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Abstract
In this paper, we establish a number of new estimates concerning the prime counting
function ⇡(x), which improve the known results. As an application, we deduce a
new result concerning the existence of prime numbers in small intervals.

1. Introduction

After Euclid [8] proved that there are infinitely many primes, the question arose of
how fast the prime counting function

⇡(x) =
X
px

1

increases as x !1. In 1793, Gauss [9] conjectured that

⇡(x) ⇠ li(x) =
Z x

0

dt

log t
(x !1),

which is equivalent to
⇡(x) ⇠ x

log x
(x !1). (1)

In 1896, Hadamard [10] and de la Vallée-Poussin [24] proved, independently, the
relation (1), which is actually known as the Prime Number Theorem. A more
accurate well-known asymptotic formula for ⇡(x) is given by

⇡(x) =
x

log x
+

x

log2 x
+

2x
log3 x

+
6x

log4 x
+ . . . +

(n� 1)!x
logn x

+ O

✓
x

logn+1 x

◆
. (2)

Panaitopol [15] provided another asymptotic formula for ⇡(x), by proving that

⇡(x) =
x

log x� 1� k1
log x �

k2
log2 x � . . .� kn(1+↵n(x))

logn x

(3)
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for every n 2 N, where limx!1 ↵n(x) = 0 and positive integers k1, k2, . . . , kn are
given by the recurrence formula

kn + 1!kn�1 + 2!kn�2 + . . . + (n� 1)!k1 = n · n!.

For instance, we have k1 = 1, k2 = 3, k3 = 13, k4 = 71, k5 = 461 and k6 = 3441.
Since, up to now, no e�cient algorithm has been found for computing ⇡(x) for

large x, we are interested in upper and lower bounds for ⇡(x). The first remark-
able estimates for the prime counting function are due to Rosser [18]. He used an
explicit zero-free region for the Riemann zeta-function ⇣(s) and the verification of
the Riemann hypothesis to some given height to estimate Chebyshev’s functions

✓(x) =
X
px

log p,  (x) =
1X

n=1

✓(x1/n).

Using these estimates for ✓(x) and the well-known fact that ⇡(x) and ✓(x) are
related by the equation

⇡(x) =
✓(x)
log x

+
Z x

2

✓(t)
t log2 t

dt (4)

which holds for every x � 2, Rosser [18, Theorem 29] proved that the inequalities

x

log x + 2
< ⇡(x) <

x

log x� 4

hold for every x � 55. Up to now the sharpest estimates for ⇡(x) are due to Berkane
and Dusart [2]. In 2015, they proved that the inequality

⇡(x)  x

log x
+

x

log2 x
+

2x
log3 x

+
7.57x
log4 x

(5)

holds for every x � 110118914 and that

⇡(x) � x

log x
+

x

log2 x
+

2x
log3 x

+
5.2x
log4 x

(6)

for every x � 3596143. According to (2), we prove the following upper and lower
bound for ⇡(x), which improve the estimates (5) and (6) for large x.

Theorem 1.1. If x > 1, then

⇡(x) <
x

log x
+

x

log2 x
+

2x
log3 x

+
6.35x
log4 x

+
24.35x
log5 x

+
121.75x
log6 x

+
730.5x
log7 x

+
6801.4x
log8 x

. (7)

Theorem 1.2. If x � 1332450001, then

⇡(x) >
x

log x
+

x

log2 x
+

2x
log3 x

+
5.65x
log4 x

+
23.65x
log5 x

+
118.25x
log6 x

+
709.5x
log7 x

+
4966.5x
log8 x

.
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Further, in view of (3), we find the following estimates for ⇡(x).

