CONGRUENCES FOR 3-REGULAR PARTITIONS WITH DESIGNATED SUMMANDS

M. S. Mahadeva Naika
Department of Mathematics, Bangalore University, Central College Campus, Bengaluru, Karnataka, India
msmnaika@rediffmail.com
D. S. Gireesh
Department of Mathematics, Bangalore University, Central College Campus, Bengaluru, Karnataka, India gireeshdap@gmail.com

Received: 1/13/16, Accepted: 4/16/16, Published: 4/22/16

Abstract

Andrews, Lewis and Lovejoy introduced the partition functions $P D(n)$ and $P D O(n)$ defined by the number of partitions of n with designated summands and the number of partitions of n with designated summands in which all parts are odd, respectively. They found several generating function identities and congruences modulo 3, 4, and 24 satisfied by the functions. In this paper, we find generating function identities and congruences modulo $4,9,12,36,48$, and 144 for $P D_{3}(n)$, which represents the number of partitions of n with designated summands, whose parts are not divisible by 3 .

1. Introduction

Andrews, Lewis and Lovejoy [1] introduced a new class of partitions, partitions with designated summands which are constructed by taking ordinary partitions and tagging exactly one part among parts with equal size. Fifteen partitions of 5 with designated summands are

$$
\begin{gathered}
5^{\prime}, \quad 4^{\prime}+1^{\prime}, \quad 3^{\prime}+2^{\prime}, \quad 3^{\prime}+1^{\prime}+1, \quad 3^{\prime}+1+1^{\prime}, \quad 2^{\prime}+2+1^{\prime}, \quad 2+2^{\prime}+1^{\prime}, \\
2^{\prime}+1^{\prime}+1+1, \quad 2^{\prime}+1+1^{\prime}+1, \\
1+1^{\prime}+1+1+1, \\
1+1+1^{\prime}+1+1,
\end{gathered} 1+1+1+1^{\prime}, \quad 1^{\prime}+1+1+1+1,01+1+1+1+1^{\prime} .
$$

The concept of partitions with designated summands goes back to MacMahon [10]. He considered partitions with designated summands and with exactly ℓ different sizes, see also Andrews and Rose [2]. The authors [1] derived the following gener-
ating function of $P D(n)$:

$$
\sum_{n=0}^{\infty} P D(n) q^{n}=\frac{f_{6}}{f_{1} f_{2} f_{3}}
$$

Throughout the paper, we use the standard q-series notation, and f_{k} is defined as

$$
f_{k}:=\left(q^{k} ; q^{k}\right)_{\infty}=\lim _{n \rightarrow \infty} \prod_{m=1}^{n}\left(1-q^{m k}\right), \quad|q|<1
$$

For $|a b|<1$, Ramanujan's general theta function $f(a, b)$ is defined as

$$
\begin{equation*}
f(a, b):=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2} \tag{1}
\end{equation*}
$$

Using Jacobi's triple product identity [5, Entry 19, p.35], (1) becomes

$$
f(a, b)=(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty}
$$

The most important special cases of $f(a, b)$ are

$$
\psi(q):=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}=\frac{f_{2}^{2}}{f_{1}}
$$

and

$$
f(-q):=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n(3 n-1) / 2}=f_{1} .
$$

Andrews et al. [1] derived the generating functions for $P D(2 n)$ and $P D(2 n+1)$ and they proved Ramanujan type congruences modulo 3 and powers of 2 for $P D(n)$. In particular, they proved that for $n \geq 0$,

$$
\begin{equation*}
P D(3 n+2) \equiv 0 \quad(\bmod 3) \tag{2}
\end{equation*}
$$

Chen, Ji, Jin and Shen [7] established a Ramanujan type identity for the partition function $P D(3 n+2)$ which implies the congruence (2) and they also gave a combinatorial interpretation of (2) by introducing a rank for partitions with designated summands. Xia [11] extended the work of deriving congruence properties of $P D(n)$ by employing the generating functions of $P D(3 n)$ and $P D(3 n+2)$ due to Chen et al. [7].

The authors [1] also studied $P D O(n)$, the total number of partitions of n with designated summands in which all parts are odd, and the generating function is given by

$$
\sum_{n=0}^{\infty} P D O(n) q^{n}=\frac{f_{4} f_{6}^{2}}{f_{1} f_{3} f_{12}}
$$

Thus $P D O(5)=8$ are

$$
\begin{aligned}
& 5^{\prime}, \quad 3^{\prime}+1^{\prime}+1, \quad 3^{\prime}+1+1^{\prime}, \quad 1^{\prime}+1+1+1+1, \quad 1+1^{\prime}+1+1+1, \\
& 1+1+1^{\prime}+1+1, \quad 1+1+1+1^{\prime}+1, \quad 1+1+1+1+1^{\prime} .
\end{aligned}
$$

They also established generating functions for $P D O(2 n), P D O(2 n+1), P D O(3 n)$, $P D(3 n+1), P D(3 n+2)$ by using q-series and modular forms and later Baruah and Ojah [4] proved the same by using theta function dissections. Baruah and Ojah also obtained generating functions for $P D O(4 n), P D O(4 n+1), P D O(4 n+2)$, $P D O(4 n+3), P D O(6 n), P D O(6 n+2), P D O(6 n+3), P D O(6 n+5), P D O(9 n+$ 3), $P D O(9 n+6), P D O(12 n), P D O(12 n+2), P D O(12 n+3), P D O(12 n+6)$, $P D O(12 n+9), P D O(12 n+10)$ and Ramanujan like congruences for $P D O(n)$.

