

THE DIRECT AND INVERSE THEOREMS ON INTEGER SUBSEQUENCE SUMS REVISITED

Raj Kumar Mistri¹

Department of Mathematics, Indian Institute of Technology Patna, Patna, India itsrajhans@gmail.com

Ram Krishna Pandey²

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, India ramkpandey@gmail.com

Received: 7/16/15, Accepted: 5/11/16, Published: 6/10/16

Abstract

Let $A = (\underbrace{a_0, \dots, a_0}_{r \text{ copies}}, \underbrace{a_1, \dots, a_1}_{r \text{ copies}}, \dots, \underbrace{a_{k-1}, \dots, a_{k-1}}_{r \text{ copies}})$ be a finite sequence of integers,

where $a_0 < a_1 < \cdots < a_{k-1}, k \ge 1$ and $r \ge 1$. Given a subsequence, the sum of all the terms of the subsequence is called the *subsequence sum*. The set of all nontrivial subsequence sums of A is denoted by $S(r, \mathcal{A})$, where $\mathcal{A} = \{a_0, a_1, \ldots, a_{k-1}\}$ is the set of distinct terms of the sequence A, called the associated set of the sequence A. For r = 1, this sumset is the usual sumset $S(\mathcal{A})$ of nontrivial subet sums of \mathcal{A} . The direct problem for the sumset $S(r, \mathcal{A})$ is to find a lower bound for $|S(r, \mathcal{A})|$ in terms of $|\mathcal{A}|$ and r. The inverse problem for $S(r, \mathcal{A})$ is to determine the structure of the finite set \mathcal{A} of integers for which $|S(r, \mathcal{A})|$ is minimal. In this paper, we give new proofs of existing direct and inverse theorems for $S(r, \mathcal{A})$ using the direct and inverse theorems of Nathanson for $S(\mathcal{A})$.

1. Introduction

Let $A = (\underbrace{a_0, \ldots, a_0}_{r \text{ copies}}, \underbrace{a_1, \ldots, a_1}_{r \text{ copies}}, \ldots, \underbrace{a_{k-1}, \ldots, a_{k-1}}_{r \text{ copies}})$ be a finite sequence of integers, where $a_0 < a_1 < \cdots < a_{k-1}, k \ge 1$ and $r \ge 1$. The set $\mathcal{A} = \{a_0, a_1, \ldots, a_{k-1}\}$ of all

where $a_0 < a_1 < \cdots < a_{k-1}$, $k \ge 1$ and $r \ge 1$. The set $\mathcal{A} = \{a_0, a_1, \ldots, a_{k-1}\}$ of all distinct terms of the sequence A is called the *associated set* of the sequence A. Since r is fixed, we shall always identify the sequence A by the associated set \mathcal{A} . Given a subsequence, the sum of all the terms of the subsequence is called the *subsequence*

 $^{^1\}mathrm{Research}$ supported by the University Grants Commission of India (No. F. 2-10/2011 (SA-I)) $^2\mathrm{Corresponding}$ author

sum. The set of all nontrivial subsequence sums of A is denoted by S(r, A). Thus

$$S(r, \mathcal{A}) := \left\{ \sum_{i=0}^{k-1} r_i a_i : 0 \le r_i \le r \text{ for } i = 0, 1, \dots, k-1 \text{ and } \sum_{i=0}^{k-1} r_i \ge 1 \right\}.$$

The direct problem for the sumset $S(r, \mathcal{A})$ is to find a lower bound for $|S(r, \mathcal{A})|$ in terms of $|\mathcal{A}|$ and r. The inverse problem for $S(r, \mathcal{A})$ is to determine the structure of the finite set \mathcal{A} of integers for which $|S(r, \mathcal{A})|$ is minimal. The case r = 1corresponds to the usual sumset $S(\mathcal{A})$ of nontrivial subset sums. The direct and inverse problems for the sumset $S(r, \mathcal{A})$ have been studied by the authors (see [1]) using the notation $S(r, \mathcal{A})$ instead of $S(r, \mathcal{A})$. Those proofs are constructive. Here, we give small and new proofs of these results using the direct and inverse theorems for subset sums $S(\mathcal{A})$ due to Nathanson [2]. Some more direct and inverse theorems for the general sequence \mathcal{A} may be found in [1].

