b2 c1 � b1 b2 + a1 a2 ,
B = c1 d2 � c2 d1 � b2 d1 � b1 c2 + b1 b2 + a1 b2 + a2 b1 ,
C = � c1 d2 � b1 d2 + b2 d1 � c1c2 + b1 c2 + a1 c2 + a2 c1 ,
D = � d1 d2 � c1 d2 + a1 d2 + b2 d1 + a2 d1 + b1 c2 � b2 c1 .

(3.5)

The equation N(q) = N(q1) · N(q2) becomes

K (A, B, C, D) = K (a1, b1, c1, d1) · K (a2, b2, c2, d2) . (3.6)
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4. The Subring IK of the Icosians

We recall the ring of icosians I as defined in Vignéras [8]. Let ⌧ = (1+
p

5)/2. Then
⌧ is the fundamental unit of Q(

p
5) and Z [1, ⌧ ] are the algebraic integers of Q(

p
5).

The conjugate of ⌧ is denoted ⌧⇤ and equals (1�
p

5)/2. We have

⌧�1 =
p

5� 1
2

= � ⌧⇤ . (4.1)

The ring of icosians is the module O(
p

5) [e1, e2, e3, e4] where

e1 = 1
2 (1 + ⌧�1i + ⌧ j) , e2 = 1

2 (⌧�1i + j + ⌧k) ,

e3 = 1
2 (⌧ i + ⌧�1j + k) , e4 = 1

2 (i + ⌧ j + ⌧�1k) .
(4.2)

We recall that i, j and k are elements of I. See Vignéras [8] and Deutsch [6] for
more details.

Definition 3 IK is the module O(
p

5) [1, h, jh, kh].

Clearly IK is a subring of quaternions.

5. Proof of the Universality of K

At this point an analogue of Lemma 15 in Deutsch [4] is useful. We recall that
result.

Lemma 4 For all q 2 I there exist quaternion units u1, u2 2 I of norm 1 such that
u1 qu2 2 O(

p
5)[1, i, j, k].

The analogous proposition is below.

Lemma 5 For all q 2 I there exist quaternion units u1, u2 2 I of norm 1 such that
u1 qu2 2 IK .

Proof. It can be readily shown that i, j and k are in IK . Note that

i = �1 + h � kh , j = 1 + j h + kh , and k = �1 + h � j h . (5.1)

The lemma immediately follows. 2

Lemma 16 of Deutsch [4] is the next step. It is repeated here.

Lemma 6 Suppose ⇢ is a prime of the ring O(
p

5). Then there exists a unit
� 2 O(

p
5) and a quaternion q 2 I such that N(q) = �⇢.

The proof of universality continues.

Lemma 7 Suppose ⇢ is a totally positive prime of the ring O(
p

5). Then there exist
↵, �, �, and � in O(

p
5) for which

⇢ = K (↵, �, �, �) . (5.2)



INTEGERS: 16 (2016) 5

Proof. By the previous Lemma there exists a quaternion q 2 I and a unit � 2 O(
p

5)
such that N(q) = �⇢. Since q 2 I, by the definitions of e1, e2, e3, and e4 we may
write q as a Q(

p
5)–linear combination of 1, i, j, and k. From equations (5.1) we

may then write q as a Q(
p

5)–linear combination of the basis elements of IK . Thus
there exist ↵, �, �, � in Q(

p
5) for which

q = ↵ + � h + � jh + � kh . (5.3)

So we have
�⇢ = N(q) = N(↵ + � h + � jh + � kh) , (5.4)

and by Equation (3.2)
�⇢ = K (↵, �, �, �) . (5.5)

Taking conjugates with respect to Q(
p

5), since K has rational integer coe�-
cients, we have

�⇤ ⇢⇤ = K (↵⇤, �⇤, �⇤, �⇤) = N(q⇤) , (5.6)

for some appropriate quaternion q⇤. Thus �⇢ is totally positive, and consequently
� must be totally positive. Since � is a unit in O(

p
5) it follows that � = ⌧2m for

some nonnegative integer m.
Thus N(q) = ⌧2m⇢. By Lemma 5 there are quaternion units u1, u2 2 I of norm

1 such that u1 qu2 2 IK . We may write

u1 qu2 = ↵1 + �1 h + �1 jh + �1 kh (5.7)

with ↵1, �1, �1, �1 2 O(
p

5). Thus

⌧2m⇢ = N(q) = N(u1)N(q)N(u2) = N(u1 qu2) = K(↵1, �1, �1, �1) . (5.8)

Since K is homogeneous, we find

⇢ = K (⌧�m↵1, ⌧�m�1, ⌧�m�1, ⌧�m�1) . (5.9)

2

Theorem 8 K is a universal form for the totally positive integers of O(
p

5).

Proof. The demonstration almost exactly follows the proof of Götzky’s Theorem in
Deutsch [4]. Let ⌘ 2 O(

p
5) be totally positive. Since O(

p
5) is a principal ideal

domain and a unique factorization domain, we may write ⌘ as a unit of O(
p

5) times
a product of primes. With no loss of generality, we may choose the primes to be
totally positive. Thus we may write

⌘ = µ ⇢1 ⇢2 . . . ⇢r (5.10)
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with µ a unit and ⇢1 through ⇢r totally positive primes. Then µ is totally positive,
so µ = ⌧2m for some m in Z. From equation (3.1) we have ⌧2m = K (⌧m, 0, 0, 0).
By the previous Lemma, each of ⇢1 through ⇢r can be represented by K with
arguments in O(

p
5). From the product formula equation (3.6), it follows that ⌘

can be represented by K with arguments in O(
p

5). 2

6. The Computation

The formula for the determinant of the 4 ⇥ 4 Hessian matrix (2.3) was produced
by the computer algebra system MAXIMA. A scan was made using the MinGW
32 bit C compiler on a Windows partition of a late 2000’s era laptop. The scan ran
over approximately 450 million cases, and took about 8.4 seconds with the GNU
C compiler version 3.4.5. Using the TDM-GCC 4.8.1 compiler, the same scan took
only 6.3 seconds. The optimizations used were “-O2 -mmmx -msse2” in the first
case, and “-O2” in the second.

Other computer algebra e↵orts also used MAXIMA.
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Theory 96 (2002), 417—431.

[4] J. I. Deutsch, An alternate proof of Cohn’s four squares theorem. J. Number Theory 104
(2004), 263—278.

[5] J. I. Deutsch, Short proofs of the universality of certain diagonal quadratic forms, Arch.
Math. (Basel) 91 (2008), 44—48.

[6] J. I. Deutsch, Universality of a non-classical integral quadratic form over Q(
p

5), Acta Arith.
136 (2009), 229—242.

[7] Y. M. Lee, Universal forms over Q(
p

5), Ramanujan J. 16 (2008), 97–104.
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