Theorem 1.3. If x � e3.804, then

⇡(x) <
x

log x� 1� 1
log x �

3.35
log2 x �

12.65
log3 x �

71.7
log4 x �

466.1275
log5 x � 3489.8225

log6 x

. (8)

Theorem 1.4. If x � 1332479531, then

⇡(x) >
x

log x� 1� 1
log x �

2.65
log2 x �

13.35
log3 x �

70.3
log4 x �

455.6275
log5 x � 3404.4225

log6 x

. (9)

As an application of these estimates for ⇡(x), we obtain the following result con-
cerning the existence of a prime number in a small interval.

Theorem 1.5. For every x � 58837 there is a prime number p such that

x < p  x

✓
1 +

1.1817
log3 x

◆
.

2. Skewes’ Number

One of the first estimates for ⇡(x) is due to Gauss. In 1793, he computed that
⇡(x) < li(x) for every 2  x  3000000 and conjectured that ⇡(x) < li(x) for every
x � 2. However, in 1914, Littlewood [14] proved that ⇡(x)� li(x) changes the sign
infinitely many times by showing that there is a positive constant K such that the
sets ⇢

x � 2 | ⇡(x)� li(x) >
K
p

x log log log x

log x

�

and ⇢
x � 2 | ⇡(x)� li(x) < �K

p
x log log log x

log x

�

are nonempty and unbounded. However, Littlewood’s proof is nonconstructive and
there is still no example of with ⇡(x) > li(x). Let

⌅ = min{x 2 R�2 | ⇡(x) > li(x)}.

The first upper bound for ⌅ which was found without the assumption that the of
Riemann hypothesis is true is due to Skewes [22] in 1955, namely

⌅ < 101010963

.

The number on the right-hand side is known as the Skewes number. In 1966, Lehman
[13] improved this upper bound considerably by showing that ⌅ < 1.65·101165. After
some further improvements the current best upper bound,

⌅ < e727.951336105  1.398 · 10316,
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was found by Saouter, Trudgian and Demichel [20]. The first lower bound was given
by the calculation of Gauss, namely ⌅ > 3000000. This lower bound was improved
in a series of papers. For details see for example [3], [4], [16], and [19]. For our
further inverstigation we use the following improvement:

Proposition 2.1 (Kotnik, [12]). We have ⌅ > 1014.

3. New Estimates for the Prime Counting Function

Before we give our first new estimate for ⇡(x), we mention a result [6] about the
distance between x and ✓(x), which plays an important role below.

Proposition 3.1 (Dusart, [6]). Let k 2 {1, 2, 3, 4}. Then for every x � x0(k),

|✓(x)� x| <
⌘kx

logk x
, (10)

where
k 1 2 3 4
⌘k 0.001 0.01 0.78 1300
x0(k) 908994923 7713133853 158822621 2

.

By using Tables 6.4 and 6.5 from [6], we obtain the following result.

Proposition 3.2. If x � e30, then

|✓(x)� x| <
0.35x
log3 x

.

Proof. We set a = 3600 and " = 6.93 · 10�12. Then we have

1.00007(a + i)3p
ea+i

+
1.78(a + i)3

(ea+i)2/3
+ " (a + 1 + i)3 < 0.35 (11)

for every integer i ranging from 0 to 75. By [7], we can choose

" = 6.49 · 10�12

for every e3675  x  e3700, and therefore the inequality (11) holds with " =
6.49 · 10�12 for every integer i ranging from 75 to 100 as well. From Tables 6.4 and
6.5 in [6], it follows that we can choose ⌘3 = 0.35 and x0(3) = e30 in (10).

Now let k 2 {1, 2, 3, 4}, and choose ⌘k and x1(k) so that the inequality

|✓(x)� x| <
⌘kx

logk x
(12)

holds for every x � x1(k). To prove their estimates for ⇡(x), Rosser and Schoenfeld
[19] introduced the following function, which also plays an important role below.
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Definition. For every x > 1, we define

Jk,⌘k,x1(k)(x) = ⇡(x1(k))� ✓(x1(k))
log x1(k)

+
x

log x
+

⌘kx

logk+1 x

+
Z x

x1(k)

✓
1

log2 t
+

⌘k

logk+2 t
dt

◆
. (13)

Proposition 3.3. If x � x1(k), then

Jk,�⌘k,x1(k)(x) < ⇡(x) < Jk,⌘k,x1(k)(x). (14)

Proof. The claim follows from (4), (12) and (13).

