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Abstract
The following problem has been open since 1985: Does there exist an infinite word
w over a finite set of non-negative integers such that w does not contain any two
consecutive blocks with the same length and the same sum? This problem was
considered independently by Brown and Freedman (in 1987), Pirillo and Varricchio
(in 1994), and Halbeisen and Hungerbüher (in 2000). We show that the answer
is “no” for all 4-element sets {a, b, c, d} where a < b < c < d are real numbers
satisfying the Sidon equation a + d = b + c. For any finite subset T of R, we define
g(T ) to be the maximum length of a word over T which does not contain any two
consecutive blocks with the same length and the same sum. (We allow g(T ) =1.)
In general, very little is known about g. Here we find the exact values of g(T ) for
all 4-element sets of real numbers T = {a, b, c, d}, a + d = b + c. We also show that
g(T ) � 50 for all 4-element sets of real numbers, with equality if and only if T is
an arithmetic progression.

1. Introduction

Paul Erdős [7] asked whether there exists an infinite sequence w (often called an
infinite word–we will use the terms “word” and “sequence” interchangeably) on
a finite number of symbols in which no two consecutive blocks are permutations
(anagrams) of one another, that is, w has no factorization of the form w = ABCD,
where A,B,C are finite words (A may be empty, but B must be non-empty), B
is a permutation of C, and D is an infinite word. Usually a word of the form BB
(where B is not empty) is called simply a square, and a word BC, where B is a
permutation of C, is called an abelian square.

For example, the words B = aabab and C = abbaa are permutations of one
another, so the word BC = aabababbaa is an abelian square. The word BC contains
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as factors the squares aa, bb, abab, baba, and the abelian squares abababba and bababb.
We also say that the words B and C have the same composition if BC is an abelian
square.

An infinite word which contains no abelian square (and hence answers the ques-
tion of Erdős) was constructed by Evdomikov [8], using 25 symbols, in 1968. P. A.
B. Pleasants constructed an infinite word with no abelian square on 5 symbols in
1970, and the ultimate result, an infinite word with no abelian square on 4 symbols,
was constructed by V. Keränen [11] in 1992. (It is easy to show, by looking at
several cases, that there does not exist such a word on 3 symbols. A survey of this
problem up to 1971 appears in [4].)

Definition 1. Let B = a1a2 . . . an, where a1, a2, · · · an 2 R. Then we write

|B| = n and
X

B =
nX

i=1

ai.

We call |B| the length of B, and
P

B the sum of B. If
P

B =
P

C and |B| = |C|,
we say that BC is an additive square.

The question of the existence of an infinite word w on a finite set of positive
integers which contains no additive square (clearly a stronger requirement than
containing no abelian square) was raised in [3]. See also [1], [2], [5], [9], [10], [12].

J. Cassaigne, J. D. Currie, L. Schae↵er, J. Shallit [6] constructed an infinite word
on {0, 1, 3, 4} which contains no additive cube, i. e., which contains no factor ABC
where |A| = |B| = |C| and

P
A =

P
B =

P
C.

Definition 2. A sequence of numbers, finite or infinite, is called good if it contains
no additive square.

Definition 3. Let T be a finite set of real numbers. Then g(T ) denotes the maxi-
mum length of all good sequences on T . If there is no maximum, we write g(T ) =1.
(If T = {a, b, c, d}, then for convenience we write g(a, b, c, d) instead of g({a, b, c, d}).

As an example, the word 31304511 on the numbers 0, 1, 3, 4, 5 contains the ad-
ditive square BC where B = 304, C = 511. (This word also contains the additive
squares 1304 and 11.) We will see (as part of Theorem 1 below) that g(0, 1, 2, 3) = 50
and g(0, 1, 5, 6) = 60.