Motivated by the above work, in this paper, we study $P D_{3}(n)$, the total number of partitions of n with designated summands, whose parts are not divisible by 3 and the generating function is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(n) q^{n}=\frac{f_{6}^{2} f_{9}}{f_{1} f_{2} f_{18}} \tag{3}
\end{equation*}
$$

Thus $P D_{3}(5)=12$ are

$$
\begin{array}{lcc}
5^{\prime}, & 4^{\prime}+1^{\prime}, & 2^{\prime}+2+1^{\prime}, \\
2^{\prime}+1+1+1^{\prime}, & 1^{\prime}+1+1+1+1, & 1+1^{\prime}, \quad 2^{\prime}+1^{\prime}+1+1, \\
1+1+1+1^{\prime}+1, & 1+1+1+1+1+1 & 2^{\prime}+1+1^{\prime}+1 \\
& 1+1+1^{\prime}+1+1
\end{array}
$$

In Section 3, we prove the following theorems.
Theorem 1. We have

$$
\begin{align*}
\sum_{n=0}^{\infty} P D_{3}(2 n) q^{n} & =\frac{f_{3} f_{6}^{3}}{f_{1}^{3} f_{18}} \tag{4}\\
\sum_{n=0}^{\infty} P D_{3}(2 n+1) q^{n} & =\frac{f_{2}^{2} f_{3}^{3} f_{18}}{f_{1}^{4} f_{6} f_{9}} \tag{5}\\
\sum_{n=0}^{\infty} P D_{3}(3 n) q^{n} & =\frac{f_{3}^{4} f_{6}^{2}}{f_{1}^{4} f_{2}^{2}}\left(\frac{1}{\nu^{2}(q)}-2 q \nu(q)\right), \tag{6}\\
\sum_{n=0}^{\infty} P D_{3}(3 n+1) q^{n} & =\frac{f_{3}^{4} f_{6}^{2}}{f_{1}^{4} f_{2}^{2}}\left(\frac{1}{\nu(q)}+4 q \nu^{2}(q)\right), \tag{7}\\
\sum_{n=0}^{\infty} P D_{3}(3 n+2) q^{n} & =3 \frac{f_{3}^{4} f_{6}^{2}}{f_{1}^{4} f_{2}^{2}} \tag{8}\\
\sum_{n=0}^{\infty} P D_{3}(4 n) q^{n} & =\frac{f_{2}^{6} f_{3}^{6}}{f_{1}^{9} f_{6}^{2} f_{9}} \tag{9}\\
\sum_{n=0}^{\infty} P D_{3}(4 n+2) q^{n} & =3 \frac{f_{2}^{2} f_{3}^{4} f_{6}^{2}}{f_{1}^{7} f_{9}} \tag{10}
\end{align*}
$$

$$
\begin{align*}
& \sum_{n=0}^{\infty} P D_{3}(6 n+2) q^{n}=3 \frac{f_{2}^{9} f_{3}^{7}}{f_{1}^{13} f_{6}^{3}}+9 q \frac{f_{2} f_{3}^{3} f_{6}^{5}}{f_{1}^{9}} \tag{11}\\
& \sum_{n=0}^{\infty} P D_{3}(6 n+5) q^{n}=12 \frac{f_{2}^{5} f_{3}^{5} f_{6}}{f_{1}^{11}} \tag{12}
\end{align*}
$$

where

$$
\begin{equation*}
\nu(q)=\frac{f_{1} f_{6}^{3}}{f_{2} f_{3}^{3}} \tag{13}
\end{equation*}
$$

Theorem 2. For each $n \geq 0$,

$$
\begin{align*}
P D_{3}(6 n+3) & \equiv 0 \quad(\bmod 4) \tag{14}\\
P D_{3}(6 n+5) & \equiv 0 \quad(\bmod 12) \tag{15}\\
P D_{3}(12 n+8) & \equiv 0 \quad(\bmod 48) \tag{16}\\
P D_{3}(24 n+4) & \equiv 0 \quad(\bmod 9) \tag{17}\\
P D_{3}(24 n+20) & \equiv 0 \quad(\bmod 144), \tag{18}\\
P D_{3}(24 n+22) & \equiv 0 \quad(\bmod 36), \tag{19}\\
P D_{3}(48 n+38) & \equiv 0 \quad(\bmod 12) \tag{20}
\end{align*}
$$

Theorem 3. For each nonnegative integer n and $\alpha \geq 0$, we have

$$
\begin{align*}
P D_{3}\left(4 \times 3^{\alpha} n+2 \times 3^{\alpha}\right) & \equiv P D_{3}(4 n+2) \quad(\bmod 9) \tag{21}\\
P D_{3}\left(4 \times 3^{\alpha+1} n+10 \times 3^{\alpha}\right) & \equiv 0 \quad(\bmod 9) \tag{22}
\end{align*}
$$

