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Abstract
Let P be an odd integer, (Un) and (Vn) denote generalized Fibonacci and Lucas

sequences defined by U0 = 0, U1 = 1, and Un+1 = PUn +Un�1, V0 = 2, V1 = P, and
Vn+1 = PVn + Vn�1 for n � 1. In this paper, we solve the equations Un = kx2 ± 1
under some conditions on n. Moreover, we determine all indices n such that the
equations Vn = wkx2 ± 1, where w 2 {1, 2, 3, 6} , k|P with k > 1, have solutions.

1. Introduction

Let P and Q be nonzero integers, let D = P 2 + 4Q be called the discriminant,
and assume that D > 0 (to exclude degenerate cases). Consider the polynomial
X2 � PX �Q, called characteristic polynomial, which has the roots

↵ =
P +

p
D

2
and � =

P �
p

D

2
.

For each n � 0, define Un = Un(P,Q) and Vn = Vn(P,Q) as follows:

U0 = 0, U1 = 1, Un+1 = PUn + QUn�1 (for n � 1),

V0 = 2, V1 = P, Vn+1 = PVn + QVn�1, (for n � 1).

We shall consider special cases of the generalized Fibonacci and Lucas sequences.
For (P,Q) = (1, 1), (Un) is the sequence of Fibonacci numbers and (Vn) is the
sequence of Lucas numbers. For (P,Q) = (2, 1), (Un) and (Vn) are the sequences
of Pell numbers, respectively Pell–Lucas numbers.

It is convenient to extend these sequences also for negative indices:

U�n = � Un

(�Q)n
, V�n =

Vn

(�Q)n

for n � 1. With this definition, the two relations above hold for all integers n.
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Binet’s formulas express the numbers Un and Vn in terms of ↵ and � :

Un =
↵n � �n

↵� �
, Vn = ↵n + �n.

Note that by Binet’s formulas

Un(�P,Q) = (�1)n�1Un(P,Q),
Vn(�P,Q) = (�1)nVn(P,Q).

So, it will be assume that P � 1. For more information about generalized Fibonacci
and Lucas sequences, the reader can follow [8, 16, 21, 18].

Elementary treatement of Fn is equal to polynomial in x is quite old. For ex-
ample, Cohn [4] determined the squares in the Fibonacci sequence by an elemen-
tary method in 1964. Various authors worked on extending this approach to other
quadratic polynomials. The starting impulse for this paper is the determination
by Steiner [24], and more simply by Williams [27], of the Fibonacci numbers of the
form x2+1. Finkelstein determined Fibonacci and Lucas numbers of the form x2+1
in [6], respectively in [7]. Ribenboim [20] introduced a general method which allows
to identify numbers in generalized Fibonacci and Lucas numbers of the form x2±1.
Robbins [22] considered the Fibonacci numbers of the form x2 � 1 and x3 ± 1. The
same author [23] also determined Fibonacci numbers of the form px2±1 and px3±1.
Antoniadis [2] generalized the result of Finkelstein [6], [7], and Robbins [22] about
the Fibonacci and Lucas numbers of the form x2 ± 1. The problem of determining
the terms of the linear recurrence sequence which can be represented by quadratic
or cubic polynomials has been also of interest to many mathematicians. We recall
that London and Finkelstein [13], as well as Pethő [17], Langarias and Weissel [12]
showed that the only Fibonacci numbers which are cubes are U1 = U2 = 1, U6 = 8.
On the other hand, V1 = 1 is the only Lucas number which is a cube. Luo [15]
interested in Fibonacci numbers of the form x(x+1)

2 in 1989. Luca [14] determined
Fibonacci numbers of the form x2 + x + 2. In [3], Bugeaud, Mignotte, Luca, and
Siksek showed that the only Fibonacci numbers which are at distance 1 from a
perfect power are 1, 2, 3, 5, and 8.

In [1], the authors showed that when a 6= 0 and b 6= ±2 are integers, the equation
Vn(P,±1) = ax2 + b has only a finite number of solutions n. Moreover, the same
authors showed that when a 6= 0 and b are integers, the equation Un(P,±1) = ax2+b
has only a finite number of solutions n. Keskin [11] solved the equations Un(P,�1) =
kx2 ± 1 and Vn(P,�1) = kx2 ± 1 and Vn(P,�1) = 2kx2 ± 1 when k|P with k > 1.
After, Karaatlı and Keskin [9] solved the equations Vn(P,�1) = 5kx2 ± 1 and
Vn(P,�1) = 7kx2 ± 1 when k|P with k > 1. In [10], Karaatlı added to the above
list the values of n for which Vn(P, 1) is of the form 5kx2 ± 1 and 7kx2 ± 1 when
k|P with k > 1.
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The object of this paper is to determine the indices n such that the equations
Un(P, 1) = kx2±1 and Vn(P, 1) = wkx2±1, where w 2 {1, 2, 3, 6} , k|P with k > 1,
have solutions.

