THE DIRECT AND INVERSE THEOREMS ON INTEGER SUBSEQUENCE SUMS REVISITED

Raj Kumar Mistri ${ }^{1}$
Department of Mathematics, Indian Institute of Technology Patna, Patna, India
itsrajhans@gmail.com
Ram Krishna Pandey ${ }^{2}$
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, India
ramkpandey@gmail.com

Received: 7/16/15, Accepted: 5/11/16, Published: 6/10/16

Abstract

Let $A=(\underbrace{a_{0}, \ldots, a_{0}}_{r \text { copies }}, \underbrace{a_{1}, \ldots, a_{1}}_{r \text { copies }}, \ldots, \underbrace{a_{k-1}, \ldots, a_{k-1}}_{r \text { copies }})$ be a finite sequence of integers, where $a_{0}<a_{1}<\cdots<a_{k-1}, k \geq 1$ and $r \geq 1$. Given a subsequence, the sum of all the terms of the subsequence is called the subsequence sum. The set of all nontrivial subsequence sums of A is denoted by $S(r, \mathcal{A})$, where $\mathcal{A}=\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}$ is the set of distinct terms of the sequence A, called the associated set of the sequence A. For $r=1$, this sumset is the usual sumset $S(\mathcal{A})$ of nontrivial subet sums of \mathcal{A}. The direct problem for the sumset $S(r, \mathcal{A})$ is to find a lower bound for $|S(r, \mathcal{A})|$ in terms of $|\mathcal{A}|$ and r. The inverse problem for $S(r, \mathcal{A})$ is to determine the structure of the finite set \mathcal{A} of integers for which $|S(r, \mathcal{A})|$ is minimal. In this paper, we give new proofs of existing direct and inverse theorems for $S(r, \mathcal{A})$ using the direct and inverse theorems of Nathanson for $S(\mathcal{A})$.

1. Introduction

Let $A=(\underbrace{a_{0}, \ldots, a_{0}}_{r \text { copies }}, \underbrace{a_{1}, \ldots, a_{1}}_{r \text { copies }}, \ldots, \underbrace{a_{k-1}, \ldots, a_{k-1}}_{r \text { copies }})$ be a finite sequence of integers, where $a_{0}<a_{1}<\cdots<a_{k-1}, k \geq 1$ and $r \geq 1$. The set $\mathcal{A}=\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}$ of all distinct terms of the sequence A is called the associated set of the sequence A. Since r is fixed, we shall always identify the sequence A by the associated set \mathcal{A}. Given a subsequence, the sum of all the terms of the subsequence is called the subsequence

[^0]sum. The set of all nontrivial subsequence sums of A is denoted by $S(r, \mathcal{A})$. Thus
$$
S(r, \mathcal{A}):=\left\{\sum_{i=0}^{k-1} r_{i} a_{i}: 0 \leq r_{i} \leq r \text { for } i=0,1, \ldots, k-1 \text { and } \sum_{i=0}^{k-1} r_{i} \geq 1\right\}
$$

The direct problem for the sumset $S(r, \mathcal{A})$ is to find a lower bound for $|S(r, \mathcal{A})|$ in terms of $|\mathcal{A}|$ and r. The inverse problem for $S(r, \mathcal{A})$ is to determine the structure of the finite set \mathcal{A} of integers for which $|S(r, \mathcal{A})|$ is minimal. The case $r=1$ corresponds to the usual sumset $S(\mathcal{A})$ of nontrivial subset sums. The direct and inverse problems for the sumset $S(r, \mathcal{A})$ have been studied by the authors (see [1]) using the notation $S(r, A)$ instead of $S(r, \mathcal{A})$. Those proofs are constructive. Here, we give small and new proofs of these results using the direct and inverse theorems for subset sums $S(\mathcal{A})$ due to Nathanson [2]. Some more direct and inverse theorems for the general sequence A may be found in [1].

In Section 2, we study the direct problem and in Section 3, we study the inverse problem. We agree with the convention that $\binom{a}{b}=0$ if a and b are two positive integers with $a<b$.

