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Abstract
An enumeration method of Erdős is applied to provide a generalization of the the-
orems of Stanley and Elder on integer partitions.

1. Introduction

In [4], Erdős proved the asymptotics of the partition function p(n) by elementary
means. His starting point was the identity of Ford [7] (probably going back to
Euler):

np(n) =
nX

j=1

p(n� j)�(j), (1)

where �(j) is the sum of divisors of j. The standard proof of (1) is by logarithmic
di↵erentiation of 1X

n=0

p(n)qn =
1Y

n=1

1
1� qn

(2)

([7], also [1, p.98]). However, Erdős wanted to avoid even this amount of analysis.
So he rewrote (1) as follows

np(n) =
X
v�1

X
k�1

vp(n� kv), (3)

and then he remarked: “We easily obtain (3) by adding up all the partitions of n,
and noting that v occurs in p(n�v) partitions.” We assume he is telegraphing that
v appears twice in p(n� 2v) partitions, etc.

This same counting method makes transparent a very general theorem in parti-
tions.
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Definition 1. A partition configuration, A, is a non-decreasing sequence of non-
negative integers (a1, . . . , ak) with length k and weight w(A) = a1 + a2 + · · · + ak.

Definition 2. A partition, � : �1 + �2 + · · · + �m (1  �1  �2 · · ·  �m) is said
to have a partition configuration A if there is a subset of parts of � of the form
a1 + j, a2 + j, . . . , ak + j for some j � 1.

For example, the partition (2 + 4 + 4 + 5 + 8 + 9) contains an instance of A =
(0, 3, 6, 7) because the parts 2, 5, 8, 9 exceed by 2 the successive entries of A.

Theorem 1. Given a partition configuration A, in each partition of n we count the
number of distinct configurations A and then sum over all partitions of n. Call this
sum pA(n). Then

pA(n) = p(k;n� w(A)), (4)

where p(k;n) is the total number of appearances of k in the partitions of n.

As an example of Theorem 1, we take A = (0, 1, 2) (having length k = 3 and
weight w(A) = 3) and n = 10. The partitions of 10 containing the partition
configuration A are 1 + 1 + 1 + 1 + 1 + 2 + 3, 1 + 1 + 1 + 2 + 2 + 3, 1 + 2 + 2 + 2 + 3,
1 + 1 + 2 + 3 + 3 and 1 + 2 + 3 + 4 which contain A 1 + 1 + 1 + 1 + 2 = 6 times. So
pA(10) = 6. As for p(3; 10�3) = p(3; 7) we see that the partitions of 7 containing 3’s
are 1+1+1+1+3, 1+1+2+3, 2+2+3, 1+3+3, 3+4. So p(3; 7) = 1+1+1+2+1 = 6,
the total number of 3’s in the partitions of 7.

In Section 2, we use the Erdős method to provide a short proof of Theorem 1
together with the theorems of Elder and Stanley (see Corollaries 2 and 3). We refer
the reader to [8] for an extensive account of the Elder and Stanley theorems. In
Section 3, we extend these ideas to a question concerning divisibility restrictions on
parts. We conclude with some general observations.

2. Proof of Theorem 1

We remark, following Erdős, that to obtain pA(n) there must be p(n� ((a1 + j) +
· · · + (ak + j))) partitions which contain the partition configuration A in the form
(a1 + j) + (a2 + j) + · · · + (ak + j).
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Hence
X
n�0

pA(n)qn =
1X

j=1

q(j+a1)+(j+a2)+···+(j+ak)Q1
n=1(1� qn)

=
qw(A)

P1
j=1 qkjQ1

n=1(1� qn)

=
qw(A)+k

(1� qk)2
Q1

n=1
n6=k

(1� qn)
(5)

= qw(A)
�
qk + 2q2k + 3q3k + · · ·

� 1Y
n=1
n6=k

(1 + qn + q2n + q3n + · · · )

= qw(A)
X
n�0

p(k, n)qn,

and Theorem 1 follows by comparing coe�cients of qn in the extremes of (5).

Corollary 1 (Stanley’s Theorem [2],[8]). The number of 1’s in the partitions
of n is equal to the number of parts that appear at least once in a given partition of
n, summed over all partitions of n.

Proof. Take A = (0) in Theorem 1.

A more general theorem is attributed to Paul Elder.

Corollary 2 (Elder’s Theorem [2][8]). The number of j’s appearing in the
partitions of n is equal to the number of parts that appear at least j times in a given
partition of n, summed over all partitions of n.

Proof. Take A = (0, 0, . . . , 0) of length j in Theorem 1.

Corollary 3. In each partition of n count the number of sequences of consecutive
integers of length k. Then sum these numbers over all partitions of n. This equals
the number of appearances of k in the partitions of n� k(k � 1)/2.

This result is originally due to Knopfmacher and Munagi and occurs as Theorem
5 in [9].

Proof. In Theorem 1 take A = (0, 1, . . . , k � 1).

3. Divisibility of Parts

The method of Erdős can be further extended in many ways.

Theorem 2. Given k � 1, in each partition of n we count the number of times
a part divisible by k appears uniquely (i.e., is not a repeated part); then sum these
numbers over all the partitions of n. The result is equal to the number of appearances
of 2k in the partitions of n + k.
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Example. k = 1, n = 5. There are eight singletons in the partitions of 5: 5, 4 + 1,
3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. There are eight 2’s in
the partitions of 6: 4 + 2, 3 + 2 + 1, 2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1.

Remark. The case k = 1 was published as a problem in [3].

Proof. The generating function for multiples of k being unique parts is

1X
j=1

qkjQ1
n=1

n6=kj
(1� qn)

=
1Q1

n=1(1� qn)

1X
j=1

qkj(1� qkj)

=
1Q1

n=1(1� qn)

✓
qk

1� qk
� q2k

1� q2k

◆

=
qk

(1� q2k)
·
1Y

n=1

1
(1� qn)

= q�k
�
q2k + 2q2·2k + 3q3·2k + · · ·

� 1Y
n=1

n6=2k

1
1� qn

,

and this last expression is the generating function for the number of appearances
of 2k in the partitions of n + k.

4. Conclusion

It is clear that the scope of Theorem 1 could be generalized to account for results
like Theorem 5. We should also note that Dastidar and Gupta [2] have generalized
the Stanley and Elder theorems where they add what they term ”packets” of size k
to partitions, and this count equals the number of appearances of k in the partitions
of n + k.

Finally, we note the charming survey “A Fine Rediscovery” by R. Gilbert [8],
which provides a detailed history of the Stanley and Elder theorems and points out
that N. J. Fine was the original discoverer of both theorems [5],[6].
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