In Section 2, we study the direct problem and in Section 3, we study the inverse problem. We agree with the convention that $\binom{a}{b} = 0$ if a and b are two positive integers with a < b.

2. Direct Problem

The following theorems are the direct theorems.

Theorem 1. (See [1], Theorem 2.1.) Let $k \ge 1$ and $r \ge 1$. Let \mathcal{A} be a set of k positive (negative) integers. Then

$$|S(r,\mathcal{A})| \ge r\binom{k+1}{2}.$$
(1)

Let \mathcal{A} be a set of k nonnegative (nonpositive) integers and $0 \in \mathcal{A}$. Then

$$|S(r,\mathcal{A})| \ge 1 + r\binom{k}{2}.$$
(2)

The lower bounds in (1) and (2) are best possible.

Theorem 2. (See [1], Theorem 2.2.) Let $k \ge 2$ and $r \ge 1$. Let \mathcal{A} be a set of k integers. If $0 \in \mathcal{A}$, then

$$|S(r,\mathcal{A})| \ge \begin{cases} \frac{r(k^2-1)}{4} + 1 & \text{if } k \equiv 1 \pmod{2}, \\ \frac{rk^2}{4} + 1 & \text{if } k \equiv 0 \pmod{2}. \end{cases}$$
(3)

If $0 \notin \mathcal{A}$, then

$$|S(r,\mathcal{A})| \ge \begin{cases} r(\frac{k+1}{2})^2 + 1 & \text{if } k \equiv 1 \pmod{2}, \\ r\frac{(k+1)^2 - 1}{4} + 1 & \text{if } k \equiv 0 \pmod{2}. \end{cases}$$
(4)

The lower bounds in (3) and (4) are best possible.

For the proofs of these theorems, we need the following well-known results.

Theorem A. (See [3], Theorem 1.4.) Let $h \ge 2$. Let A_1, A_2, \ldots, A_h be nonempty finite sets of integers. Then

$$|\mathcal{A}_1 + \mathcal{A}_2 + \dots + \mathcal{A}_h| \ge |\mathcal{A}_1| + |\mathcal{A}_2| + \dots + |\mathcal{A}_h| - h + 1.$$

Theorem B. (See [2], Theorem 3.) Let $k \ge 2$. If \mathcal{A} is a set of k positive (negative) integers, then

$$|S(\mathcal{A})| \ge \binom{k+1}{2}.$$
(5)

If \mathcal{A} is a set of k nonnegative (nonpositive) integers and $0 \in \mathcal{A}$, then

$$|S(\mathcal{A})| \ge 1 + \binom{k}{2}.\tag{6}$$

The lower bounds in (5) and (6) are best possible.

Theorem C. (See [2], Theorem 4.) Let $k \ge 2$ and let \mathcal{A} be a set of k integers. If $0 \in \mathcal{A}$, then

$$|S(\mathcal{A})| \ge \begin{cases} \frac{k^2 - 1}{4} + 1 & \text{if } k \equiv 1 \pmod{2}, \\ \frac{k^2}{4} + 1 & \text{if } k \equiv 0 \pmod{2}. \end{cases}$$
(7)

If $0 \notin \mathcal{A}$, then

$$|S(\mathcal{A})| \ge \begin{cases} (\frac{k+1}{2})^2 + 1 & \text{if } k \equiv 1 \pmod{2}, \\ \frac{(k+1)^2 - 1}{4} + 1 & \text{if } k \equiv 0 \pmod{2}. \end{cases}$$
(8)

The lower bounds in (7) and (8) are best possible.

We also require the following simple lemma.