In the process of proving the above results, we find the congruence modulo 9 connecting $P D_{3}(n)$ and $a_{3}(n)$,

$$
\begin{equation*}
P D_{3}(6 n+2) \equiv 3 a_{3}(n) \quad(\bmod 9), \tag{23}
\end{equation*}
$$

where $a_{3}(n)$ denotes the number of partitions of n that are 3 -cores. The generating function for $a_{3}(n)$ is given by

$$
\sum_{n=0}^{\infty} a_{3}(n) q^{n}=\frac{f_{3}^{3}}{f_{1}}
$$

Theorem 4. Let p be a prime with $\left(\frac{-3}{p}\right)=-1$. Then for any nonnegative integer α,

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}\left(4 p^{2 \alpha} n+2 p^{2 \alpha}\right) q^{n} \equiv 3 \psi(q) \psi\left(q^{3}\right) \quad(\bmod 9) \tag{24}
\end{equation*}
$$

and for $n \geq 0,1 \leq j \leq p-1$,

$$
\begin{equation*}
P D_{3}\left(4 p^{2 \alpha+1}(p n+j)+2 p^{2 \alpha+2}\right) \equiv 0 \quad(\bmod 9) \tag{25}
\end{equation*}
$$

Theorem 5. If $p \geq 5$ is a prime such that $\left(\frac{-6}{p}\right)=-1$, then for all integers $\alpha \geq 0$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}\left(48 p^{2 \alpha} n+14 p^{2 \alpha}\right) q^{n} \equiv 6 f_{1} f_{6} \quad(\bmod 12) \tag{26}
\end{equation*}
$$

Theorem 6. Let $p \geq 5$ be prime and $\left(\frac{-6}{p}\right)=-1$. Then for all integers $n \geq 0$ and $\alpha \geq 1$,

$$
\begin{equation*}
P D_{3}\left(48 p^{2 \alpha} n+p^{2 \alpha-1}(14 p+48 j)\right) \equiv 0 \quad(\bmod 12) \tag{27}
\end{equation*}
$$

where $j=1,2, \ldots, p-1$.

2. Preliminaries

We recall 2-dissection identities for certain quotients of theta functions and p dissection identities of $f(-q)$ and $\psi(q)$ which play key roles in proving our main results.

Lemma 1. [5, Corollory, p. 49] We have

$$
\begin{equation*}
\psi(q)=f\left(q^{3}, q^{6}\right)+q \psi\left(q^{9}\right) \tag{28}
\end{equation*}
$$

Lemma 2. The following 2-dissections hold:

$$
\begin{align*}
\frac{1}{f_{1}^{2}} & =\frac{f_{8}^{5}}{f_{2}^{5} f_{16}^{2}}+2 q \frac{f_{4}^{2} f_{16}^{2}}{f_{2}^{5} f_{8}} \tag{29}\\
f_{1}^{4} & =\frac{f_{4}^{10}}{f_{2}^{2} f_{8}^{4}}-4 q \frac{f_{2}^{2} f_{8}^{4}}{f_{4}^{2}} \tag{30}\\
\frac{1}{f_{1}^{4}} & =\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}} \tag{31}
\end{align*}
$$

Lemma 2 is a consequence of Ramanujan's dissection formulas, collected by Berndt [5, Entry 25, p. 40].

Lemma 3. The following 2-dissection holds:

$$
\begin{equation*}
\frac{f_{3}}{f_{1}}=\frac{f_{4} f_{6} f_{16} f_{24}^{2}}{f_{2}^{2} f_{8} f_{12} f_{48}}+q \frac{f_{6} f_{8}^{2} f_{48}}{f_{2}^{2} f_{16} f_{24}} \tag{32}
\end{equation*}
$$

Xia and Yao [14] proved (32) by employing Jacobi triple product identity.

Lemma 4. The following 2-dissections hold:

$$
\begin{align*}
\frac{1}{f_{1} f_{3}} & =\frac{f_{8}^{2} f_{12}^{5}}{f_{2}^{2} f_{4} f_{6}^{4} f_{24}^{2}}+q \frac{f_{4}^{5} f_{24}^{2}}{f_{2}^{4} f_{6}^{2} f_{8}^{2} f_{12}}, \tag{33}\\
\frac{f_{1}^{3}}{f_{3}} & =\frac{f_{4}^{3}}{f_{12}}-3 q \frac{f_{2}^{2} f_{12}^{3}}{f_{4} f_{6}^{2}}, \tag{34}\\
\frac{f_{3}^{3}}{f_{1}} & =\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+q \frac{f_{12}^{3}}{f_{4}}, \tag{35}\\
\frac{f_{3}}{f_{1}^{3}} & =\frac{f_{4}^{6} f_{6}^{3}}{f_{2}^{9} f_{12}^{2}}+3 q \frac{f_{4}^{2} f_{6} f_{12}^{2}}{f_{2}^{7}}, \tag{36}
\end{align*}
$$