Section 2 consists of preliminaries where all the required facts are gathered for
convenience of the reader. And in Section 3, we give our main theorems. Through-
out the paper

�⇤
⇤
�

denotes the Jacobi symbol.

2. Preliminaries

We can give the following lemma without proof since its proof can be done by
induction.

Lemma 1. Let n be a positive integer. Then

Vn ⌘
⇢

2 (mod P 2) if n is even,
nP (mod P 2) if n is odd, (1)

and
Un ⌘

⇢
n
2 P (mod P 2) if n is even,
1 (mod P 2) if n is odd. (2)

The following two lemmas can be found in [25].

Lemma 2. Let n 2 N [ {0} , m, r 2 Z and m be a nonzero integer. Then

U2mn+r ⌘ (�1)mn Ur (mod Um), (3)

V2mn+r ⌘ (�1)mn Vr (mod Um). (4)

Lemma 3. Let n 2 N [ {0} and m, r 2 Z. Then

U2mn+r ⌘ (�1)(m+1)n Ur (mod Vm), (5)

V2mn+r ⌘ (�1)(m+1)n Vr (mod Vm). (6)

When P is odd, since 8|U6, using (3) we get

U12q+r ⌘ Ur (mod 8). (7)

Lemma 4. [Şiar and Keskin, [26], Theorem 3.4] Let k > 1 be a squarefree positive
divisor of odd P. If Vn = kx2 for some integer x, then n = 1 or n = 3.

We have the following lemma from [5] and [19].

Lemma 5. If P is odd, then the equation Vn = x2 has the solutions n = 1, P =
⇤(=perfect square), and P 6= 1 or n = 1, 3 and P = 1 or n = 3 and P = 3.
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Among the numerous identities and divisibility properties satisfied by the gener-
alized Fibonacci and Lucas numbers we list below which will be used in this paper.

U2m+1 � 1 = UmVm+1 if m is even, (8)

U2m+1 + 1 = UmVm+1 if m is odd, (9)

V�n = (�1)nVn, (10)

U�n = (�1)n+1Un, (11)

V2n = V 2
n � 2(�1)n. (12)

If r � 1, then by (12),
V2r ⌘ 2 (mod P ). (13)

The following follows from (13);

(V2r , P ) = 1, (14)

if 3|P, then ✓
3

V2r

◆
= 1. (15)

Moreover, by using induction, it can be seen that

V2r ⌘
⇢

3 (mod 8) if r = 1,
7 (mod 8) if r � 2,

and thus ✓
2

V2r

◆
=

⇢
�1 if r = 1,
1 if r � 2, (16)

and ✓
�1
V2r

◆
= �1 (17)

for all r � 1.

If P is odd, then ✓
U3

V2r

◆
= 1 (18)

for all r � 2, and ✓
�V4 + 1

V2r

◆
= �1 (19)

for all r � 3.
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Let m = 2ak, n = 2bl, k and l odd, a, b � 0, and d = (a, b). Then

(Um, Vn) =
⇢

Vd if a > b,
1 or 2 if a  b.

(20)

If r � 1, then
✓

P

V2r

◆
= (�1)

P�1
2 (�1)

P2�1
8 , (21)

and if k is any positive divisor of P, then (21) implies that
✓

k

V2r

◆
= (�1)

k�1
2 (�1)

k2�1
8 . (22)

Moreover, ✓
V2

V2r

◆
= 1 (23)

for all r � 3.

3. Main Theorems

We assume from this point on that n is a positive integer and unless otherwise
stated, P is odd and Q = 1. We also assume that k|P with k > 1 in all of the
stataments of theorems below.

In [2], Antoniadis solved the equation Um = kx2 + l under the conditions that
k ⌘ 1, 3 (mod 8), l ⌘ 1 (mod 8) and m ⌘ 1 (mod 2). Here, we will solve the
equation by taking k ⌘ 5, 7 (mod 8) and l = 1.

Theorem 1. If k ⌘ 1, 3 (mod 8), then the equation Un = kx2 + 1, n = 2m + 1,
m ⌘ ±1, 3 (mod 8), has no solutions. If k ⌘ 5, 7 (mod 8), then the equation Un =
kx2 + 1, n = 2m + 1, m ⌘ 1 (mod 4), has no solutions. If Un = kx2 + 1 for some
integer x, then n = 1 or n = 5, where n = 2m + 1 with m even.