2. Direct Problem

The following theorems are the direct theorems.
Theorem 1. (See [1], Theorem 2.1.) Let $k \geq 1$ and $r \geq 1$. Let \mathcal{A} be a set of k positive (negative) integers. Then

$$
\begin{equation*}
|S(r, \mathcal{A})| \geq r\binom{k+1}{2} \tag{1}
\end{equation*}
$$

Let \mathcal{A} be a set of k nonnegative (nonpositive) integers and $0 \in \mathcal{A}$. Then

$$
\begin{equation*}
|S(r, \mathcal{A})| \geq 1+r\binom{k}{2} \tag{2}
\end{equation*}
$$

The lower bounds in (1) and (2) are best possible.
Theorem 2. (See [1], Theorem 2.2.) Let $k \geq 2$ and $r \geq 1$. Let \mathcal{A} be a set of k integers. If $0 \in \mathcal{A}$, then

$$
|S(r, \mathcal{A})| \geq \begin{cases}\frac{r\left(k^{2}-1\right)}{4}+1 & \text { if } k \equiv 1 \quad(\bmod 2), \tag{3}\\ \frac{r k^{2}}{4}+1 & \text { if } k \equiv 0 \quad(\bmod 2) .\end{cases}
$$

If $0 \notin \mathcal{A}$, then

$$
|S(r, \mathcal{A})| \geq \begin{cases}r\left(\frac{k+1}{2}\right)^{2}+1 & \text { if } k \equiv 1 \quad(\bmod 2) \tag{4}\\ r \frac{(k+1)^{2}-1}{4}+1 & \text { if } k \equiv 0 \quad(\bmod 2)\end{cases}
$$

The lower bounds in (3) and (4) are best possible.

For the proofs of these theorems, we need the following well-known results.
Theorem A. (See [3], Theorem 1.4.) Let $h \geq 2$. Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{h}$ be nonempty finite sets of integers. Then

$$
\left|\mathcal{A}_{1}+\mathcal{A}_{2}+\cdots+\mathcal{A}_{h}\right| \geq\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\cdots+\left|\mathcal{A}_{h}\right|-h+1
$$

Theorem B. (See [2], Theorem 3.) Let $k \geq 2$. If \mathcal{A} is a set of k positive (negative) integers, then

$$
\begin{equation*}
|S(\mathcal{A})| \geq\binom{ k+1}{2} \tag{5}
\end{equation*}
$$

If \mathcal{A} is a set of k nonnegative (nonpositive) integers and $0 \in \mathcal{A}$, then

$$
\begin{equation*}
|S(\mathcal{A})| \geq 1+\binom{k}{2} \tag{6}
\end{equation*}
$$

The lower bounds in (5) and (6) are best possible.
Theorem C. (See [2], Theorem 4.) Let $k \geq 2$ and let \mathcal{A} be a set of k integers. If $0 \in \mathcal{A}$, then

$$
|S(\mathcal{A})| \geq\left\{\begin{array}{ll}
\frac{k^{2}-1}{4}+1 & \text { if } k \equiv 1 \quad(\bmod 2) \tag{7}\\
\frac{k^{2}}{4}+1 & \text { if } k \equiv 0
\end{array}(\bmod 2) .\right.
$$

If $0 \notin \mathcal{A}$, then

$$
|S(\mathcal{A})| \geq \begin{cases}\left(\frac{k+1}{2}\right)^{2}+1 & \text { if } k \equiv 1 \quad(\bmod 2) \tag{8}\\ \frac{(k+1)^{2}-1}{4}+1 & \text { if } k \equiv 0 \quad(\bmod 2)\end{cases}
$$

The lower bounds in (7) and (8) are best possible.
We also require the following simple lemma.
Lemma 1. Let $k \geq 1$ and $r \geq 1$. If \mathcal{A} is a set of k integers, then

$$
\begin{equation*}
|S(r, \mathcal{A})| \geq r|S(\mathcal{A})|-r+1 \tag{9}
\end{equation*}
$$

If \mathcal{A} is a set of k positive (negative) integers, then

$$
\begin{equation*}
|S(r, \mathcal{A})| \geq r|S(\mathcal{A})| \tag{10}
\end{equation*}
$$