Lemma 1. Let $k \ge 1$ and $r \ge 1$. If \mathcal{A} is a set of k integers, then

$$|S(r,\mathcal{A})| \ge r|S(\mathcal{A})| - r + 1.$$
(9)

If A is a set of k positive (negative) integers, then

$$|S(r,\mathcal{A})| \ge r|S(\mathcal{A})|. \tag{10}$$

Proof. For r = 1, inequality (9) is obvious. Now assume that $r \ge 2$. If \mathcal{A} is a set of k integers, then clearly

$$S(r,\mathcal{A}) \supseteq rS(\mathcal{A}),$$

and so by Theorem A, we have

$$|S(r,\mathcal{A})| \ge r|S(\mathcal{A})| - r + 1,$$

which proves (9). Now, let \mathcal{A} be a set of k positive integers (the proof is similar if \mathcal{A} is a set of negative integers). Clearly, inequality (10) is true for r = 1. Let the inequality (10) be true for r - 1, where $r \geq 2$. Now

$$S(r, \mathcal{A}) \supseteq (S(r-1, \mathcal{A}) + S(\mathcal{A})) \cup \{a\},\$$

where a is the smallest element of \mathcal{A} . Since $a \notin S(r-1, \mathcal{A}) + S(\mathcal{A})$ as $0 \notin S(r-1, \mathcal{A})$, we have

$$|S(r,\mathcal{A})| \ge |S(r-1,\mathcal{A}) + S(\mathcal{A})| + 1.$$

By Theorem A, we have

$$|S(r,\mathcal{A})| \ge |S(r-1,\mathcal{A})| + |S(\mathcal{A})| - 1 + 1,$$

and so by induction hypothesis,

$$|S(r,\mathcal{A})| \ge (r-1)|S(\mathcal{A})| + |S(\mathcal{A})| = r|S(\mathcal{A})|.$$

This completes the proof.

For integers a and b, let $[a, b] = \{n \in \mathbb{Z} : a \le n \le b\}.$

Proof of Theorem 1. If k = 1 and $r \ge 1$, then $\mathcal{A} = \{a\}$ for some integer a. If $a \ne 0$, then $|S(r, \mathcal{A})| = r = r\binom{1+1}{2}$. If a = 0, then $|S(r, \mathcal{A})| = 1 = 1 + r\binom{1}{2}$. Therefore, the theorem is true for k = 1 and $r \ge 1$. For $k \ge 2$ and r = 1, the result follows from Theorem B. Hence we may assume that $k \ge 2$ and $r \ge 2$. First assume that \mathcal{A} is a set of k positive (negative) integers. By inequality (10) of Lemma 1, we have

$$|S(r,\mathcal{A})| \ge r|S(\mathcal{A})|,$$

and so by Theorem B,

$$|S(r,\mathcal{A})| \ge r\binom{k+1}{2}.$$

Thus we have proved inequality (1). Now assume that \mathcal{A} is a set of k nonnegative (nonpositive) integers and $0 \in \mathcal{A}$. Then by inequality (9) of Lemma 1, we have

$$|S(r,\mathcal{A})| \ge r|S(\mathcal{A})| - r + 1,$$

and so by Theorem B,

$$|S(r,\mathcal{A})| \ge 1 + r\binom{k}{2}.$$

Thus we have proved inequality (2). Next we show that the lower bounds in (1) and (2) are best possible. Let $k \ge 2$ and $r \ge 1$. Let $\mathcal{A}_0 = [1, k]$. Then the smallest and the largest integers in $S(r, \mathcal{A}_0)$ are 1 and $r\binom{k+1}{2}$, respectively. Therefore,

$$|S(r,\mathcal{A}_0)| \le r\binom{k+1}{2}.$$

This inequality together with inequality (1) implies

$$|S(r,\mathcal{A}_0)| = r\binom{k+1}{2}.$$

Thus the lower bound in (1) is best possible. Similarly, by considering the set $\mathcal{A}_1 = [0, k-1]$, where $k \geq 2$ and $r \geq 1$, it can be verified that the lower bound in (2) is best possible. This completes the proof.

