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Abstract
It is shown that the set of decimal palindromes is an additive basis for the natural
numbers. Specifically, we prove that every natural number can be expressed as the
sum of forty-nine (possibly zero) decimal palindromes.

1. Statement of Result

Let N ..= {0, 1, 2, . . .} denote the set of natural numbers (including zero). Every
number n 2 N has a unique decimal representation of the form

n =
L�1X
j=0

10j�j , (1)

where each �j belongs to the digit set

D ..= {0, 1, 2, . . . , 9},

and the leading digit �L�1 is nonzero whenever L � 2. In what follows, we use
diagrams to illustrate the ideas; for example,

n = �L�1 · · · �1 �0

represents the relation (1). The integer n is said to be a decimal palindrome if its
decimal digits satisfy the symmetry condition

�j = �L�1�j (0  j < L).

Denoting by P the collection of all decimal palindromes in N, the aim of this note
is to show that P is an additive basis for N.
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Theorem 1. The set P of decimal palindromes is an additive basis for the natural
numbers N. Every natural number is the sum of forty-nine (possibly zero) decimal
palindromes.

The proof is given in the next section. It is unlikely that the second statement
is optimal; a refinement of our method may yield an improvement. No attempt has
been made to generalize this theorem to bases other than ten; for large bases, this
should be straightforward, but small bases may present new obstacles (for example,
obtaining the correct analogue of Lemma 4 may be challenging in the binary case,
where the only nonzero digit is the digit one). We remark that arithmetic proper-
ties of palindromes (in various bases) have been previously investigated by many
authors; see[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and the references therein.

2. The Proof

2.1. Notation

For every n 2 N, let L(n) (the “length” of n) denote the number of decimal digits
L in the expansion (1); in particular, L(0) ..= 1.

For any ` 2 N and d 2 D, we denote

p`(d) ..=

8><
>:

0 if ` = 0;
d if ` = 1;
10`�1d + d if ` � 2.

(2)

Note that p`(d) is a palindrome, and L(p`(d)) = ` if d 6= 0. If ` � 2, then the
decimal expansion of p`(d) has the form

p`(d) = d 0 · · · 0 d

with `� 2 zeros nested between two copies of the digit d.
More generally, for any integers ` � k � 0 and d 2 D, let

p`,k(d) ..= 10kp`�k(d) =

8><
>:

0 if ` = k;
10kd if ` = k + 1;
10`�1d + 10kd if ` � k + 2.

If ` � k + 2, then the decimal expansion of p`,k(d) has the form

p`,k(d) = d 0 · · · 0 d 0 · · · 0

with `� k � 2 zeros nested between two copies of the digit d, followed by k copies
of the digit zero.
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Next, for any integers `, k 2 N, ` � k + 4, and digits a, b 2 D, we denote

q`,k(a, b) ..= p`,k(a) + p`�1,k(b) = 10`�1a + 10`�2b + 10k(a + b). (3)

Using b·c to denote the floor function, we have a + b = 10 · b(a + b)/10c+ �0(a + b)
for all a, b 2 D, where b(a + b)/10c takes the value 0 or 1, and �0(a + b) is the one’s
digit of a + b. Hence, one sees that the decimal expansion of q`,k(a, b) has the form

q`,k(a, b) = a b 0 · · · 0 b(a + b)/10c �0(a + b) 0 · · · 0

with `� k � 4 zeros nested between the digits a, b and the digits of a + b, followed
by k copies of the digit zero. For example, q10,2(7, 8) = 7800001500.

2.2. Handling Small Integers

Let f : D ! D be the function whose values are provided by the following table:

d 0 1 2 3 4 5 6 7 8 9
f(d) 0 1 9 8 7 6 5 4 3 2

We begin our proof of Theorem 1 with the following observation.

Lemma 1. Every number f(d) is a palindrome, and 10jd � f(d) is a palindrome
for every integer j � 1.

Proof. This is easily seen if d = 0 or j = 1. For j � 2 and d = 1, the number
10jd� f(d) = 10j � 1 is a repunit of the form 9 · · · 9, hence a palindrome. Finally,
for j � 2 and 2  d  9, the number 10jd�f(d) is a palindrome that has a decimal
expansion of the form

10jd� f(d) = d� 1 9 · · · 9 d� 1

with j � 2 nines nested between two copies of the digit d� 1.

Lemma 2. If n is a natural number with at most K nonzero decimal digits, then
n is the sum of 2K + 1 palindromes.

Proof. Starting with the expansion (1) we write

n = �0 +
X
j2J

10j�j ,

where
J ..=

�
1  j < L : �j 6= 0

 
.

Since
n = �0 +

X
j2J

f(�j) +
X
j2J

�
10j�j � f(�j)

�
, (4)
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Lemma 1 implies that n is the sum of 2|J | + 1 palindromes. Since zero is a palin-
drome, we obtain the stated result by adding 2K � 2|J | additional zeros on the
right side of (4).