3.1. Some New Upper Bounds for the Prime Counting Function

In this section we give the proofs of Theorem 1.1 and Theorem 1.3.

Proof of Theorem 1.1. We denote the term on the right-hand side of (7) by ↵(x)
and set

�(x, y) =
x

log2 y
+

2x
log3 y

+
6x

log4 y
+

24.35x
log5 y

+
121.75x
log6 y

+
730.5x
log7 y

+
6801.4x
log8 y

.

Let x1 = 1014. We have

↵0(x)� J 03,0.35,x1
(x) =

1687.9 log x� 54411.2
log9 x

� 0 (15)

for every x � x1. Since ✓(x1) � 99999990573246 by [6], log x1  32.2362, and
⇡(x1) = 3204941750802, we obtain

⇡(x1)�
✓(x1)
log x1

 102839438084. (16)

It follows that

↵(x1)� J3,0.35,x1(x1) � �(x1, e
32.2362)� 102839438084 > 0.

Using (14) und (15), we get ↵(x) > ⇡(x) for every x � x1.
We have

↵0(x)� li0(x) =
0.35 log5 x� 1.05 log4 x + 1687.9 log x� 54411.2

log9 x
� 0

for every x � 5 · 105. If we also use ↵(5 · 105)� li(5 · 105) � 2.4 > 0 and Proposition
2.1, we get ↵(x) > ⇡(x) for every 5 · 105  x  1014.
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For every x � 47, we have ↵0(x) � 0. To obtain the required inequality (7) for
every 47  x  5 · 105, it su�ces to check with a computer that ↵(pi) > ⇡(pi) holds
for every integer i ranging from ⇡(47) to ⇡(5 · 105) + 1, which is really the case.

Since ⇡(46) < ↵(46) and ↵0(x) < 0 is fulfilled for every 1 < x  46, we obtain
↵(x) > ⇡(x) for every 1 < x  46.

It remains to consider the case where 46 < x  47. Here ↵(x) > 15 > ⇡(x), and
the theorem is proved.

Remark. The inequality in Theorem 1.1 improves Berkane’s and Dusart’s estimate
(5) for every x � e25.21.

By using Proposition 2.1, we prove our third result.

Proof of Theorem 1.3. We denote the right-hand side of the inequality (8) by ⇠(x).
Let x1 = 1014 and let

g(t) = t7 � t6 � t5 � 3.35t4 � 12.65t3 � 71.7t2 � 466.1275t� 3489.8225.

Then g(t) > 0 for every t � 3.804. We set

h(t) = 29470t10 + 11770t9 + 39068t8 + 164238t7 + 712906t6 + 3255002t5

+ 12190826t4 + 88308t3 + 385090t2 + 846526t� 12787805.

Since h(t) � 0 for every t � 1, we obtain

⇠0(x)� J 03,0.35,x1
(x) � h(log x)

g2(log x) log4 x
� 0 (17)

for every x � e3.804.
Let K1 = 102839438084, a = 32.23619, and b = 32.236192. We set

f(s, t) = K1t
7 + (K1 + s)t6 + (3.35K1 + s)t5 + (12.65K1 + 3s)t4

+ (71.7K1 + 13s)t3 + (466.1275K1 + 72.05s)t2

+ (3489.8225K1 + 467.3s)t + 3494.25s

and obtain f(x1, a) � b8K1. Since a  log x1  b, we have f(x1, log x1) � K1 log8 x1