Proof of Theorem 2. For r = 1, the result follows from Theorem C. Let $r \ge 2$. First assume that \mathcal{A} is a set of k integers such that $0 \in \mathcal{A}$. Then by inequality (9) of Lemma 1, we have

$$|S(r,\mathcal{A})| \ge r|S(\mathcal{A})| - r + 1,$$

and so by Theorem C, we have

$$|S(r, \mathcal{A})| \ge \begin{cases} \frac{r(k^2 - 1)}{4} + 1 & \text{if } k \equiv 1 \pmod{2}, \\ \frac{rk^2}{4} + 1 & \text{if } k \equiv 0 \pmod{2}. \end{cases}$$

Thus we have proved inequality (3). The proof is similar for the case $0 \notin \mathcal{A}$. If $k \equiv 1 \pmod{2}$, then by considering the sets $\mathcal{A}_0 = \left[-\frac{k-1}{2}, \frac{k-1}{2}\right]$ and $\mathcal{A}_1 = \left[-\frac{k-1}{2}, \frac{k+1}{2}\right] \setminus \{0\}$, it can be verified that the lower bounds in (3) and (4), respectively, are best possible. If $k \equiv 0 \pmod{2}$, then by considering the sets $\mathcal{A}_2 = \left[-\frac{k}{2}, \frac{k}{2} - 1\right]$ and $\mathcal{A}_3 = \left[-\frac{k}{2}, \frac{k}{2}\right] \setminus \{0\}$, it can be verified that the lower bounds in (3) and (4), respectively, are best possible. This completes the proof.

3. Inverse Problem

For a set $\mathcal{A} \subseteq \mathbb{Z}$ and for an integer c, let $c * \mathcal{A} = \{ca : a \in \mathcal{A}\}$. Following theorems are the inverse theorems.

Theorem 3. (See [1], Theorem 2.3.) Let $k \ge 3$ and $r \ge 1$. If \mathcal{A} is a set of k positive integers such that

$$|S(r,\mathcal{A})| = r\binom{k+1}{2},$$

then $\mathcal{A} = d * [1, k]$ for some positive integer d.

If \mathcal{A} is a set of k nonnegative integers such that $0 \in \mathcal{A}$ and

$$|S(r,\mathcal{A})| = 1 + r\binom{k}{2},$$

then $\mathcal{A} = d * [0, k - 1]$ for some positive integer d.

Theorem 4. (See [1], Theorem 2.4.) Let $k \ge 3$ and $r \ge 1$. Let \mathcal{A} be a set of k integers. If $0 \in \mathcal{A}$ and

$$|S(r, \mathcal{A})| = \begin{cases} \frac{r(k^2 - 1)}{4} + 1 & \text{if } k \equiv 1 \pmod{2}, \\ \frac{rk^2}{4} + 1 & \text{if } k \equiv 0 \pmod{2}, \end{cases}$$

then there is a nonzero integer d such that

$$\mathcal{A} = \begin{cases} d * \left[-\frac{k-1}{2}, \frac{k-1}{2} \right] & \text{if } k \equiv 1 \pmod{2}, \\ d * \left[-\frac{k}{2}, \frac{k}{2} - 1 \right] & \text{if } k \equiv 0 \pmod{2}. \end{cases}$$

If $0 \notin \mathcal{A}$ and

$$|S(r,\mathcal{A})| = \begin{cases} r(\frac{k+1}{2})^2 + 1 & \text{if } k \equiv 1 \pmod{2}, \\ r\frac{(k+1)^2 - 1}{4} + 1 & \text{if } k \equiv 0 \pmod{2}, \end{cases}$$

then there is a nonzero integer d such that

$$\mathcal{A} = \begin{cases} d * \left[-\frac{k-1}{2}, \frac{k+1}{2}\right] \setminus \{0\} & \text{if } k \equiv 1 \pmod{2}, \\ d * \left[-\frac{k}{2}, \frac{k}{2}\right] \setminus \{0\} & \text{if } k \equiv 0 \pmod{2}. \end{cases}$$

For the proof of these theorems we need the following well-known results.