Proof. Assume that Un = kx2 + 1 for some integer x. If n were even, then by (2),
Un ⌘ n

2 P (mod P 2), which would imply that k|Un, because k|P. This follows from
our assumptions that k|1, contradicting k > 1. Therefore, n is odd, say n = 2m + 1
for some m > 0. The remainder of the proof is split into two cases.

Case I: m odd. Assume that m ⌘ 1 (mod 8) and k ⌘ 1, 3 (mod 8). We can write
m = 8q + 1 and therefore n = 16q + 3 = 2 · 2ra + 3 with 2 - a and r � 3. Then by
(5), we have

kx2 + 1 = Un = U2·2ra+3 ⌘ �U3 (mod V2r),
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implying that
kx2 ⌘ �(P 2 + 2) ⌘ �V2 (mod V2r).

This shows that
1 =

✓
�kV2

V2r

◆
.

However, this is impossible since
⇣
�1
V2r

⌘
= �1 by (17),

⇣
k

V2r

⌘
= 1 by (22), and⇣

V2
V2r

⌘
= 1 by (23).

Assume that m ⌘ �1 (mod 8). Then we immediately have n = 16q�1 = 2·2ra�1
with 2 - a and r � 3. By (5) and (11) , we get

kx2 + 1 = Un = U2·2ra�1 ⌘ �U�1 (mod V2r),

implying that
kx2 ⌘ �2 (mod V2r).

This shows that
1 =

✓
�2
V2r

◆
,

which is impossible since
⇣
�2
V2r

⌘
= �1 by (16) and (17).

Assume that m ⌘ 3 (mod 8). Then we can write n = 16q + 7 = 8(2c + 1)� 1 =
8c� 1 with odd c. The detail of the proof is exactly the same to that of above case.
So, we again get a contradiction.

Now assume that m ⌘ 1 (mod 4) and k ⌘ 5, 7 (mod 8). If we write m = 4q + 1,
then we get n = 8q + 3. Firstly, assume that q is even. And thus,

kx2 + 1 = Un = U2·4q+3 ⌘ U3 (mod V4)

by (5). This means that
kx2 ⌘ P 2 (mod V4),

which is impossible since
⇣

k
V4

⌘
= �1 by (22). Hence, q is odd.

Let 3|q. Then n = 24t + 3. Applying (7), we have

kx2 + 1 = Un ⌘ U3 (mod 8),

i.e.,
kx2 ⌘ 1 (mod 8).

However, this is impossible since k ⌘ 5, 7 (mod 8).
Let 3 - q, say q = 3t± 1. Then we immediately have n = 24t + 11 or n = 24t� 5.

In both cases, we can easily write n = 4c� 1 with odd c. So, by using (5) and (17),
we get

kx2 + 1 = Un = U2·2c�1 ⌘ �U�1 ⌘ �1 (mod V2),
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implying that
kx2 ⌘ �2 (mod V2).

But this is also impossible since
⇣

k
V2

⌘
= �1 by (22),

⇣
�1
V2

⌘
= �1 by (17), and⇣

2
V2

⌘
= �1 by (16).

Case II: m even. By using (8), we get kx2 = UmVm+1. Then (Um, Vm+1) = P
by (20). Thus, it follows that Um = k1Pu2 and Vm+1 = k2Pv2 with k1k2 = k. By
Lemmas 4 and 5, we have m + 1 = 1 or m + 1 = 3. That is to say, m = 0 or m = 2.
Hence, n = 1 or n = 5. This completes the proof.

Theorem 2. The equation Un = kx2 � 1 has no solutions.

Proof. Assume that Un = kx2 � 1 for some integer x. Then by (2), n is odd. Let
n = 4q ± 1 for some q > 0. By (3) and (11), we have

kx2 � 1 = Un = U2·2q�1 ⌘ U±1 ⌘ 1 (mod U2).

This implies that
kx2 ⌘ 2 (mod k).

But this is impossible since k > 1 is odd.

Theorem 3. The equations Vn = wkx2 + 1, w 2 {1, 2, 3, 6} , have no solutions.

Proof. Assume that Vn = wkx2 + 1 for some integer x. Then n is even. For,
otherwise we would have k|Vn by (1), because k|P. Then this would imply that k|1,
contradicting k > 1. Hence, n = 2m, say.