and therefore

x1 log6 x1 + x1 log5 x1 + 3x1 log4 x1 + 13x1 log3 x1 + 72.05x1 log2 x1

+ 467.3x1 log x1 + 3494.25x1

� K1 log8 x1 �K1 log7 x1 �K1 log6 x1 � 3.35K1 log5 x1

� 12.65K1 log4 x1 � 71.7K1 log3 x1 � 466.1275K1 log2 x1

� 3489.8225K1 log x1.
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It immediately follows that

x1 log9 x1 + x1 log8 x1 + 3x1 log7 x1 + 13x1 log6 x1 + 72.05x1 log5 x1

+ 467.3x1 log4 x1 + 3494.25x1 log3 x1 + 25.095x1 log2 x1

+ 163.144625x1 log x1 + 1221.437875x1

> K1g(log x1) log4 x1.

Since the left-hand side of the last inequality is equal to x1(log10 x1 � (log3 x1 +
0.35)g(log x1)), we have

x1 log10 x1 > (K1 log4 x1 + x1(log3 x1 + 0.35))g(log x1).

Moreover, K1 � ⇡(x1)� ✓(x1)/ log x1 by (16), and g(log x1) > 0. Hence,

x1 log10 x1 >

✓✓
⇡(x1)�

✓(x1)
log x1

◆
log4 x1 + x1(log3 x1 + 0.35)

◆
g(log x1).

We divide both sides of this inequality by the positive value g(log x1) log4 x1, and,
by (17) and Proposition 3.2, we get

⇠(x) > J3,0.35,x1(x) � ⇡(x)

for every x � x1.
Now let 140000  x  x1. We compare ⇠(x) with li(x). We set

r(t) = 0.35t11 � 1.75t10 + 1.75t9 � 0.6t8 � 1.3t7 � 29492t6

� 11917t5 � 40316t4 � 155136t3 � 717716t2 � 3253405t� 12178862.

Then r(t) � 0 for every t � 10.9, and we obtain

⇠0(x)� li0(x) � r(log x)
g2(log x) log x

� 0 (18)

for every x � e10.9. We have ⇠(140000) � li(140000) > 0.0024. It remains to use
(18) and Proposition 2.1.

Now we consider the case where e4.53  x < 140000. We set

s(t) = t8�2t7� t6�4.35t5�19.35t4�109.65t3�752.9275t2�5820.46t�20938.935.

Since s(t) � 0 for every t � 4.53, we get

g(log x)2⇠0(x)
log5 x

= s(log x) � 0 (19)

for every x � e4.53. Since g(log x) > 0 for every x � e3.804, using (19) we obtain that
⇠0(x) > 0 holds for every x � e4.53. So we check with a computer that ⇠(pi) > ⇡(pi)
for every integer i ranging from ⇡(e4.53) to ⇡(140000) + 1.
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Next, let 45  x < e4.52. Since we have s0(t) > 0 for every t � 3.48 and
s(4.52)  �433, we get s(log x) < 0. From (19), it follows that ⇠0(x) < 0 for
every e3.804  x  e4.52. Hence ⇠(x) � ⇠(e4.52) > 26 > ⇡(e4.52) � ⇡(x) for every
e3.804  x  e4.52.

Finally, ⇠(x) � 26 > ⇡(x) for every e4.52  x  e4.53, and the theorem is
proved.

Remark. Theorem 1.3 leads to an improvement of Theorem 1.1 for every su�-
ciently large x.

Corollary 3.4. For every x � 21.95, we have

⇡(x) <
x

log x� 1� 1
log x �

3.35
log2 x �

12.65
log3 x �

89.6
log4 x

.

If x � 14.36, then

⇡(x) <
x

log x� 1� 1
log x �

3.35
log2 x �

15.43
log3 x

,

and for every x � 9.25 we have

⇡(x) <
x

log x� 1� 1
log x �

3.83
log2 x

.

If x � 5.43, then
⇡(x) <

x

log x� 1� 1.17
log x

.

