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Abstract
When k is an integer at least 3, a sequence S of positive integers is called k-GP-free if
it contains no nontrivial k-term geometric progressions. Beiglböck, Bergelson, Hind-
man and Strauss first studied the existence of a k-GP-free sequence with bounded
gaps. In a previous paper the author gave a partial answer to this question by con-
structing a 6-GP-free sequence S with gaps of size O(exp(6 log n/ log log n)). We
generalize this problem to allow the gap function k to grow to infinity. We show
that whenever (k(n) � 3) log h(n) log log h(n) � 4 log 2 · log n and h, k satisfy mild
growth conditions, such a sequence exists.

1. Introduction

Let S be an increasing sequence of positive integers. We say that S is k-GP-free if it
contains no k-term geometric progressions with common ratio not equal to 1, where
k � 3 for the problem to be nontrivial. Let h be a nondecreasing function N ! R+.
We say that a sequence S has gaps of size O(h) if there exists a constant C > 0
such that for every m 2 N, the sequence S intersects the interval [m,m + Ch(m)).

The maximal asymptotic density of a k-GP-free sequence is well-studied [3, 10,
11, 15]. Beiglböck et al. [2] originally posed the related question:

Problem 1. Does there exist k � 3 and a k-GP-free sequence S such that S has
gaps of size O(1)?

The standard example of a 3-GP-free sequence is the sequence Q of positive
squarefree numbers 1, 2, 3, 5, 6, 7, 10, . . ., which has asymptotic density 6

⇡2 . Despite
its large density, the size of its largest gaps is not known. The best uncondi-
tional result available is that of Filaseta and Trifonov [5] that Q has gaps of size
O(N1/5 log N), and Trifonov also established a generalization that the sequence of
k-th-power-free numbers has gaps of size O(N1/(2k+1) log N) [16]. Assuming the
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abc conjecture, Granville showed that the gaps of Q are of size O(N") for all " > 0
[7].

All of these bounds can be improved immensely if we assume the conjecture of
Cramér that the gaps between consecutive primes are O(log2 N) [4]. For a discussion
of Cramér’s model and implications, see the article of Pintz [12]. The problem of
bounding largest gaps between consecutive primes, both from above and below, is
notoriously di�cult, and the best known lower bound is

pn+1 � pn �
C log pn log log pn log log log log pn

log log log pn

for some C > 0 and infinitely many n, due to Ford, Green, Konyagin, Maynard, and
Tao [6], an improvement by log log log pn over the longstanding bound of Rankin
[14]. The best unconditional upper bound is pn+1 � pn = O(N0.525), due to Baker,
Harman, and Pintz [1], with O(N1/2 log N) possible assuming the Riemann hypoth-
esis.

Instead of pursuing these notoriously di�cult problems, in a previous paper the
author showed that by replacing Q by a randomly constructed analogue, we can
improve on Granville’s bound unconditionally.

Theorem 1. [8] There exists a 6-GP-free sequence T and a constant C > 0 such
that the gaps of T are of size O(exp(C log N/ log log N)). In fact C can be taken to
be any positive real greater than 5

6 log 2.

In this paper we generalize the Problem 1 as follows. Henceforth k is no longer
a constant but a nondecreasing function k : N ! R�3. We say that S is k-GP-free
if for every N 2 N, the finite subsequence S \ {1, 2, . . . , N} does not contain any
nontrivial geometric progressions of length at least k(N).

Problem 2. For which pairs of functions (h, k) do there exist k-GP-free sequences
S such that S has gaps of size O(h)?

We call h the gap function and k the length function, and a pair (h, k) feasible
if such an S exists. Thus far we have only dealt with constant length function; in
particular Theorem 2 shows that the pair (exp(C log N/ log log N), 6) is feasible. At
the other end of the spectrum, it is trivial that (1, log N/ log 2) is a feasible pair,
simply because the longest possible geometric progression in 1, . . . , N has length at
most log N/ log 2. In the last section of this paper we show in fact that (1, " log N)
is feasible for any " > 0.

To interpolate between these two situations, we prove the following theorem,
extending the method used in [8] to prove Theorem 1.