Theorem D. (See [2], Theorem 5.) Let $k \ge 3$. If \mathcal{A} is a set of k positive integers such that

$$|S(\mathcal{A})| = \binom{k+1}{2},$$

then

$$\mathcal{A} = d * [1, k]$$

for some positive integer d. If \mathcal{A} is a set of k nonnegative integers such that $0 \in \mathcal{A}$ and

$$|S(\mathcal{A})| = 1 + \binom{k}{2},$$

then

$$\mathcal{A} = d * [0, k - 1]$$

for some positive integer d.

Theorem E. (See [2], Theorem 6.) Let $k \ge 3$ and let \mathcal{A} be a set of k integers. If $0 \in \mathcal{A}$ and

$$|S(\mathcal{A})| = \begin{cases} \frac{k^2 - 1}{4} + 1 & \text{if } k \equiv 1 \pmod{2}, \\ \frac{k^2}{4} + 1 & \text{if } k \equiv 0 \pmod{2}, \end{cases}$$

then there is a nonzero integer d such that

$$\mathcal{A} = \begin{cases} d * \left[-\frac{k-1}{2}, \frac{k-1}{2} \right] & \text{if } k \equiv 1 \pmod{2}, \\ d * \left[-\frac{k}{2}, \frac{k}{2} - 1 \right] & \text{if } k \equiv 0 \pmod{2}. \end{cases}$$

If $0 \notin \mathcal{A}$ and

$$|S(\mathcal{A})| = \begin{cases} (\frac{k+1}{2})^2 + 1 & \text{if } k \equiv 1 \pmod{2}, \\ \frac{(k+1)^2 - 1}{4} + 1 & \text{if } k \equiv 0 \pmod{2}, \end{cases}$$

then there is a nonzero integer d such that

$$\mathcal{A} = \begin{cases} d * \left[-\frac{k-1}{2}, \frac{k+1}{2}\right] \setminus \{0\} & \text{if } k \equiv 1 \pmod{2}, \\ d * \left[-\frac{k}{2}, \frac{k}{2}\right] \setminus \{0\} & \text{if } k \equiv 0 \pmod{2}. \end{cases}$$

Proof of Theorem 3. For r = 1, the result follows from Theorem D. Let $r \ge 2$. Case 1. \mathcal{A} is a set of k positive integers such that $|S(r, \mathcal{A})| = r\binom{k+1}{2}$. By Lemma 1, we have

$$r|S(\mathcal{A})| \le |S(r,\mathcal{A})|,$$

and so by Theorem B, we have

$$r\binom{k+1}{2} \le r|S(\mathcal{A})| \le |S(r,\mathcal{A})| = r\binom{k+1}{2}.$$

Therefore,

$$r|S(\mathcal{A})| = r\binom{k+1}{2},$$

and so

$$|S(\mathcal{A})| = \binom{k+1}{2}.$$

Hence it follows by Theorem D that $\mathcal{A} = d * [1, k]$ for some positive integer d. Case 2. \mathcal{A} is a set of k nonegative integers such that $0 \in \mathcal{A}$ and $|S(r, \mathcal{A})| = 1 + r\binom{k}{2}$. By Lemma 1, we have

$$r|S(\mathcal{A})| - r + 1 \le |S(r, \mathcal{A})|,$$

and so by Theorem B, we have

$$r\left(1+\binom{k}{2}\right)-r+1 \le r|S(\mathcal{A})|-r+1 \le |S(r,\mathcal{A})|=1+r\binom{k}{2}$$

Therefore,

$$r|S(\mathcal{A})| - r + 1 = 1 + r\binom{k}{2},$$

and so

$$|S(\mathcal{A})| = 1 + \binom{k}{2}.$$

Hence it follows by Theorem D that $\mathcal{A} = d * [0, k - 1]$ for some positive integer d. This completes the proof.

Proof of Theorem 4. The proof follows by similar arguments as in the above proof using Lemma 1 and Theorem E.

References

- R. K. Mistri, R. K. Pandey and O. Prakash, Subsequence sums: direct and inverse problems, J. Number Theory 148 (2015), 235-256.
- M. B. Nathanson, Inverse theorems for subset sums, Trans. Amer. Math. Soc. 347 (1995), no. 4, 1409-1418.
- [3] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, 1996.