Proof. The claim follows by comparing each expression on the right-hand side with
the right-hand side of (8) and with li(x). For small x we check the inequalities with
a computer.

3.2. Some New Lower Bounds for the Prime Counting Function

Here we prove the theorems about the lower bounds for ⇡(x) .

Proof of Theorem 1.4. We denote the denominator on the right-hand side of (9) by
'(x). Then '(x) > 0 for every x � e3.79. Let x1 = 1014. We set

�(x) =
x

'(x)

and

r(t) = 28714t10 + 11244t9 + 36367t8 + 146093t7 + 691057t6 + 3101649t5

+ 11572765t4 � 77484t3 � 365233t2 � 799121t + 12169597.
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Obviously r(t) � 0 for every t � 1. Hence

J 03,�0.35,x1
(x)� �0(x) � r(log x)

('(x) log6 x)2 log5 x
� 0 (20)

for every x � e3.79. Since ✓(1014)  99999990573247 by Table 6.2 of [6], ⇡(1014) =
3204941750802, and 32.23619  log 1014  32.2362, we get

⇡(x1)�
✓(x1)
log x1

� 102838475779.

Hence, by (13),

J3,�0.35,x1(x1)� �(x1) � 102838475779 +
1014

32.2362
� 0.35 · 1014

32.236194
� 1014

'(e32.23619)
� 322936.

Using (20) and Proposition 3.2, we obtain ⇡(x) > �(x) for every x � x1.
Next, let x2 = 8 · 109 and x2  x  x1. We set

h(t) = �0.01t15 + 0.39t14 � 1.78t13 + 1.763t12 + 0.033t11 � 2.997t10.

For every 29  t  33, we get h(t) � 0.443t12�2.997t10 > 0. For every 23  t  29,
we obtain h(t) � 13.723t12 � 2.997t10 > 0. Therefore,

J 02,�0.01,x2
(x)� �0(x) � h(log x)

('(x) log6 x)2 log4 x
� 0 (21)

for every e23  x2  x  x1  e33. Since ✓(x2)  7999890793 (see Table 6.1 of [6]),
⇡(x2) = 367783654 and 22.8027  log x2, we obtain

⇡(x2)�
✓(x2)
log x2

� 367783654� 7999890793
22.8027

� 16952796.

Using 22.8  log x2  22.8028, we get

J2,�0.01,x2(x2)� �(x2) � 16952796 +
x2

22.8028
� 0.01x2

22.83
� x2

'(e22.8)
� 2360.

Using (21) and Proposition 3.3, we prove the required inequality for every x2  x 
x1.

It remains to consider the case where 1332479531  x  x2. We set

s(t) = t8�2t7� t6�3.65t5�18.65t4�110.35t3�736.8275t2�5682.56t�20426.535.

Since s(t) � 0 for every t � 4.6, we obtain

�0(x) =
s(log x) log5 x

('(x) log6 x)2
� 0

for every x � e4.6. And again we use a computer to check that the inequality
⇡(pi) � �(pi+1) for every integer i ranging from ⇡(1332479531) to ⇡(x2) + 1.
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Using a computer and Theorem 1.4, we obtain the following weaker estimates for
⇡(x).

Corollary 3.5. If x � x0, then

⇡(x) >
x

log x� 1� 1
log x �

a
log2 x �

b
log3 x �

c
log4 x �

d
log5 x

,

where

a 2.65 2.65 2.65 2.65 2.65 2.65
b 13.35 13.35 13.35 13.35 13.35 13.1
c 70.3 70.3 45 34 5 0
d 276 69 0 0 0 0
x0 1245750347 909050897 768338551 547068751 374123969 235194097
a 2.65 2.65 2.65 2.62 2.1 0
b 8.6 7.7 4.6 0 0 0
c 0 0 0 0 0 0
d 0 0 0 0 0 0
x0 93811339 65951927 38168363 16590551 6690557 468049

Proof. By comparing each right-hand side with the right-hand side of (9), we see
that each inequality holds for every x � 1332479531. For smaller x we check the
asserted inequalities using a computer.