Equation (33) was proved by Baruah and Ojah [3], and (34) and (35) was proved by Hirschhorn, Garvan, and Borwein [9]. Replacing q by $-q$ in (34) and using the relation

$$
(-q ;-q)_{\infty}=\frac{f_{2}^{3}}{f_{1} f_{4}}
$$

we obtain (36).
Lemma 5. [12, p. 93, Eq. (2.14)] The following 2-dissection holds:

$$
\begin{equation*}
\frac{f_{3}^{2}}{f_{1}^{2}}=\frac{f_{4}^{4} f_{6} f_{12}^{2}}{f_{2}^{5} f_{8} f_{24}}+2 q \frac{f_{4} f_{6}^{2} f_{8} f_{24}}{f_{2}^{4} f_{12}} \tag{37}
\end{equation*}
$$

Lemma 6. The following 2-dissection holds:

$$
\begin{equation*}
\frac{f_{9}}{f_{1}}=\frac{f_{12}^{3} f_{18}}{f_{2}^{2} f_{6} f_{36}}+q \frac{f_{4}^{2} f_{6} f_{36}}{f_{2}^{3} f_{12}} \tag{38}
\end{equation*}
$$

Lemma 6 was proved by Xia and Yao [13].
Lemma 7. [6, Eq. (13)] We have

$$
\begin{equation*}
\frac{1}{f_{1} f_{2}}=\frac{f_{9}^{3} f_{18}^{3}}{f_{3}^{4} f_{6}^{4}}\left\{\frac{1}{\nu^{2}\left(q^{3}\right)}-2 q^{3} \nu\left(q^{3}\right)+q\left(\frac{1}{\nu\left(q^{3}\right)}+4 q^{3} \nu^{2}\left(q^{3}\right)\right)+3 q^{2}\right\} \tag{39}
\end{equation*}
$$

Lemma 8. [8, Theorem 2.1] For any odd prime p,

$$
\begin{equation*}
\psi(q)=\sum_{m=0}^{\frac{p-3}{2}} q^{\frac{m^{2}+m}{2}} f\left(q^{\frac{p^{2}+(2 m+1) p}{2}}, q^{\frac{p^{2}-(2 m+1) p}{2}}\right)+q^{\frac{p^{2}-1}{8}} \psi\left(q^{p^{2}}\right) \tag{40}
\end{equation*}
$$

Furthermore, $\frac{m^{2}+m}{2} \not \equiv \frac{p^{2}-1}{8}(\bmod p)$ for $0 \leq m \leq \frac{p-3}{2}$.
Lemma 9. [8, Theorem 2.2] For any prime $p \geq 5$,

$$
\begin{equation*}
f_{1}=\sum_{\substack{k=-\frac{p-1}{2} \\ k \neq(\pm p-1) / 6}}^{\frac{p-1}{2}}(-1)^{k} q^{\frac{3 k^{2}+k}{2}} f\left(-q^{\frac{3 p^{2}+(6 k+1) p}{2}},-q^{\frac{3 p^{2}-(6 k+1) p}{2}}\right)+(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f_{p^{2}} \tag{41}
\end{equation*}
$$

Furthermore, for $-(p-1) / 2 \leq k \leq(p-1) / 2$ and $k \neq(\pm p-1) / 6$,

$$
\frac{3 k^{2}+k}{2} \not \equiv \frac{p^{2}-1}{24} \quad(\bmod p)
$$

3. Proofs of Main Results

Proof of Theorem 1. Substituting (38) into (3), we find that

$$
\sum_{n=0}^{\infty} P D_{3}(n) q^{n}=\frac{f_{6}^{2}}{f_{2} f_{18}}\left(\frac{f_{12}^{3} f_{18}}{f_{2}^{2} f_{6} f_{36}}+q \frac{f_{4}^{2} f_{6} f_{36}}{f_{2}^{3} f_{12}}\right)
$$

Extracting the terms involving even and odd powers of q from the above equation, we obtain (4) and (5), respectively.

Invoking (3) and (39),

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(n) q^{n}=\frac{f_{9}^{4} f_{18}^{2}}{f_{3}^{4} f_{6}^{2}}\left\{\frac{1}{\nu^{2}\left(q^{3}\right)}-2 q^{3} \nu\left(q^{3}\right)+q\left(\frac{1}{\nu\left(q^{3}\right)}+4 q^{3} \nu^{2}\left(q^{3}\right)\right)+3 q^{2}\right\} . \tag{42}
\end{equation*}
$$

Extracting the terms involving $q^{3 n}, q^{3 n+1}$, and $q^{3 n+2}$ from (42), we arrive at (6), (7), and (8), respectively.