Lemma 2 implies, in particular, that n 2 N is a sum of 49 palindromes whenever
L(n)  24. Therefore, we can assume that L(n) � 25 in the sequel.

2.3. Reduction to N`,0(5+; c)

For each n 2 N, let L and {�j}L�1
j=0 be defined as in (1). Let N`,k(5+; c) denote the

set of integers n for which L = `, �`�1 � 5, �k = c, and 10k | n. In other words,
N`,k(5+; c) is the set of natural numbers n that have a decimal expansion of the
form

n = �`�1 ⇤ · · · ⇤ c 0 · · · 0

with ` � k � 2 arbitrary digits nested between the digit �`�1 � 5 and the digit c,
followed by k copies of the digit zero.

Lemma 3. Let n 2 N, and put L ..= L(n) as in (1). If L � 5, then n is the sum of
two palindromes and an element of N`,0(5+; c) with some ` 2 {L�1, L} and c 2 D.

Proof. Let {�j}L�1
j=0 be defined as in (1). If the leading digit �L�1 exceeds four, then

n 2 NL,0(5+; �0), and there is nothing to prove (since zero is a palindrome).
Now suppose that �L�1  4. Put m ..= 10�L�1 + �L�2 � 6, and observe that

4  m  43. If 4  m  9, then using (2) we see that

n� pL�1(m) = n� (10L�2m + m)

=
L�1X
j=0

10j�j � 10L�2(10�L�1 + �L�2 � 6)�m

= 6 · 10L�2 +
L�3X
j=0

10j�j �m.

As the latter number clearly lies in the interval (5 · 10L�2, 7 · 10L�2), and thus its
leading digit is five or six, we deduce that n� pL�1(m) lies in NL�1,0(5+; c), where
c ⌘ (�0 �m) mod 10. Since pL�1(m) is a palindrome, this yields the desired result
for 4  m  9.

In the case that 10  m  43, we write m = 10a + b with digits a, b 2 D, a 6= 0.
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Using (3) we have

n� qL,0(a, b) = n� (10L�1a + 10L�2b + a + b)
= n� (10L�2m + a + b)

=
L�1X
j=0

10j�j � 10L�2(10�L�1 + �L�2 � 6)� a� b

= 6 · 10L�2 +
L�3X
j=0

10j�j � a� b.

As before, the latter number has five or six as its leading digit, so we conclude that
n� qL,0(a, b) lies in NL�1,0(5+; c), where c ⌘ (�0 � a� b) mod 10. Since qL,0(a, b)
is the sum of two palindromes, we are done in this case as well.

2.4. Inductive Passage from N`,k(5+; c1) to N`�1,k+1(5+; c2)

Lemma 4. Let `, k 2 N, ` � k + 6, and c1 2 D be given. Given n 2 N`,k(5+; c1),
one can find digits a1, . . . , a18, b1, . . . , b18 2 D\{0} and c2 2 D such that the number

n�
18X

j=1

q`�1,k(aj , bj)

lies in the set N`�1,k+1(5+; c2).

Proof. Fix n 2 N`,k(5+; c1), and let {�j}`�1
j=0 be defined as in (1) (with L ..= `). Let

m be the three-digit integer formed from the first three digits of n; that is,

m ..= 100�`�1 + 10�`�2 + �`�3.

Clearly, m is an integer in the range 500  m  999, and we have

n =
`�1X
j=k

10j�j = 10`�3m +
`�4X
j=k

10j�j . (5)

Let us denote
S ..= {19, 29, 39, 49, 59}.

In view of the fact that

9S ..= S + · · · + S| {z }
nine copies

= {171, 181, 191, . . . , 531},

it is possible to find an element h 2 9S for which m� 80 < 2h  m� 60. With h
fixed, let s1, . . . , s9 be elements of S such that

s1 + · · · + s9 = h.
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Finally, let "1, . . . , "9 be natural numbers, each equal to zero or two: "j 2 {0, 2} for
j = 1, . . . , 9. A specific choice of these numbers is given below.

We now put

tj ..= sj + "j and tj+9
..= sj � "j (j = 1, . . . , 9),

and let a1, . . . , a18, b1, . . . , b18 2 D be determined from the digits of t1, . . . , t18,
respectively, via the relations

10aj + bj = tj (j = 1, . . . , 18).