Considering the real numbers as a vector space over the rational numbers, we note
that a sequence on four independent real numbers, {↵,�, �, �} is good if and only if
there do not exist two consecutive blocks of equal composition, that is, an abelian
square. This follows from the uniqueness of sums of the form x↵ + y� + z� + w�
where x, y, z, w are integers. Using Keränen’s infinite sequence on four symbols
without abelian squares, and hence without additive squares, we get, in the case
where ↵,�, �, � are independent over the rationals, g(↵,�, �, �) =1.
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Similarly, for any fixed positive integer N , the sums x+yN +zN2 +wN3, where
x, y, z, w are integers, are unique for 0  x, y, z, w < N. So, again using Keränen’s
remarkable result, we see that g(1, N,N2, N3) � N � 1. (Construct a sequence on
the numbers {1, N,N2, N3} of length N � 1 with no abelian square. Since each
of the four numbers occurs less than N times, there is no additive square.) Thus,
Keränen’s Theorem implies that

g(1, N,N2, N3)!1 as N !1.

We do not know whether or not all the g(1, N,N2, N3) are finite. But in any
case, using a standard combinatorial method, one sees that

g(1, N,N2, N3)!1 as N !1

implies Keränen’s Theorem. Thus it would be nice to have an independent proof of
this fact.

In this paper we will only consider sets T consisting of four distinct real numbers
(except for the last corollaries). For ease of discussion we will always assume that
the elements of T are listed in their natural order. Call the set of all such 4-tuples
A. We will determine the value of g for all members of a special subset, B, of A,
namely,

B = {{a, b, c, d} : a + d = b + c}.
We will also show that g(T ) � 50 for all T 2 A and determine exactly when

equality holds. So far, these seem to be the only results, with any degree of gener-
ality, related to the calculation of g(T ).

1.1. A�ne Transformations

Consider an a�ne transformation x! µx+� (where µ,� are real numbers, µ 6= 0).
Let w be a word on {a, b, c, d} and v the word obtained from w by replacing each
number x in w with µx+�. It is easy to see that w is an additive square if and only
if v is an additive square. Similarly, w is good if and only if v is good. It follows
that g is invariant under an a�ne transformation. That is,

g(a, b, c, d) = g(µa + �, µb + �, µc + �, µc + �), (µ,� real, µ 6= 0).

The sets A and B are each closed under a�ne transformations and, in particular,
closed under positive a�ne transformations (i.e., where µ > 0). We use the positive
a�ne transformations to partition the sets A and B (respectively) into equivalence
classes where two 4-tuples are equivalent if one is transformed into the other by
some positive a�ne transformation. It follows that every equivalence class in B has
a unique representative of the form {0, 1, 1 + ✏, 2 + ✏}, ✏ > 0. It is interesting that
there is a canonical 1-1 correspondence between the equivalence classes in B and
the interval (0,1).
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Similarly, every equivalence class in A has a unique representative of the form
{0, 1, 1 + ✏, 1 + ✏ + �}, ✏, � > 0. Hence, there is a canonical 1-1 correspondence
between the equivalence classes in A and the open first quadrant of the plane.

2. Main Results

Recall that a good sequence (on a set of reals) is a sequence which does not contain an
additive square. When a, b, c, d are real numbers, g(a, b, c, d) denotes the maximum
possible number of terms in a good sequence on the set {a, b, c, d}. Recall also that
B is the set of all 4-element sets {a, b, c, d} of real numbers, where a < b < c < d
and a + d = b + c.

Definition 4. The reversal of a sequence w = x1x2 · · ·xn is the sequence

wr = xnxn�1 · · ·x1.

(Clearly if a sequence w is good then so is wr.)

Theorem 1. Other than in the exceptional cases listed below in Table 1, if {a, b, c, d}
is any set of real numbers with a < b < c < d and a+d = b+c, then g(a, b, c, d) = 60,
and there are exactly 8 distinct good sequences on {a, b, c, d} of length 60. These 8
sequences are described in the Appendix.

Exceptional cases: If {a, b, c, d} is equivalent to any of the 4-tuples listed in Table 1
below, then the value of g(a, b, c, d), and the number of distinct maximum length good
sequences on {a, b, c, d}, are given in the table. Each line contains an exceptional
4-tuple {a, b, c, d}, the value of g(a, b, c, d), and the number of distinct maximum
length good sequences on {a, b, c, d}.