Assume that m is even. Then by (12) and (1) , we have Vn = V 2
m � 2 ⌘ 2

(mod P 2). Since k > 1 and k|P, it follows that wkx2 ⌘ 1 (mod k), a contradiction.
Assume now that m is odd. Then by (12), we have wkx2 + 1 = Vn = V 2

m + 2,
implying that wkx2 = V 2

m + 1. Since m is odd, we see from (1) that k|Vm, because
k|P. This shows that k|1, which contradicts the fact that k > 1. This completes the
proof.

Theorem 4. The equation Vn = kx2 � 1 has only the solution (n, P, k, x) =⇣
2, 3Ut(4,�1), 3, Vt(4,�1)

2

⌘
with t odd.

Proof. Assume that Vn = kx2�1 for some integer x. Then by (1), n is even, n = 2m,
say. If m is even, then kx2 � 1 = Vn = V 2

m � 2. Since V 2
m ⌘ 4 (mod k) by (1), it

follows that kx2 ⌘ 3 (mod k). This shows that k = 3 and therefore 3|P. We can
write m = 2ra with a odd and r � 1, and therefore n = 2 · 2ra. Thus, we have

3x2 � 1 ⌘ �2 (mod V2r)
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by (6). This shows that

1 =
✓
�3
V2r

◆
.

However, this is impossible since
⇣
�1
V2r

⌘
= �1 by (17) and

⇣
3

V2r

⌘
= 1 by (15).

Hence, m is odd. Then we have kx2 � 1 = Vn = V 2
m + 2 by (12). By (1), P |Vm,

which implies that k|3, i.e., k = 3 and therefore 3|P. Let m > 1. Then we can write
m = 4q ± 1 and therefore n = 8q ± 2 = 2 · 2ra± 2 with odd a and r � 2. By (6) and
(10), we obtain

3x2 � 1 = Vn = V2·2ra±2 ⌘ �V±2 ⌘ �(P 2 + 2) (mod V2r).

This shows that
3x2 ⌘ �U3 (mod V2r),

which implies that

1 =
✓
�3U3

V2r

◆
.

However, this is impossible since
⇣
�1
V2r

⌘
= �1 by (17),

⇣
3

V2r

⌘
= 1 by (15), and⇣

U3
V2r

⌘
= 1 by (18). Therefore m = 1 and so n = 2. Thus, 3x2 � 1 = V2 = P 2 + 2

and this implies that P 2 � 3x2 = �3. Since 3|P, it follows that P = 3a with a odd.
Substituting this into P 2 � 3x2 = �3, we have the equation x2 � 3a2 = 1. It is
well known that all positive integer solutions of this equation are given by (x, a) =
(Vt(4,�1)

2 , Ut(4,�1)). Since a is odd, we must have t is odd. As a consequence, we
get the solution (n, P, k, x) = (2, 3Ut(4,�1), 3, Vt(4,�1)

2 ) with t odd. This completes
the proof.

Theorem 5. The equations Vn = wkx2 � 1, w 2 {2, 3, 6} , have no solutions.

Proof. Assume that Vn = wkx2 � 1 for some integer x. If n were odd, then by (1),
Vn ⌘ nP (mod P 2), which would imply that k|Vn, because k|P. So, we would have
that k|1, which would contradict our assumption that k > 1. Therefore n is even,
n = 2m, say.

If m is even, then Vn = V2m = V 2
m � 2 by (12). This implies that wkx2 ⌘ 3

(mod k) by (1) and the fact that k|P. This shows that k|3.
If m is odd, then Vn = V2m = V 2

m + 2 by (12), implying that wkx2 = V 2
m + 3.

Since m is odd, it follows from (1) that P |Vm. And so k|3 since k|P. We see from
the explanations above that k = 3 (independently of the parity of m). Therefore
we are interested in finding the solutions of the equations Vn = 3wx2 � 1, where
w 2 {2, 3, 6} . We distinguish three cases.
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Case I: w = 2. Assume that m is even. If m ⌘ 0 (mod 8), then m = 8q and
therefore n = 16q = 2 · 2ra with odd a and r � 3. This shows that

6x2 � 1 = Vn = V2·2ra ⌘ �2 (mod V2r),

i.e.,
6x2 ⌘ �1 (mod V2r)

by (6). However, this is impossible since
⇣

2
V2r

⌘⇣
3

V2r

⌘
= 1 by (16) and (15), and⇣

�1
V2r

⌘
= �1 by (17).

If m ⌘ ±2 (mod 8), then n = 16q ± 4 = 2 · 2ra± 4 with a odd and r � 3. By (6)
and (10), we readily obtain

6x2 ⌘ �V4 + 1 (mod V2r).