For two functions f, g : N ! R+ we write f = O(g) if there exists a constant
C > 0 such that f(n)  Cg(n) for all n 2 N and f = o(g) if for every C > 0 the
inequality f(n)  Cg(n) holds for all n su�ciently large. We also write f = ⌦(g) if
g = O(f).
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Theorem 2. Let (h, k) be nondecreasing functions N ! R+ such that h(n) =
⌦((log x)1/(1�log 2)) and for all su�ciently large n, k(n) > 5. If they satisfy

(k(n)� 3) log h(n) log log h(n) � 4 log 2 · log n,

for all su�ciently large n, then there exists a k-GP-free sequence T with gaps of
size O(h).

As a corollary, if k is constant we recover Theorem 1 with a weaker constant.

2. Preliminaries

In this section we generalize the GP-free process of [8] to probabilistically construct
a k-GP-free sequence. First we simplify Theorem 2 by reducing the set of possible
length functions k. It su�ces to show the following.

Theorem 3. If k : N ! {6, 8, . . .} is a nondecreasing function taking on even
positive integer values at least 6, and h : N ! R+ is a nondecreasing function
satisfying h(n) = ⌦((log n)1/(1�log 2)), h(n) = o(

p
n) and

(k(n)� 2) log h(n) log log h(n) � 4 log 2 · log n, (1)

for all n su�ciently large, then there exists a k-GP-free sequence T with gaps of
size O(h).

Proof. (that Theorem 3 implies Theorem 2). Suppose Theorem 3 is true, and let k
be as in Theorem 2. We can certainly round up k to the nearest integer to begin
with. It is also possible to ignore the finite set of n for which k  5, since we only
care about n su�ciently large. If we round k down to the nearest even integer, if
it originally satisfied the inequality of Theorem 2, then it has decreased by at most
1 uniformly, so the inequality above holds. Finally, if we prove the theorem for all
h(n) = o(

p
n), then it follows for all larger h as well, so we may as well assume

h(n) = o(
p

n).

Let Gk be the family of all geometric progressions of positive integers such that
if t is the largest term, then the length is at least k(t). Enumerate them as Gk,i in
order lexicographically as sequences of positive integers. We assume that each Gk,i

has common ratio rk,i > 1.
Furthermore, there may be longer Gk,i containing shorter ones. Let G⇤

k denote
the result of removing from Gk all Gk,i which contain some Gk,j with j 6= i, i.e.
we only retain the minimal elements in Gk,i ordered by inclusion. Thus to find a
k-GP-free sequence it su�ces to construct a sequence Tk missing at least one of the
middle two terms from each progression in G⇤

k. Let G⇤
k,i denote the i-th progression

in G⇤
k.
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Definition 1. For a nondecreasing function k : N ! {6, 8 . . .}, define the k-GP-
free process as follows. Define an integer-sequence valued random variable Uk =
(u1, u2, . . .) where ui 2 G⇤

k,i such that if

G⇤
k,i = (aib

k�1
i , aib

k�2
i ci, . . . , aic

k�1
i ),

then ui is chosen from aib
k/2�1
i ck/2

i and aib
k/2
i ck/2�1

i with equal probability 1
2 . Each

ui is picked independently of the others. Then Tk is the random variable whose value
is the sequence of all positive integers never appearing in Uk, sorted in increasing
order.

It is clear that Tk is k-GP-free by definition, as it misses at least one term out of
each G⇤

k,i. We now bound the probability that a given n 2 N lies in Tk generated
as above. For i, j � 1, let d(n; i, j) count the number of ways to factor n = abicj

for some a, b, c 2 N.

Lemma 1. For a positive integer n, the sequence Tk constructed in Definition 1
contains n with probability

P[Tk 3 n] � 2�d(n;k(m)/2,k(m)/2�1),

where m is any positive integer such that any G⇤
k,i containing n in its middle two

terms has largest term at least m.