Now we prove Theorem 1.2 by using Theorem 1.4.

Proof of Theorem 1.2. For y > 0 we set

R(y) = 1 +
1
y

+
2
y2

+
5.65
y3

+
23.65
y4

+
118.25

y5
+

709.5
y6

+
4966.5

y7

and

S(y) = y � 1� 1
y
� 2.65

y2
� 13.35

y3
� 70.3

y4
� 455.6275

y5
� 3404.4225

y6
.

Then S(y) > 0 for every y � 3.79, and moreover, y13R(y)S(y) = y14 � T (y), where

T (y) = 11017.9625y6 + 19471.047875y5 + 60956.6025y4 + 250573.169y3

+ 1074985.621875y2 + 4678311.7425y + 16908064.34625.

Using Theorem 1.4, we get

⇡(x) >
x

S(log x)
>

x

S(log x)

✓
1� T (log x)

log14 x

◆
=

xR(log x)
log x
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for every x � 1332479531. So it remains to check the required inequality for every
1332450001  x  1332479531. Let

U(x) =
xR(log x)

log x

and u(y) = y8 � 0.35y5 + 1.05y4 � 39732. Since u(y) � 0 for every y � 3.8, it
follows that U 0(x) = u(log x)/ log9 x � 0 for every x � e3.8. So we use a computer
to check that the inequality ⇡(pi) > U(pi+1) holds for every integer i ranging from
⇡(1332450001) to ⇡(1332479531).

Remark. Obviously, Theorem 1.2 yields an improvement of Dusart’s estimate (6).

4. On the Existence of Prime Numbers in Short Intervals

Let m 2 N0 and r > 0. This section deals with finding an explicit constant x0 =
x0(m, r) so that for every x � x0 there exists a prime number in the interval

✓
x, x

✓
1 +

r

logm x

◆�
.

Remark. The prime number theorem guarantees the existence of such an x0.

Before proving Theorem 1.5, we mention some known results starting from m = 0.
The first result is due to Schoenfeld [21]. He gave the value x0(0, 1/16597) =
2010759.9. In 2003, this was improved as follows:

Proposition 4.1 (Ramaré and Saouter, [17]). For every x � 10726905041 the
interval ✓

x, x

✓
1 +

1
28313999

◆�
.

contains a prime number.

In 2014, Kadiri and Lumley [11, Table 2] found a series of improvements of Propo-
sition 4.1. For the proof of Theorem 1.5, we need the following result which easily
follows from the last row of Table 2 in [11].

Proposition 4.2 (Kadiri and Lumley, [11]). For every x � e150 the interval
✓

x, x

✓
1 +

1
2442159713

◆�

contains a prime number.
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For m = 2, Dusart [5] proved, that for every x � 3275 there exists a prime number
p such that

x < p  x

✓
1 +

1
2 log2 x

◆
.

In 2010, Dusart [6] improved his own result by finding x0(2, 1/25) = 396738. For
m = 2 and r = 1/111, we have the following

Proposition 4.3 (Trudgian, [23]). For every x � 2898239 the interval
✓

x,

✓
1 +

1
111 log2 x

◆�

contains a prime number.

Now let a, b 2 R. We define z1(a), z2(b) 2 N [ {1} by

z1(a) = min

(
k 2 N | ⇡(x) >

x

log x� 1� 1
log x �

a
log2 x

for every x � k

)

and

z2(b) = min

(
k 2 N | ⇡(x) <

x

log x� 1� 1
log x �

b
log2 x

for every x � k

)
.