Proof. For $r=1$, inequality (9) is obvious. Now assume that $r \geq 2$. If \mathcal{A} is a set of k integers, then clearly

$$
S(r, \mathcal{A}) \supseteq r S(\mathcal{A})
$$

and so by Theorem A, we have

$$
|S(r, \mathcal{A})| \geq r|S(\mathcal{A})|-r+1
$$

which proves (9). Now, let \mathcal{A} be a set of k positive integers (the proof is similar if \mathcal{A} is a set of negative integers). Clearly, inequality (10) is true for $r=1$. Let the inequality (10) be true for $r-1$, where $r \geq 2$. Now

$$
S(r, \mathcal{A}) \supseteq(S(r-1, \mathcal{A})+S(\mathcal{A})) \cup\{a\}
$$

where a is the smallest element of \mathcal{A}. Since $a \notin S(r-1, \mathcal{A})+S(\mathcal{A})$ as $0 \notin S(r-1, \mathcal{A})$, we have

$$
|S(r, \mathcal{A})| \geq|S(r-1, \mathcal{A})+S(\mathcal{A})|+1
$$

By Theorem A, we have

$$
|S(r, \mathcal{A})| \geq|S(r-1, \mathcal{A})|+|S(\mathcal{A})|-1+1
$$

and so by induction hypothesis,

$$
|S(r, \mathcal{A})| \geq(r-1)|S(\mathcal{A})|+|S(\mathcal{A})|=r|S(\mathcal{A})|
$$

This completes the proof.
For integers a and b, let $[a, b]=\{n \in \mathbb{Z}: a \leq n \leq b\}$.
Proof of Theorem 1. If $k=1$ and $r \geq 1$, then $\mathcal{A}=\{a\}$ for some integer a. If $a \neq 0$, then $|S(r, \mathcal{A})|=r=r\binom{1+1}{2}$. If $a=0$, then $|S(r, \mathcal{A})|=1=1+r\binom{1}{2}$. Therefore, the theorem is true for $k=1$ and $r \geq 1$. For $k \geq 2$ and $r=1$, the result follows from Theorem B. Hence we may assume that $k \geq 2$ and $r \geq 2$. First assume that \mathcal{A} is a set of k positive (negative) integers. By inequality (10) of Lemma 1, we have

$$
|S(r, \mathcal{A})| \geq r|S(\mathcal{A})|
$$

and so by Theorem B,

$$
|S(r, \mathcal{A})| \geq r\binom{k+1}{2}
$$

Thus we have proved inequality (1). Now assume that \mathcal{A} is a set of k nonnegative (nonpositive) integers and $0 \in \mathcal{A}$. Then by inequality (9) of Lemma 1 , we have

$$
|S(r, \mathcal{A})| \geq r|S(\mathcal{A})|-r+1
$$

and so by Theorem B,

$$
|S(r, \mathcal{A})| \geq 1+r\binom{k}{2}
$$

Thus we have proved inequality (2). Next we show that the lower bounds in (1) and (2) are best possible. Let $k \geq 2$ and $r \geq 1$. Let $\mathcal{A}_{0}=[1, k]$. Then the smallest and the largest integers in $S\left(r, \mathcal{A}_{0}\right)$ are 1 and $r\binom{k+1}{2}$, respectively. Therefore,

$$
\left|S\left(r, \mathcal{A}_{0}\right)\right| \leq r\binom{k+1}{2}
$$

This inequality together with inequality (1) implies

$$
\left|S\left(r, \mathcal{A}_{0}\right)\right|=r\binom{k+1}{2}
$$

Thus the lower bound in (1) is best possible. Similarly, by considering the set $\mathcal{A}_{1}=[0, k-1]$, where $k \geq 2$ and $r \geq 1$, it can be verified that the lower bound in (2) is best possible. This completes the proof.