Proof. The inequality is equivalent to the statement that n is one of the middle
two terms in at most d(n; k(m)

2 , k(m)
2 � 1) progressions of G⇤

k. We form an injec-
tive correspondence from progression G⇤

k,i containing n in the middle two terms to
factorizations of n as n = abk(m)/2ck(m)/2�1. If a progression

G⇤
k,i = (aib

k0�1
i , aib

k0�2
i ci, . . . , aic

k0�1
i )

with bi < ci and k0 � k(aic
k0�1
i ) contains n as one of the middle two terms, then

certainly k(m)  k0. Supposing n = aib
k0/2�1
i ck0/2

i , we map G⇤
k,i to the factorization

n = abk(m)/2ck(m)/2�1 with a = aib
(k0�k(m))/2
i c(k0�k(m))/2

i , b = ci and c = bi.
Similarly if n = aib

k0/2
i ck0/2�1

i we take a = aib
(k0�k(m))/2
i c(k0�k(m))/2

i , b = bi and c =
ci. It is easy to see from the assumptions that bi < ci and that no progression in G⇤

k

strictly contains another that the correspondence above is injective, as desired.

From here we can control the total probability that Tk misses an entire interval
of the form [x, x + Ch(x)).

Lemma 2. For a gap function h(x) = o
⇣
x1�1/(k(x)�1)

⌘
and a constant C > 0,

the sequence Tk constructed in Definition 1 satisfies Tk \ [x, x + Ch(x)) = ; with
probability
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P[Tk\[x, x+Ch(x)) = ;]  exp
⇣
�

X
n2[x,x+Ch(x))

exp
⇣
�log 2·d

⇣
n;

k(x)
2

,
k(x)

2
�1

⌘⌘⌘

for all x su�ciently large.

Proof. We first prove that the events P[Tk 3 n] for n 2 [x, x + Ch(x)) are mutually
independent whenever x is su�ciently large. It su�ces to show that no progression
in G⇤

k has both middle terms in the interval. Considering the di↵erence between the
two middle terms in a G⇤

k,i, and assuming both lie inside [x, x + Ch(x)), we have

|aib
k/2�1
i ck/2

i � aib
k/2
i ck/2�1

i | � aib
k/2�1
i ck/2�1

i

� x/bi

� x1�1/(k(m)�1)

� x1�1/(k(x)�1)

where k � k(m) depends on the largest term m = aic
k�1
i > x. It follows that

assuming h(x) = o
⇣
x1�1/(k(x)�1)

⌘
, for any C > 0 the middle two terms in any

G⇤
k,i with largest term at most x are further apart than Ch(x) for any x su�ciently

large.
Thus the events corresponding to each n in the interval are mutually independent,

and we can bound the probability involved by a product

P[Tk \ [x, x + Ch(x)) = ;] 
Y

n2[x,x+Ch(x))

⇣
1� 2�d(n;k(m)/2,k(m)/2�1)

⌘
,

by Lemma 1. Since the inequality 1 � t  e�t holds for all real t we arrive at the
bound

P[Tk\[x, x+Ch(x)) = ;]  exp
⇣
�

X
n2[x,x+Ch(x))

exp
⇣
�log 2·d(n;

k(m)
2

,
k(m)

2
�1)

⌘⌘
.

Here each m = m(n) can certainly be chosen as any number at most n. Thus we
replace them all by x, arriving at the desired bound.

Note that since we assumed h(x) = o(
p

x) the growth condition in Lemma 2 is
automatically satisfied.

3. Proof of the Main Theorem

All that remains is to give lower bounds for the sum

S(x, h, k, C) =
X

n2[x,x+Ch)

exp
⇣
� log 2 · d

⇣
n;

k

2
,
k

2
� 1

⌘⌘
,
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where k = k(x) and h = h(x) are functions satisfying the conditions of Theorem
3. To this end we break down [x, x + Ch) into two sets, one of which has few
(k/2� 1)-power divisors, and restrict the sum to that set.

Lemma 3. There is a positive constant B independent of x such that for all su�-
ciently large x,

S(x, h, k, C) � BCh(x) exp
⇣
� log 2 exp

⇣ 4 log 2 · log x

(k(x)� 2) log h(x)

⌘⌘
.

Proof. Fix an x > 0 and write k = k(x), h = h(x). Denote by A the subset of
[x, x+Ch) consisting of all n divisible by some pk/2�1, where p  h. We can bound
the size of A by

|A| 
X

prime ph

⇣ Ch

pk/2�1
+ 1

⌘

 (⇣(k/2� 1)� 1)Ch + o(h),

where ⇣ is the Riemann zeta function and we used the elementary Chebyshev bound
⇡(h) = o(h) on the prime-counting function ⇡. Since k � 6 and ⇣(t) � 1 < 1
uniformly on t � 2, there exists a constant B such that for x, and thus h, su�ciently
large, |A|  (1�B)Ch.

