A NOTE ON A METHOD OF ERDÖS AND THE STANLEY-ELDER THEOREMS

George E. Andrews
Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania
gea1@psu.edu
\section*{Emeric Deutsch}
Polytechnic Institute of New York University, Brooklyn, New York
emericdeutsch@msn.com

Received: 12/30/15, Revised: 2/10/16, Accepted: 4/14/16, Published: 4/22/16

Abstract

An enumeration method of Erdős is applied to provide a generalization of the theorems of Stanley and Elder on integer partitions.

1. Introduction

In [4], Erdős proved the asymptotics of the partition function $p(n)$ by elementary means. His starting point was the identity of Ford [7] (probably going back to Euler):

$$
\begin{equation*}
n p(n)=\sum_{j=1}^{n} p(n-j) \sigma(j) \tag{1}
\end{equation*}
$$

where $\sigma(j)$ is the sum of divisors of j. The standard proof of (1) is by logarithmic differentiation of

$$
\begin{equation*}
\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}} \tag{2}
\end{equation*}
$$

([7], also [1, p.98]). However, Erdős wanted to avoid even this amount of analysis. So he rewrote (1) as follows

$$
\begin{equation*}
n p(n)=\sum_{v \geq 1} \sum_{k \geq 1} v p(n-k v) \tag{3}
\end{equation*}
$$

and then he remarked: "We easily obtain (3) by adding up all the partitions of n, and noting that v occurs in $p(n-v)$ partitions." We assume he is telegraphing that v appears twice in $p(n-2 v)$ partitions, etc.

This same counting method makes transparent a very general theorem in partitions.

Definition 1. A partition configuration, A, is a non-decreasing sequence of nonnegative integers $\left(a_{1}, \ldots, a_{k}\right)$ with length k and weight $w(A)=a_{1}+a_{2}+\cdots+a_{k}$.

Definition 2. A partition, $\lambda: \lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}\left(1 \leq \lambda_{1} \leq \lambda_{2} \cdots \leq \lambda_{m}\right)$ is said to have a partition configuration A if there is a subset of parts of λ of the form $a_{1}+j, a_{2}+j, \ldots, a_{k}+j$ for some $j \geq 1$.

For example, the partition $(2+4+4+5+8+9)$ contains an instance of $A=$ $(0,3,6,7)$ because the parts $2,5,8,9$ exceed by 2 the successive entries of A.

Theorem 1. Given a partition configuration A, in each partition of n we count the number of distinct configurations A and then sum over all partitions of n. Call this sum $p_{A}(n)$. Then

$$
\begin{equation*}
p_{A}(n)=p(k ; n-w(A)) \tag{4}
\end{equation*}
$$

where $p(k ; n)$ is the total number of appearances of k in the partitions of n.
As an example of Theorem 1, we take $A=(0,1,2)$ (having length $k=3$ and weight $w(A)=3$) and $n=10$. The partitions of 10 containing the partition configuration A are $1+1+1+1+1+2+3,1+1+1+2+2+3,1+2+2+2+3$, $1+1+2+3+3$ and $1+2+3+4$ which contain $A 1+1+1+1+2=6$ times. So $p_{A}(10)=6$. As for $p(3 ; 10-3)=p(3 ; 7)$ we see that the partitions of 7 containing 3 's are $1+1+1+1+3,1+1+2+3,2+2+3,1+3+3,3+4$. So $p(3 ; 7)=1+1+1+2+1=6$, the total number of 3 's in the partitions of 7 .

In Section 2, we use the Erdős method to provide a short proof of Theorem 1 together with the theorems of Elder and Stanley (see Corollaries 2 and 3). We refer the reader to [8] for an extensive account of the Elder and Stanley theorems. In Section 3, we extend these ideas to a question concerning divisibility restrictions on parts. We conclude with some general observations.

2. Proof of Theorem 1

We remark, following Erdős, that to obtain $p_{A}(n)$ there must be $p\left(n-\left(\left(a_{1}+j\right)+\right.\right.$ $\left.\left.\cdots+\left(a_{k}+j\right)\right)\right)$ partitions which contain the partition configuration A in the form $\left(a_{1}+j\right)+\left(a_{2}+j\right)+\cdots+\left(a_{k}+j\right)$.

Hence

$$
\begin{align*}
\sum_{n \geq 0} p_{A}(n) q^{n} & =\sum_{j=1}^{\infty} \frac{q^{\left(j+a_{1}\right)+\left(j+a_{2}\right)+\cdots+\left(j+a_{k}\right)}}{\prod_{n=1}^{\infty}\left(1-q^{n}\right)}=\frac{q^{w(A)} \sum_{j=1}^{\infty} q^{k j}}{\prod_{n=1}^{\infty}\left(1-q^{n}\right)} \\
& =\frac{q^{w(A)+k}}{\left(1-q^{k}\right)^{2} \prod_{\substack{n=1 \\
n \neq k}}^{\infty}\left(1-q^{n}\right)} \tag{5}\\
& =q^{w(A)}\left(q^{k}+2 q^{2 k}+3 q^{3 k}+\cdots\right) \prod_{\substack{n=1 \\
n \neq k}}^{\infty}\left(1+q^{n}+q^{2 n}+q^{3 n}+\cdots\right) \\
& =q^{w(A)} \sum_{n \geq 0} p(k, n) q^{n}
\end{align*}
$$

and Theorem 1 follows by comparing coefficients of q^{n} in the extremes of (5).
Corollary 1 (Stanley's Theorem [2],[8]). The number of 1's in the partitions of n is equal to the number of parts that appear at least once in a given partition of n, summed over all partitions of n.