Proof of Theorem 2. For $r=1$, the result follows from Theorem C. Let $r \geq 2$. First assume that \mathcal{A} is a set of k integers such that $0 \in \mathcal{A}$. Then by inequality (9) of Lemma 1, we have

$$
|S(r, \mathcal{A})| \geq r|S(\mathcal{A})|-r+1
$$

and so by Theorem C, we have

$$
|S(r, \mathcal{A})| \geq \begin{cases}\frac{r\left(k^{2}-1\right)}{4}+1 & \text { if } k \equiv 1 \quad(\bmod 2) \\ \frac{r k^{2}}{4}+1 & \text { if } k \equiv 0 \quad(\bmod 2)\end{cases}
$$

Thus we have proved inequality (3). The proof is similar for the case $0 \notin \mathcal{A}$. If $k \equiv 1$ $(\bmod 2)$, then by considering the sets $\mathcal{A}_{0}=\left[-\frac{k-1}{2}, \frac{k-1}{2}\right]$ and $\mathcal{A}_{1}=\left[-\frac{k-1}{2}, \frac{k+1}{2}\right] \backslash\{0\}$, it can be verified that the lower bounds in (3) and (4), respectively, are best possible. If $k \equiv 0(\bmod 2)$, then by considering the sets $\mathcal{A}_{2}=\left[-\frac{k}{2}, \frac{k}{2}-1\right]$ and $\mathcal{A}_{3}=\left[-\frac{k}{2}, \frac{k}{2}\right] \backslash$ $\{0\}$, it can be verified that the lower bounds in (3) and (4), respectively, are best possible. This completes the proof.

3. Inverse Problem

For a set $\mathcal{A} \subseteq \mathbb{Z}$ and for an integer c, let $c * \mathcal{A}=\{c a: a \in \mathcal{A}\}$. Following theorems are the inverse theorems.

Theorem 3. (See [1], Theorem 2.3.) Let $k \geq 3$ and $r \geq 1$. If \mathcal{A} is a set of k positive integers such that

$$
|S(r, \mathcal{A})|=r\binom{k+1}{2}
$$

then $\mathcal{A}=d *[1, k]$ for some positive integer d.
If \mathcal{A} is a set of k nonnegative integers such that $0 \in \mathcal{A}$ and

$$
|S(r, \mathcal{A})|=1+r\binom{k}{2}
$$

then $\mathcal{A}=d *[0, k-1]$ for some positive integer d.

Theorem 4. (See [1], Theorem 2.4.) Let $k \geq 3$ and $r \geq 1$. Let \mathcal{A} be a set of k integers. If $0 \in \mathcal{A}$ and

$$
|S(r, \mathcal{A})|= \begin{cases}\frac{r\left(k^{2}-1\right)}{4}+1 & \text { if } k \equiv 1 \quad(\bmod 2) \\ \frac{r k^{2}}{4}+1 & \text { if } k \equiv 0 \quad(\bmod 2)\end{cases}
$$

then there is a nonzero integer d such that

$$
\mathcal{A}= \begin{cases}d *\left[-\frac{k-1}{2}, \frac{k-1}{2}\right] & \text { if } k \equiv 1 \quad(\bmod 2) \\ d *\left[-\frac{k}{2}, \frac{k}{2}-1\right] & \text { if } k \equiv 0 \quad(\bmod 2)\end{cases}
$$

If $0 \notin \mathcal{A}$ and

$$
|S(r, \mathcal{A})|= \begin{cases}r\left(\frac{k+1}{2}\right)^{2}+1 & \text { if } k \equiv 1 \quad(\bmod 2) \\ r \frac{(k+1)^{2}-1}{4}+1 & \text { if } k \equiv 0 \quad(\bmod 2)\end{cases}
$$

then there is a nonzero integer d such that

$$
\mathcal{A}= \begin{cases}d *\left[-\frac{k-1}{2}, \frac{k+1}{2}\right] \backslash\{0\} & \text { if } k \equiv 1 \\ d *\left[-\frac{k}{2}, \frac{k}{2}\right] \backslash\{0\} & \text { if } k \equiv 0 \quad(\bmod 2),\end{cases}
$$