If n 62 A, we can factor n = p↵1
1 · · · p↵r

r n0 where n0 is (k/2 � 1)-th power free,
each ↵i � k/2� 1, and each pi � h is prime. As a result,

X
i

↵i 
log n

log h
,

so by a smoothing argument we can bound d(n; k
2 , k

2 � 1) subject to these assump-
tions,

d
⇣
n;

k

2
,
k

2
� 1

⌘
 exp

⇣
log 2 · log n

(k/2� 1) log h
+ log 2 · log n

(k/2) log h

⌘
,

where we simply bounded the number of pairs b, c satisfying bk/2�1|n and ck/2|n.
Summing up over all terms in [x, x + Ch) outside A, we get

S(x, h, k, C) � BCh exp
⇣
� log 2 exp

⇣⇣1
k

+
1

k � 2

⌘ (2 log 2) · log x

log h

⌘⌘
,

and finally replacing 1/k  1/(k � 2) we have the desired inequality.

Finally, we prove Theorem 3 using Lemma 3.
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Proof. (of Theorem 3). By Lemma 2 it su�ces to pick h, k such that the sum of
probabilities

X
x�1

P[Tk \ [x, x + Ch(x)) = ;] 
X
x�1

exp(�S(x, h, k, C)) < 1

for C su�ciently large, forcing the probability of finding a T with gaps O(h)
to be nonzero. This will hold as long as the sum converges for some fixed C;
making C large enough will make the sum arbitrarily small. Now, suppose that
(k�2) log h log log h � 4 log 2 · log n as in Theorem 3. Then, applying the inequality
of Lemma 3, we have

S(x, h, k, C) � BCh exp(� log 2 log h)
� BCh1�log 2,

and finally since h = ⌦((log x)1/(1�log 2)), we get
X
x�1

exp(�S(x, h, k, C)) 
X
x�1

x�BCD,

for some constant D > 0, so picking C for which BC > 1 gives a convergent
sum.

4. Closing Remarks

The goal of this paper was to interpolate smoothly between the two feasible pairs
(h, k) = (exp(C log N/ log log N), 6) and (h, k) = (1, log N/ log 2), and we recover
both pairs, up to constants, in the relation

(k(n)� 3) log h(n) log log h(n) � 4 log 2 · log n.

Unfortunely, when k is su�ciently close to log n, then the method of Theorem
2 fails because h = o((log x)1/(1�log 2)). Nevertheless, we expect all pairs (h, k)
which satisfy this inequality to be feasible. In the case that h = 1 we can make an
improvement on (1, log N/ log 2).

Proposition 1. For any " > 0, if k(n) = " log n then there exists a k-GP-free
sequence T with gaps of size O(1).

Proof. We say a positive integer m is divisible by a k-th power if pdk(m)e|m for
some prime p, and that m is k-free otherwise. Consider the sequence T of all k-
free integers; we claim that its gaps are uniformly bounded. In fact, note that if
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pdk(m)e|m then

pk(m)  m

" log m · log p  log m

log p  1
"
,

and so p lies in the finite set of all primes less than e1/". In particular, for x
su�ciently large, the interval [x, x+e1/"+1) will contain at least one k-free number.
Indeed, it is easy to check that each p  e1/" contributes at most one multiple of
pk(x) to that interval.

Further improvement in the case of h small or constant along these lines is blocked
by the Chinese Remainder Theorem. In particular, for k = o(log n) and any con-
stant h we can find infinitely many intervals [x, x+h) in which each positive integer
in [x, x + h) is divisible by arbitrarily many k(x)-th powers of primes.

The probabilistic method in Definition 1 is by no means optimal, but is defined
in such a way to guarantee the independence of events in an interval [n, n+Ch). We
expect that a sophisticated study of redundancies in our method can substantially
improve at least the constant in Theorem 2.

Acknowledgements I would like to thank Levent Alpoge, Joe Gallian, and Steven
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