Since

S + 2 = {21, 31, 41, 51, 61} and S � 2 = {17, 27, 37, 47, 57},

all of the digits a1, . . . , a18, b1, . . . , b18 are nonzero, as required.
Using (3) we compute

18X
j=1

q`�1,k(aj , bj) =
18X

j=1

�
10`�2aj + 10`�3bj + 10k(aj + bj)

�

= 10`�3
18X

j=1

tj + 10k
18X

j=1

(aj + bj)

= 2h · 10`�3 + 10k
18X

j=1

(aj + bj)

since
t1 + · · · + t18 = 2(s1 + · · · + s9) = 2h

regardless of the choice of the "j ’s. Taking (5) into account, we have

n�
18X

j=1

q`�1,k(aj , bj) = 10`�3(m� 2h) +
`�4X
j=k

10j�j � 10k
18X

j=1

(aj + bj), (6)

and since 60  m � 2h < 80 it follows that the number defined by either side of
(6) lies in the set N`�1,k(5+; c), where c is the unique digit in D determined by the
congruence

�k �
18X

j=1

(aj + bj) ⌘ c mod 10. (7)

To complete the proof, it su�ces to show that for an appropriate choice of the
"j ’s we have c = 0, for this implies that n 2 N`�1,k+1(5+; c2) for some c2 2 D. To
do this, let g(r) denote the sum of the decimal digits of any r 2 N. Then

18X
j=1

(aj + bj) =
18X

j=1

g(tj) =
9X

j=1

g(sj + "j) +
9X

j=1

g(sj � "j).
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For every number s 2 S, one readily verifies that

g(s + 2) + g(s� 2) = 2 g(s)� 9.

Therefore, (7) is equivalent to the congruence condition

�k � 2
9X

j=1

g(sj) + 9E ⌘ c mod 10,

where E is the number of integers j 2 {1, . . . , 9} such that "j
..= 2. As we can

clearly choose the "j ’s so the latter congruence is satisfied with c = 0, the proof of
the lemma is complete.

2.5. Proof of Theorem 1

Let n be an arbitrary natural number. To show that n is the sum of 49 palindromes,
we can assume that L := L(n) is at least 25, as mentioned in §2.2. By Lemma 3 we
can find two palindromes ep1, ep2 such that the number

n1
..= n� ep1 � ep2 (8)

belongs to N`,0(5+; c1) for some ` 2 {L � 1, L} and c1 2 D. Since ` � 24, by
Lemma 4 we can find digits a(1)

1 , . . . , a(1)
18 , b(1)

1 , . . . , b(1)
18 2 D \ {0} and c2 2 D such

that the number

n2
..= n1 �

18X
j=1

q`�1,0

�
a(1)

j , b(1)
j

�

lies in the set N`�1,1(5+; c2). Similarly, using Lemma 4 again we can find digits
a(2)
1 , . . . , a(2)

18 , b(2)
1 , . . . , b(2)

18 2 D \ {0} and c3 2 D such that

n3
..= n2 �

18X
j=1

q`�2,1

�
a(2)

j , b(2)
j

�

belongs to the set N`�2,2(5+; c3). Proceeding inductively in this manner, we con-
tinue to construct the sequence n1, n2, n3, . . ., where each number

ni
..= ni�1 �

18X
j=1

q`�i+1,i�2

�
a(i�1)

j , b(i�1)
j

�
(9)

lies in the set N`�i+1,i�1(5+; ci). The method works until we reach a specific value
of i, say i ..= ⌫, where `� ⌫ + 1 < (⌫ � 1) + 6; at this point, Lemma 4 can no longer
be applied.
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Notice that, since `�⌫ +1  (⌫�1)+5, every element of N`�⌫+1,⌫�1(5+; c⌫) has
at most five nonzero digits. Therefore, by Lemma 2 we can find eleven palindromes
ep3, ep4, . . . , ep13 such that

n⌫ = ep3 + ep4 + · · · + ep13. (10)

Now, combining (8), (9) with i = 2, 3, . . . , ⌫, and (10), we see that

n =
13X

i=1

epj +
18X

j=1

Nj ,

where

Nj
..=

⌫X
i=2

q`�i+1,i�2

�
a(i�1)

j , b(i�1)
j

�
(j = 1, . . . , 18).

To complete the proof of the theorem, it remains to verify that every integer Nj is
the sum of two palindromes. Indeed, by (3) we have

Nj =
⌫X

i=2

p`�i+1,i�2

�
a(i�1)

j

�
+

⌫X
i=2

p`�i,i�2

�
b(i�1)
j

�
.

Considering the form of the decimal expansions, for each j we see that

⌫X
i=2

p`�i+1,i�2

�
a(i�1)

j

�
= a(1)

j · · · a(⌫�1)
j 0 · · · 0 a(⌫�1)

j · · · a(1)
j

which is a palindrome of length ` � 1 (since a(1)
j 6= 0) having precisely 2(⌫ � 1)

nonzero entries, and

⌫X
i=2

p`�i,i�2

�
b(i�1)
j

�
= b(1)

j · · · b(⌫�1)
j 0 · · · 0 b(⌫�1)

j · · · b(1)
j

which is a palindrome of length `� 2 (since b(1)
j 6= 0), also having precisely 2(⌫� 1)

nonzero entries.

Acknowledgement. The author thanks the anonymous referee for several helpful
comments on the original manuscript.
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