Substituting (36) into (4),

$$
\sum_{n=0}^{\infty} P D_{3}(2 n) q^{n}=\frac{f_{6}^{3}}{f_{18}}\left(\frac{f_{4}^{6} f_{6}^{3}}{f_{2}^{9} f_{12}^{2}}+3 q \frac{f_{4}^{2} f_{6} f_{12}^{2}}{f_{2}^{7}}\right)
$$

which yields (9) and (10).
Applying (35) and (36) in (8), we obtain

$$
\sum_{n=0}^{\infty} P D_{3}(3 n+2) q^{n}=3 \frac{f_{6}^{2}}{f_{2}^{2}}\left(\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+q \frac{f_{12}^{3}}{f_{4}}\right)\left(\frac{f_{4}^{6} f_{6}^{3}}{f_{2}^{9} f_{12}^{2}}+3 q \frac{f_{4}^{2} f_{6} f_{12}^{2}}{f_{2}^{7}}\right)
$$

Extracting the terms involving $q^{2 n}$ and $q^{2 n+1}$ from both sides of the above equation, we arrive at (11) and (12), respectively.
Proof of Theorem 2. From the Binomial Theorem, for any positive integer, k,

$$
\begin{align*}
& f_{k}^{2} \equiv f_{2 k} \quad(\bmod 2) \tag{43}\\
& f_{k}^{4} \equiv f_{2 k}^{2} \quad(\bmod 4) \tag{44}\\
& f_{k}^{3} \equiv f_{3 k} \quad(\bmod 3), \tag{45}\\
& f_{k}^{9} \equiv f_{3 k}^{3} \quad(\bmod 9) \tag{46}
\end{align*}
$$

Using (44), (5) can expressed as

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(2 n+1) q^{n} \equiv \frac{f_{3}^{3} f_{18}}{f_{6} f_{9}} \quad(\bmod 4) \tag{47}
\end{equation*}
$$

Equating the coefficients of $q^{3 n+1}$ from both sides of (47), we obtain (14).
From (12), we easily arrive at (15).
Substituting (30) and (31) into (8), we find that

$$
\sum_{n=0}^{\infty} P D_{3}(3 n+2) q^{n}=3 \frac{f_{6}^{2}}{f_{2}^{2}}\left(\frac{f_{12}^{10}}{f_{6}^{2} f_{24}^{4}}-4 q^{3} \frac{f_{6}^{2} f_{24}^{4}}{f_{12}^{2}}\right)\left(\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}}\right)
$$

which yields

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(6 n+2) q^{n} \equiv 3 \frac{f_{2}^{14} f_{6}^{10}}{f_{1}^{16} f_{4}^{4} f_{12}^{4}} \quad(\bmod 48) \tag{48}
\end{equation*}
$$

Using (31) in (48),

$$
\sum_{n=0}^{\infty} P D_{3}(6 n+2) q^{n} \equiv 3 \frac{f_{2}^{14} f_{6}^{10}}{f_{4}^{4} f_{12}^{4}}\left(\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}}\right)^{4} \quad(\bmod 48)
$$

which implies

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(6 n+2) q^{n} \equiv 3 \frac{f_{4}^{52} f_{6}^{10}}{f_{2}^{42} f_{8}^{16} f_{12}^{4}} \quad(\bmod 48) \tag{49}
\end{equation*}
$$

Equating the coefficients of $q^{2 n+1}$ from (49), we arrive at (16).
However, from (46),

$$
\begin{equation*}
\frac{f_{2}^{6} f_{3}^{6}}{f_{1}^{9} f_{6}^{2} f_{9}} \equiv \frac{f_{2}^{6} f_{3}^{3}}{f_{6}^{2} f_{9}} \quad(\bmod 9) \tag{50}
\end{equation*}
$$

Using (50) in (9), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(4 n) q^{n} \equiv \frac{f_{2}^{6} f_{3}^{3}}{f_{6}^{2} f_{9}} \quad(\bmod 9) \tag{51}
\end{equation*}
$$

Replacing q by q^{3} in (34) and then substituting the resulting equation into (51),

$$
\sum_{n=0}^{\infty} P D_{3}(4 n) q^{n} \equiv \frac{f_{2}^{6}}{f_{6}^{2}}\left(\frac{f_{12}^{3}}{f_{36}}-3 q^{3} \frac{f_{6}^{2} f_{36}^{3}}{f_{12} f_{18}^{2}}\right) \quad(\bmod 9)
$$

which implies

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(8 n+4) q^{n} \equiv-3 q \frac{f_{1}^{6} f_{18}^{3}}{f_{6} f_{9}^{2}} \quad(\bmod 9) \tag{52}
\end{equation*}
$$

From (45),

$$
\begin{equation*}
\frac{f_{1}^{6} f_{18}^{3}}{f_{6} f_{9}^{2}} \equiv \frac{f_{3}^{2} f_{18}^{3}}{f_{6} f_{9}^{2}} \quad(\bmod 3) \tag{53}
\end{equation*}
$$

Substituting (53) into (52), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(8 n+4) q^{n} \equiv-3 q \frac{f_{3}^{2} f_{18}^{3}}{f_{6} f_{9}^{2}} \quad(\bmod 9) \tag{54}
\end{equation*}
$$

Equating the coefficients of $q^{3 n}$ from (54), we arrive at (17).
From (54),

$$
\begin{equation*}
P D_{3}(24 n+20) \equiv 0 \quad(\bmod 9) \tag{55}
\end{equation*}
$$