{0,1,2,3} 50 16
{0,1,3,4} 55 4
{0,1,4,5} 55 4
{0,1,5,6} 60 4
{0,2,3,5} 55 4
{0,2,5,7} 60 4
{0,3,4,7} 58 4
{0,3,5,8} 60 4

Table 1

Descriptions of all the maximum length good sequences in these exceptional cases
are given in the Appendix.

Proof. We rely heavily on the output from computer programs. Consider any 4-
tuple in B. It is clear from the previous section that this 4-tuple is equivalent to
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a 4-tuple of the form {0, 1,↵, 1 + ↵},↵ > 1. Consider a sequence S on these four
numbers and two consecutive equal length blocks, E and F , in S. Let r, s, t, u be
the counts for 0, 1,↵, 1 + ↵ respectively, in block E and r0, s0, t0, u0 be the same for
block F . Hence, length(E)=length(F ) implies

r + s + t + u = r0 + s0 + t0 + u0.

Now S will not be good if, in these blocks,

s + t↵ + u(1 + ↵) = s0 + t0↵ + u0(1 + ↵). (1)

This equation is equivalent to

(t� t0 + u� u0)↵ = s0 � s + u0 � u. (2)

There are two ways that (2) can hold:

t� t0 + u� u0 = s0 � s + u0 � u = 0, or (2a)

t� t0 + u� u0 and s0 � s + u0 � u are both non-zero, and (2b)

↵ =
s0 � s + u0 � u

t� t0 + u� u0
. (3)

We now construct a computer program, PROG 1, that finds all the longest
sequences on {0, 1,↵, 1+↵},↵ > 1, which do not have two consecutive equal length
blocks where t� t0 + u� u0 = s0 � s + u0 � u = 0.

This program produces the eight length 60 sequences mentioned in the first part
of the statement of the theorem. The program replaces {0, 1,↵, 1 + ↵} with any
equivalent {a, b, c, d} respectively in the final output. See the Appendix for a de-
scription of these sequences.

Now, it is clear that these eight sequences are good for some but not for all 4-
tuples in B. For example, if ↵ = ⇡ (or any irrational number), then (2) above cannot
occur because PROG 1 guarantees that the case (2a) is avoided, and the case (2b)
is avoided since the right-hand side of (3) is rational. Hence, g(0, 1,⇡, 1 + ⇡) = 60
and all eight sequences in the statement of the theorem are good for any 4-tuple
equivalent to {0, 1,⇡, 1 + ⇡}.

However, consider {0, 1, 2, 3}. Here ↵ = 2. It turns out that, in each of the eight
sequences, there occur consecutive equal length blocks such that (s0�s+u0�u)/(t�
t0 + u � u0) = 2. Hence (3) holds and therefore (2) and (1) hold. So, none of the
eight sequences is good for {0, 1, 2, 3} and we must have g(0, 1, 2, 3) < 60.

In general, we have to find, for each of the eight length 60 sequences, S, found by
PROG 1, all the ordered pairs (X,Y ) where X = s0� s + u0�u, Y = t� t0 + u�u0
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and X/Y > 1, the calculation of X and Y being performed for all the consecutive
blocks E,F of equal length in S (there are 302 = 900 such pairs of intervals). Each
such found pair, (X,Y ), will produce an equivalence class of 4-tuples in B for which
at least one of the eight sequences is not good. For example, since X = 5 and
Y = 3 occurs, the 4-tuple {0, 1, 5/3, 8/3}, equivalently, {0, 3, 5, 8}, represents an
equivalence class in B for which at least one of the eight sequences in Table 1 is not
good.

So we write another Perl program, PROG 2, that calculates all of the (X,Y ) just
described. (PROG 2 must be run eight times, once for each of the eight sequences.)
Somewhat surprisingly, this produces only eight distinct equivalence classes in B
represented by the eight exceptions in Table 1 of the theorem.