Proof. Take $A=(0)$ in Theorem 1.
A more general theorem is attributed to Paul Elder.
Corollary 2 (Elder's Theorem [2][8]). The number of j 's appearing in the partitions of n is equal to the number of parts that appear at least j times in a given partition of n, summed over all partitions of n.

Proof. Take $A=(0,0, \ldots, 0)$ of length j in Theorem 1.
Corollary 3. In each partition of n count the number of sequences of consecutive integers of length k. Then sum these numbers over all partitions of n. This equals the number of appearances of k in the partitions of $n-k(k-1) / 2$.

This result is originally due to Knopfmacher and Munagi and occurs as Theorem 5 in [9].

Proof. In Theorem 1 take $A=(0,1, \ldots, k-1)$.

3. Divisibility of Parts

The method of Erdős can be further extended in many ways.
Theorem 2. Given $k \geq 1$, in each partition of n we count the number of times a part divisible by k appears uniquely (i.e., is not a repeated part); then sum these numbers over all the partitions of n. The result is equal to the number of appearances of $2 k$ in the partitions of $n+k$.

Example. $k=1, n=5$. There are eight singletons in the partitions of 5: 5, 4+1, $3+2,3+1+1,2+2+1,2+1+1+1,1+1+1+1+1$. There are eight 2 's in the partitions of 6 : $4+2,3+2+1,2+2+2,2+2+1+1,2+1+1+1+1$.

Remark. The case $k=1$ was published as a problem in [3].
Proof. The generating function for multiples of k being unique parts is

$$
\begin{aligned}
\sum_{j=1}^{\infty} \frac{q^{k j}}{\prod_{\substack{n=1 \\
n \neq k j}}^{\infty}\left(1-q^{n}\right)} & =\frac{1}{\prod_{n=1}^{\infty}\left(1-q^{n}\right)} \sum_{j=1}^{\infty} q^{k j}\left(1-q^{k j}\right) \\
& =\frac{1}{\prod_{n=1}^{\infty}\left(1-q^{n}\right)}\left(\frac{q^{k}}{1-q^{k}}-\frac{q^{2 k}}{1-q^{2 k}}\right) \\
& =\frac{q^{k}}{\left(1-q^{2 k}\right)} \cdot \prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)} \\
& =q^{-k}\left(q^{2 k}+2 q^{2 \cdot 2 k}+3 q^{3 \cdot 2 k}+\cdots\right) \prod_{\substack{n=1 \\
n \neq 2 k}}^{\infty} \frac{1}{1-q^{n}}
\end{aligned}
$$

and this last expression is the generating function for the number of appearances of $2 k$ in the partitions of $n+k$.

4. Conclusion

It is clear that the scope of Theorem 1 could be generalized to account for results like Theorem 5. We should also note that Dastidar and Gupta [2] have generalized the Stanley and Elder theorems where they add what they term "packets" of size k to partitions, and this count equals the number of appearances of k in the partitions of $n+k$.

Finally, we note the charming survey "A Fine Rediscovery" by R. Gilbert [8], which provides a detailed history of the Stanley and Elder theorems and points out that N. J. Fine was the original discoverer of both theorems [5],[6].

References

[1] G.E. Andrews, The Theory of Partitions, Addison-Wesley,Reading, 1976 (Reissued: Cambridge University Press, Cambridge, 1984).
[2] M. G. Dastidar and S. S. Gupta, Generalization of a few results in integer partitions, arXiv: 1111.0094 v 1 [csDM].
[3] E. Deutsch, Problem 11237, Amer. Math. Monthly 115 (2006), 666-667.
[4] P. Erdős, On an elementary proof of some asymptotic formulas in the theory of partitions, Annals of Math. 43 (1942), 437-450.
[5] N. J. Fine, Sums over partitions, in Report of the Institute in the Theory of Numbers, University of Colorado, Boulder, Colorado, June 21-July 17, 1959. 86-94.
[6] N. J. Fine, Basic Hypergeometric Series and Applications. Mathematical Surveys and Monographs, Vol. 27, Amer. Math. Soc. Providence, 1988.
[7] W. B. Ford, Two theorems on the partitions of numbers, Amer. Math. Monthly 38 (1931), 183-184.
[8] R. A. Gilbert, A Fine rediscovery, Amer. Math. Monthly 122 (2015), 322-331.
[9] A. Knopfmacher and A. O. Munagi, Successions in integer partitions, Ramanujan J. 18 (2009), 239-255.