Replacing n by $2 n+1$ in (16), we find that

$$
\begin{equation*}
P D_{3}(24 n+20) \equiv 0 \quad(\bmod 48) \tag{56}
\end{equation*}
$$

Combining (55) and (56), we arrive at (18).
From (7), it is easy to see that

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(3 n+1) q^{n} \equiv \frac{f_{3}^{4} f_{6}^{2}}{f_{1}^{4} f_{2}^{2}} \frac{1}{\nu(q)} \quad(\bmod 4) \tag{57}
\end{equation*}
$$

However, from (44),

$$
\begin{equation*}
\frac{f_{3}^{4} f_{6}^{2}}{f_{1}^{4} f_{2}^{2}} \equiv \frac{f_{12}^{2}}{f_{4}^{2}} \quad(\bmod 4) \tag{58}
\end{equation*}
$$

Substituting (13) and (58) into (57), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(3 n+1) q^{n} \equiv \frac{f_{2} f_{3}^{3} f_{12}^{2}}{f_{1} f_{6}^{3} f_{4}^{2}} \quad(\bmod 4) \tag{59}
\end{equation*}
$$

Invoking (35) and (59),

$$
\sum_{n=0}^{\infty} P D_{3}(3 n+1) q^{n} \equiv \frac{f_{2} f_{12}^{2}}{f_{6}^{3} f_{4}^{2}}\left(\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+q \frac{f_{12}^{3}}{f_{4}}\right) \quad(\bmod 4)
$$

which yields

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(6 n+4) q^{n} \equiv \frac{f_{1} f_{6}^{5}}{f_{2}^{3} f_{3}^{3}} \quad(\bmod 4) \tag{60}
\end{equation*}
$$

From (44),

$$
\begin{equation*}
\frac{f_{1} f_{6}^{5}}{f_{2}^{3} f_{3}^{3}} \equiv \frac{f_{6}^{3} f_{3}}{f_{2} f_{1}^{3}} \quad(\bmod 4) \tag{61}
\end{equation*}
$$

Following (61), we can express (60) as

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(6 n+4) q^{n} \equiv \frac{f_{6}^{3} f_{3}}{f_{2} f_{1}^{3}} \quad(\bmod 4) \tag{62}
\end{equation*}
$$

Substituting (36) into (62), we find that

$$
\sum_{n=0}^{\infty} P D_{3}(6 n+4) q^{n} \equiv \frac{f_{6}^{3}}{f_{2}}\left(\frac{f_{4}^{6} f_{6}^{3}}{f_{2}^{9} f_{12}^{2}}+3 q \frac{f_{4}^{2} f_{6} f_{12}^{2}}{f_{2}^{7}}\right) \quad(\bmod 4)
$$

Extracting those terms containing $q^{2 n+1}$, dividing throughout by q and then replacing q^{2} by q from the above

$$
\begin{align*}
\sum_{n=0}^{\infty} P D_{3}(12 n+10) q^{n} & \equiv 3 \frac{f_{2}^{2} f_{3}^{4} f_{6}^{2}}{f_{1}^{8}} \quad(\bmod 4) \\
& \equiv 3 \frac{f_{6}^{4}}{f_{2}^{2}} \quad(\bmod 4) \tag{63}
\end{align*}
$$

Equating the coefficients of $q^{2 n+1}$ from (63), we obtain

$$
\begin{equation*}
P D_{3}(24 n+22) \equiv 0 \quad(\bmod 4) \tag{64}
\end{equation*}
$$

From (45),

$$
\begin{equation*}
\frac{f_{2}^{2} f_{3}^{4} f_{6}^{2}}{f_{1}^{7} f_{9}} \equiv \psi(q) \psi\left(q^{3}\right) \quad(\bmod 3) \tag{65}
\end{equation*}
$$

Invoking (10) and (65),

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(4 n+2) q^{n} \equiv 3 \psi(q) \psi\left(q^{3}\right) \quad(\bmod 9) \tag{66}
\end{equation*}
$$

Using (28) in (66), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(4 n+2) q^{n} \equiv 3 \psi\left(q^{3}\right)\left(f\left(q^{3}, q^{6}\right)+q \psi\left(q^{9}\right)\right) \quad(\bmod 9) \tag{67}
\end{equation*}
$$

which yields

$$
\begin{equation*}
P D_{3}(12 n+10) \equiv 0 \quad(\bmod 9) \tag{68}
\end{equation*}
$$

From (64) and (68), we arrive at (19).
Using (44), (8) can be expressed as

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(3 n+2) q^{n} \equiv 3 \frac{f_{12}^{2}}{f_{4}^{2}} \quad(\bmod 12) \tag{69}
\end{equation*}
$$

Replacing q by q^{4} in (37) and then using the resulting equation in (69), we obtain

$$
\sum_{n=0}^{\infty} P D_{3}(3 n+2) q^{n} \equiv 3 \frac{f_{16}^{4} f_{24} f_{48}^{2}}{f_{8}^{5} f_{32} f_{96}}+6 q^{4} \frac{f_{16} f_{24}^{2} f_{32} f_{96}}{f_{8}^{4} f_{48}} \quad(\bmod 12)
$$

which implies

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(24 n+14) q^{n} \equiv 6 \frac{f_{2} f_{3}^{2} f_{4} f_{12}}{f_{1}^{4} f_{6}} \quad(\bmod 12) \tag{70}
\end{equation*}
$$