To prove Theorem 1.5, we start with

Lemma 4.4. Let z0 2 R [ {�1} and let c : (z0,1) ! [1,1) be a map. Then,

⇡(c(x)x)� ⇡(x)

>
x((c(x)� 1)(log x� 1� 1

log x )� log c(x)� c(x) log c(x)+bc(x)�a
log2 x )

(log(c(x)x)� 1� 1
log(c(x)x) �

a
log2(c(x)x) )(log x� 1� 1

log x �
b

log2 x )

�
x(2bc(x) log c(x)

log3 x + bc(x) log2 c(x)
log4 x )

(log(c(x)x)� 1� 1
log(c(x)x) �

a
log2(c(x)x) )(log x� 1� 1

log x �
b

log2 x )

for every x � max{bz0c + 1, z2(b), z3(a)}, where z3(a) = min{k 2 N | k c(k) �
z1(a)}.
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Proof. For every x � max{bz0c+ 1, z2(b), z3(a)}, we have

⇡(c(x)x)� ⇡(x)

>
c(x)x

log(c(x)x)� 1� 1
log(c(x)x) �

a
log2(c(x)x)

� x

log x� 1� 1
log x �

b
log2 x

= x
(c(x)� 1)(log x� 1)� log c(x)� c(x)�1

log(c(x)x) �
c(x) log c(x)

log x log(c(x)x) �
bc(x)�a

log2(c(x)x)

(log(c(x)x)� 1� 1
log(c(x)x) �

a
log2(c(x)x) )(log x� 1� 1

log x �
b

log2 x )

� x

2bc(x) log c(x)
log x log2(c(x)x) + bc(x) log2 c(x)

log2 x log2(c(x)x)

(log(c(x)x)� 1� 1
log(c(x)x) �

a
log2(c(x)x) )(log x� 1� 1

log x �
b

log2 x )
.

Since c(x) � 1, the lemma is proved.

Now we prove Theorem 1.5, where for the first time for m = 3 we find an explicit
value x0(m, r) and which leads to an improvement of Proposition 4.3 for every
x � e131.1687.

Proof of Theorem 1.5. We set a = 2.65 and b = 3.83. By Corollary 3.5 and Corol-
lary 3.4, we obtain z1(a)  38168363 and z2(b) = 10. As in the proof of Theorem
1.4, we check with a computer that z1(a) = 36917641. Further, we define

c(x) = 1 +
1.1817
log3 x

and z0 = 1. Then z3(a) = 36909396. We consider the function

g(x) = 0.0017x2 � 2.3634x� 1.1817� 5.707611
x

� 9.051822
x2

� 1.39641489
x4

� 10.6965380574
x5

� 5.3482690287
x6

� 6.32004951121479
x9

,

and get g(x) � 0.056 for every x � 1423.728. We set

f(x) = (c(x)� 1)(log5 x� log4 x� log3 x)� log4 x log c(x)
� (c(x) log c(x) + 3.83c(x)� 2.65) log2 x

� 2 · 3.83c(x) log c(x) log x� 3.83c(x) log2 c(x)

and substitute c(x) = 1+1.1817/ log3 x in f(x). Using the inequality log(1+ t)  t
which holds for every t > �1, we get f(x) � g(log x) � 0.056 for every x � e1423.728.
By Lemma 4.4, we obtain

⇡

✓
x

✓
1 +

1.1817
log3 x

◆◆
� ⇡(x)

>
f(x)/ log4(x)

(log(c(x)x)� 1� 1
log(c(x)x) �

2.65
log2(c(x)x) )(log x� 1� 1

log x �
3.83

log2 x )

� 0
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for every x � e1423.728. For every e150  x  e1423.728, the theorem follows directly
from Proposition 4.2. Then we use Propositions 4.1 and 4.3 to obtain the result for
every 2898239  x < e150. Next we check with a computer that

pn

✓
1 +

1.1817
log3 pn

◆
> pn+1

for every integer n ranging from ⇡(58889) to ⇡(2898239) + 1. Finally, we confirm
that

⇡

✓
x +

1.1817x
log3 x

◆
> 5949 = ⇡(x)

is true for every 58837  x < 58889.
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