For the proof of these theorems we need the following well-known results.
Theorem D. (See [2], Theorem 5.) Let $k \geq 3$. If \mathcal{A} is a set of k positive integers such that

$$
|S(\mathcal{A})|=\binom{k+1}{2}
$$

then

$$
\mathcal{A}=d *[1, k]
$$

for some positive integer d. If \mathcal{A} is a set of k nonnegative integers such that $0 \in \mathcal{A}$ and

$$
|S(\mathcal{A})|=1+\binom{k}{2}
$$

then

$$
\mathcal{A}=d *[0, k-1]
$$

for some positive integer d.
Theorem E. (See [2], Theorem 6.) Let $k \geq 3$ and let \mathcal{A} be a set of k integers. If $0 \in \mathcal{A}$ and

$$
|S(\mathcal{A})|= \begin{cases}\frac{k^{2}-1}{4}+1 & \text { if } k \equiv 1 \quad(\bmod 2) \\ \frac{k^{2}}{4}+1 & \text { if } k \equiv 0 \quad(\bmod 2)\end{cases}
$$

then there is a nonzero integer d such that

$$
\mathcal{A}= \begin{cases}d *\left[-\frac{k-1}{2}, \frac{k-1}{2}\right] & \text { if } k \equiv 1 \quad(\bmod 2) \\ d *\left[-\frac{k}{2}, \frac{k}{2}-1\right] & \text { if } k \equiv 0 \quad(\bmod 2)\end{cases}
$$

If $0 \notin \mathcal{A}$ and

$$
|S(\mathcal{A})|= \begin{cases}\left(\frac{k+1}{2}\right)^{2}+1 & \text { if } k \equiv 1 \quad(\bmod 2) \\ \frac{(k+1)^{2}-1}{4}+1 & \text { if } k \equiv 0 \quad(\bmod 2)\end{cases}
$$

then there is a nonzero integer d such that

$$
\mathcal{A}=\left\{\begin{array}{lll}
d *\left[-\frac{k-1}{2}, \frac{k+1}{2}\right] \backslash\{0\} & \text { if } k \equiv 1 & (\bmod 2), \\
d *\left[-\frac{k}{2}, \frac{k}{2}\right] \backslash\{0\} & \text { if } k \equiv 0 & (\bmod 2)
\end{array}\right.
$$

Proof of Theorem 3. For $r=1$, the result follows from Theorem D. Let $r \geq 2$.
Case 1. \mathcal{A} is a set of k positive integers such that $|S(r, \mathcal{A})|=r\binom{k+1}{2}$.
By Lemma 1, we have

$$
r|S(\mathcal{A})| \leq|S(r, \mathcal{A})|
$$

and so by Theorem B, we have

$$
r\binom{k+1}{2} \leq r|S(\mathcal{A})| \leq|S(r, \mathcal{A})|=r\binom{k+1}{2}
$$

Therefore,

$$
r|S(\mathcal{A})|=r\binom{k+1}{2}
$$

and so

$$
|S(\mathcal{A})|=\binom{k+1}{2}
$$

Hence it follows by Theorem D that $\mathcal{A}=d *[1, k]$ for some positive integer d.
Case 2. \mathcal{A} is a set of k nonegative integers such that $0 \in \mathcal{A}$ and $|S(r, \mathcal{A})|=1+r\binom{k}{2}$. By Lemma 1, we have

$$
r|S(\mathcal{A})|-r+1 \leq|S(r, \mathcal{A})|
$$

and so by Theorem B, we have

$$
r\left(1+\binom{k}{2}\right)-r+1 \leq r|S(\mathcal{A})|-r+1 \leq|S(r, \mathcal{A})|=1+r\binom{k}{2}
$$

Therefore,

$$
r|S(\mathcal{A})|-r+1=1+r\binom{k}{2}
$$

and so

$$
|S(\mathcal{A})|=1+\binom{k}{2}
$$

Hence it follows by Theorem D that $\mathcal{A}=d *[0, k-1]$ for some positive integer d. This completes the proof.

Proof of Theorem 4. The proof follows by similar arguments as in the above proof using Lemma 1 and Theorem E.

References

[1] R. K. Mistri, R. K. Pandey and O. Prakash, Subsequence sums: direct and inverse problems, J. Number Theory 148 (2015), 235-256.
[2] M. B. Nathanson, Inverse theorems for subset sums, Trans. Amer. Math. Soc. 347 (1995), no. 4, 1409-1418.
[3] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, 1996.

[^0]: ${ }^{1}$ Research supported by the University Grants Commission of India (No. F. 2-10/2011 (SA-I))
 ${ }^{2}$ Corresponding author