From (43),

$$
\begin{equation*}
\frac{f_{2} f_{3}^{2} f_{4} f_{12}}{f_{1}^{4} f_{6}} \equiv f_{2} f_{12} \quad(\bmod 2) \tag{71}
\end{equation*}
$$

Following (71), we can express (70) as

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(24 n+14) q^{n} \equiv 6 f_{2} f_{12} \quad(\bmod 12) \tag{72}
\end{equation*}
$$

Equating the coefficients of $q^{2 n+1}$ from the above, we arrive at (20).
Proof of Theorem 3. Extracting the terms involving $q^{3 n+1}$ from (67),

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(12 n+6) q^{n} \equiv 3 \psi(q) \psi\left(q^{3}\right) \quad(\bmod 9) \tag{73}
\end{equation*}
$$

Invoking (66) and (73), we find that

$$
\sum_{n=0}^{\infty} P D_{3}(12 n+6) q^{n} \equiv \sum_{n=0}^{\infty} P D_{3}(4 n+2) q^{n} \quad(\bmod 9)
$$

which yields, for each $n \geq 0$,

$$
\begin{equation*}
P D_{3}(12 n+6) \equiv P D_{3}(4 n+2) \quad(\bmod 9) \tag{74}
\end{equation*}
$$

The congruence (21) follows from (74) and by mathematical induction.
Replacing n by $3 n+2$ in (21) and then using (68), we arrive at (22).
From (11), it is easy to see that

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(6 n+2) q^{n}=3 \frac{f_{2}^{9} f_{3}^{7}}{f_{1}^{13} f_{6}^{3}} \quad(\bmod 9) \tag{75}
\end{equation*}
$$

However, from (45),

$$
\begin{equation*}
\frac{f_{2}^{9} f_{3}^{7}}{f_{1}^{13} f_{6}^{3}} \equiv \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 3) \tag{76}
\end{equation*}
$$

Substituting (76) into (75), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(6 n+2) q^{n} \equiv 3 \frac{f_{3}^{3}}{f_{1}} \equiv 3 \sum_{n=0}^{\infty} a_{3}(n) q^{n} \quad(\bmod 9) \tag{77}
\end{equation*}
$$

Equating the coefficients of q^{n} from (77), we arrive at (23).
Proof of Theorem 4. Equation (66) is the $\alpha=0$ case of (24). If we assume that (24) holds for some $\alpha \geq 0$, then, substituting (40) in (24),

$$
\begin{align*}
& \sum_{n=0}^{\infty} P D_{3}\left(4 p^{2 \alpha} n+2 p^{2 \alpha}\right) q^{n} \\
& \equiv 3\left(\sum_{m=0}^{\frac{p-3}{2}} q^{\frac{m^{2}+m}{2}} f\left(q^{\frac{p^{2}+(2 m+1) p}{2}}, q^{\frac{p^{2}-(2 m+1) p}{2}}\right)+q^{\frac{p^{2}-1}{8}} \psi\left(q^{p^{2}}\right)\right) \\
& \quad \times\left(\sum_{m=0}^{\frac{p-3}{2}} q^{3 \frac{m^{2}+m}{2}} f\left(q^{3 \frac{p^{2}+(2 m+1) p}{2}}, q^{3 \frac{p^{2}-(2 m+1) p}{2}}\right)+q^{3 \frac{p^{2}-1}{8}} \psi\left(q^{3 p^{2}}\right)\right) \quad(\bmod 9) \tag{78}
\end{align*}
$$

For any odd prime, p, and $0 \leq m_{1}, m_{2} \leq(p-3) / 2$, consider the congruence

$$
\frac{m_{1}^{2}+m_{1}}{2}+3 \frac{m_{2}^{2}+m_{2}}{2} \equiv \frac{4 p^{2}-4}{8}(\bmod p)
$$

which implies that

$$
\begin{equation*}
\left(2 m_{1}+1\right)^{2}+3\left(2 m_{2}+1\right)^{2} \equiv 0 \quad(\bmod p) \tag{79}
\end{equation*}
$$

Since $\left(\frac{-3}{p}\right)=-1$, the only solution of the congruence (79) is $m_{1}=m_{2}=\frac{p-1}{2}$. Therefore, equating the coefficients of $q^{p n+\frac{4 p^{2}-4}{8}}$ from both sides of (78), dividing throughout by $q^{\frac{4 p^{2}-4}{8}}$ and then replacing q^{p} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}\left(4 p^{2 \alpha}\left(p n+\frac{4 p^{2}-4}{8}\right)+2 p^{2 \alpha}\right) q^{n} \equiv 3 \psi\left(q^{p}\right) \psi\left(q^{3 p}\right) \quad(\bmod 9) \tag{80}
\end{equation*}
$$

Equating the coefficients of $q^{p n}$ on both sides of (80) and then replacing q^{p} by q, we obtain

$$
\sum_{n=0}^{\infty} P D_{3}\left(4 p^{2 \alpha+2} n+2 p^{2 \alpha+2}\right) q^{n} \equiv 3 \psi(q) \psi\left(q^{3}\right) \quad(\bmod 9)
$$

which is the $\alpha+1$ case of (24).
Extracting the terms involving $q^{p n+j}$ for $1 \leq j \leq p-1$ in (80), we arrive at (25).