This implies that ✓
6

V2r

◆
=

✓
�V4 + 1

V2r

◆
.

However, this is impossible since
⇣

2
V2r

⌘⇣
3

V2r

⌘
= 1 by (16) and (15), and

⇣
�V4+1

V2r

⌘
=

�1 by (19).
Lastly, if m ⌘ 4 (mod 8), then n = 16q +8 = 8c with odd c. Then by (6), we get

6x2 ⌘ �1 (mod V4),

which is also impossible since
⇣

2
V2r

⌘⇣
3

V2r

⌘
= 1 by (16) and (15), and

⇣
�1
V2r

⌘
= �1

by (17).
Assume now that m > 1 is odd. Therefore, writing m = 4q ± 1, we have

n = 8q ± 2 = 2 · 2ra ± 2 with a odd and r � 2. This shows that

6x2 � 1 = Vn = V2·2ra±2 ⌘ �V±2 ⌘ �(P 2 + 2) (mod V2r)

by (6) and (10). Rearranging the congruence above gives

6x2 ⌘ �U3 (mod V2r),

which is also impossible since
⇣

2
V2r

⌘⇣
3

V2r

⌘
= 1 by (16) and (15),

⇣
�1
V2r

⌘
= �1 by

(17), and
⇣

U3
V2r

⌘
= 1 by (18). Hence, m = 1 and so n = 2. This gives 6x2�1 = V2 =

P 2 + 2. Using the fact that 3|P, say P = 3a. Then we readily obtain 2x2 = 3a2 + 1,
which is impossible since x2 ⌘ 2 (mod 3) in that case.

Case II: w = 3. Assume that m is even. Putting m = 2ra with a odd and r � 1
gives n = 2 · 2ra. Therefore we have

9x2 � 1 = Vn = V2·2ra ⌘ �2 (mod V2r)
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by (5). This implies that

(3x)2 ⌘ �1 (mod V2r).

However, this is impossible by (17).
Assume now that m > 1 is odd, m = 4q±1, say. Therefore n = 8q±2 = 2·2ra±2

with a odd and r � 1. By (5), we readily obtain

(3x)2 ⌘ �U3 (mod V2r).

However, this is impossible since
⇣
�1
V2r

⌘
= �1 by (17) and

⇣
U3
V2r

⌘
= 1 by (18). Hence,

m = 1 and so n = 2. Thus, we have 9x2 � 1 = V2 = P 2 + 2, i.e., P 2 + 3 = (3x)2,
gives 3 = (3x�P )(3x + P ) and the only positive solution is (x, P ) =

�
2
3 , 2

�
, which

is not convenient since we must have P is odd and x is integer.

Case III: w = 6. Assume that m is even. Let m ⌘ 0 (mod 4). Putting m = 4q,
we therefore have n = 8q = 2 · 2ra with odd a and r � 2. Applying (6), we have

18x2 � 1 = Vn = V2·2ra ⌘ �2 (mod V2r),

i.e.,
2(3x)2 ⌘ �1 (mod V2r).

However, this is impossible since
⇣

2
V2r

⌘
= 1 by (16) and

⇣
�1
V2r

⌘
= �1 by (17).

Let m ⌘ 2 (mod 4). Then n = 8q+4. Actually, we can easily write n = 16s±4 =
2 · 2ra ± 4 with a odd and r � 3 (dependently the parity of q). And so by (6) and
(10), we readily obtain

2(3x)2 ⌘ �V4 + 1 (mod V2r).

However, this is impossible since
⇣

2
V2r

⌘
= 1 by (16) and

⇣
�V4+1

V2r

⌘
= �1 by (19).

Assume now that m > 1 is odd. Therefore, writing m = 4q ± 1, we have
n = 8q ± 2 = 2 · 2ra ± 2 with a odd and r � 2. This shows that

18x2 � 1 = Vn = V2·2ra±2 ⌘ �V±2 ⌘ �(P 2 + 2) (mod V2r)

by (6) and (10). It immediately follows from the congruence above that

2(3x2) ⌘ �U3 (mod V2r),

which is also impossible since
⇣

2
V2r

⌘
= 1 by (16),

⇣
�1
V2r

⌘
= �1 by (17), and

⇣
U3
V2r

⌘
=

1 by (18). Hence, m = 1 and so n = 2. This shows that 18x2 � 1 = V2 = P 2 + 2.
Using the fact that 3|P, say P = 3a, gives 3a2 + 1 = 6x2, which is impossible. This
completes the proof.
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