Proof of Theorem 5. Extracting the terms involving $q^{2 n}$ from (72) and then replacing q^{2} by q,

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}(48 n+14) q^{n} \equiv 6 f_{1} f_{6} \quad(\bmod 12) \tag{81}
\end{equation*}
$$

For a prime $p \geq 5$ and $-(p-1) / 2 \leq k, m \leq(p-1) / 2$, consider

$$
\frac{3 k^{2}+k}{2}+6 \times \frac{3 m^{2}+m}{2} \equiv \frac{7 p^{2}-7}{24}(\bmod p)
$$

therefore,

$$
(6 k+1)^{2}+6(6 m+1)^{2} \equiv 0(\bmod p)
$$

Since $\left(\frac{-6}{p}\right)=-1$, the only solution of the above congruence is $k=m=(\pm p-1) / 6$. Therefore, from Lemma 9,

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}\left(48\left(p^{2} n+7 \times \frac{p^{2}-1}{24}\right)+14\right) q^{n} \equiv 6 f_{1} f_{6} \quad(\bmod 12) \tag{82}
\end{equation*}
$$

Using (81), (82), and induction on α, we arrive at (26).
Proof of Theorem 6. From Lemma 9 and Theorem 5, for each $\alpha \geq 0$,

$$
\sum_{n=0}^{\infty} P D_{3}\left(48 p^{2 \alpha}\left(p n+7 \times \frac{p^{2}-1}{24}\right)+14 p^{2 \alpha}\right) q^{n} \equiv 6 f_{p} f_{6 p} \quad(\bmod 12)
$$

That is,

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D_{3}\left(48 p^{2 \alpha+1} n+14 p^{2 \alpha+2}\right) q^{n} \equiv 6 f_{p} f_{6 p} \quad(\bmod 12) \tag{83}
\end{equation*}
$$

Since there are no terms on the right of (83) where the powers of q are congruent to $1,2, \ldots, p-1$ modulo p,

$$
P D_{3}\left(48 p^{2 \alpha+1}(p n+j)+14 p^{2 \alpha+2}\right) \equiv 0 \quad(\bmod 12)
$$

for $j=1,2, \ldots, p-1$. Therefore, for $j=1,2, \ldots, p-1$ and $\alpha \geq 1$, we arrive at (27).

Acknowledgments. The authors would like to thank the Department of Science and Technology Government of India for their financial support under the project grand SR/S4/MS:739/11 and the anonymous referee for his/her helpful suggestions and comments.

References

[1] G. E. Andrews, R. P. Lewis, and J. Lovejoy, Partitions with designated summands, Acta Arith. 105 (2002), 51-66.
[2] G. E. Andrews and S. C. F. Rose, MacMahons sum-of-divisors functions, Chebyshev polynomials, and quasi-modular forms, J. Reine Angew. Math. (2013), in press; arXiv:1010.5769
[3] N. D. Baruah and K. K. Ojah, Analogous of Ramanujan's partition identities and congruences arising from the theta functions and modular equations, Ramanujan J. 28 (2012), 385-407.
[4] N. D. Baruah and K. K. Ojah, Partitions with designated summands in which all parts are odd, Integers 15 (2015), \#A9.
[5] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
[6] H. C. Chan, Ramanujans cubic continued fraction and a generalization of his most beautiful identity, Int. J. Number Theory 6 (2010), 673-680.
[7] W. Y. C. Chen, K. Q. Ji, H. T. Jin, and E. Y. Y. Shen, On the number of partitions with designated summands, J. Number Theory 133 (2013), 2929-2938.
[8] S. P. Cui and N. S. S. Gu, Arithmetic properties of l-regular partitions, Adv. Appl. Math. 51 (2013), 507-523.
[9] M. D. Hirschhorn, F. Garvan, and J. Borwein, Cubic analogs of the Jacobian cubic theta function $\theta(z, q)$, Canad. J. Math. 45 (1993), 673-694.
[10] P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. Lond. Math. Soc. Ser. 219 (1919), 75-113.
[11] E. X. W. Xia, Arithmetic properties of partitions with designated summands, J. Number Theory 159 (2016), 160-175.
[12] E. X. W. Xia and O. X. M. Yao, New congruences modulo powers of 2 and 3 for 9-regular partitions, J. Number Theory 142 (2014), 89-101.
[13] E. X. W. Xia and O. X. M. Yao, Some modular relations for the Göllnitz-Gordon functions by an even-odd method, J. Math. Anal. Appl. 387 (2012) 126-138.
[14] O. X. M. Yao and E. X. W. Xia, New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions, J. Number Theory 133 (2013), 1932-1949.