The last step is to use a third program, PROG 3, run on the eight exceptional
4-tuples, to find all of the longest good sequences. This provides the values for g
and the number of maximum length good sequences which appear in Table 1. This
completes the proof of the theorem.

Theorem 2. For any 4-tuple T = {a, b, c, d} in A, g(T ) � 50, and equality holds
only when T is a 4-term arithmetic progression.

Proof. T is equivalent to a 4-tuple of the form {0, 1,↵,�}, 1 < ↵ < �. Let S be the
51-term sequence:

(1, 0,↵, 0,�,↵, 0, 1,�,↵,�, 0,↵, 0, 1, 0,↵, 0,�,↵, 0, 1,�,↵, 0,�,↵,�, 1,�,↵,�,
0,↵, 0, 1, 0,↵, 0,�,↵, 0, 1,�,↵,�, 0,↵, 0, 1,↵).
(The first 50 terms of S are from one of the 16 maximum length good sequences

on {0, 1, 2, 3}, replacing {0, 1, 2, 3} by {0, 1,↵,�}). This sequence will turn out to
be good for all reals ↵,�, (1 < ↵ < �) except when � = ↵ + 1. But, if � = ↵ + 1,
then {0, 1,↵,�} = {0, 1,↵,↵ + 1} is in B and Theorem 1 takes care of the values
for g(T ) in this case, including the fact that g(T ) = 50 only if ↵ = 2, i.e., T is a
4-term arithmetic progression.

To show that S is good for all other T , we use the notation established in the
proof of Theorem 1 and observe that S will not be good for {0, 1,↵,�} if there are
two consecutive equal length blocks where

s + t↵ + u� = s0 + t0↵ + u0�

or

(u0 � u)� = (t� t0)↵ + (s� s0). (4)

We write a program (PROG 4, similar to PROG 2) which, using the above se-
quence S, finds all the triples (u0 � u), (t � t0), (s � s0) (one triple for each pair of
consecutive blocks E,F of equal length in S.) and then we examine the output.
There are 650 adjacent block pairs to examine, but after eliminating duplications,
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PROG 4 produces the following 51 triples:

(0 0 1) (0 -1 0) (0 1 0) (1 0 0) (-1 -1 0) (0 0 -1) (1 0 1) (1 1 0) (-1 0 0) (-1 0 -1)
(0 -1 1) (-1 1 -1) (1 1 -1) (1 -1 1) (0 1 -1) (-1 -1 1) (2 0 1) (-2 0 0) (1 0 -1) (-2 0 -1)
(-1 0 1) (-2 -1 -1) (-2 -1 0) (-2 1 -1) (2 0 0) (-2 -1 1) (-1 1 0) (-3 0 0) (2 1 0)
(1 -1 0) (-2 1 0) (-3 -1 0) (-4 0 0) (3 0 0) (2 0 -1) (3 0 1) (2 1 -1) (3 1 -1) (3 -1 1)
(2 -1 1) (-3 -1 1) (-3 1 -1) (3 0 -1) (4 0 1) (-2 0 1) (-3 0 -1) (-1 -1 -1) (2 -1 0)
(3 1 0) (-3 -1 -1) (0 -1 -1).

Note that (0 0 0) does not occur. Examining these triples further, we see that
the only one that would allow the existence of ↵,�, (1 < ↵ < �) such that equation
(4) holds is (-1 -1 -1), which produces � = ↵+1. All the other triples (like (1 1 -1))
lead to equation (4) (� = ↵�1 in this case) which cannot hold and allow 1 < ↵ < �
at the same time.

Corollary 1. If U is any finite set of real numbers with at least 5 elements, then
g(U) > 50.

Proof. If T ⇢ U , then g(U) � g(T ). Since U has 5 or more elements there must be
a 4-element subset, T , which does not form an arithmetic progression. By Theorem
2, g(T ) � 51.

Lemma 1. If 1  k  4, the maximum length of a good palindrome on k numbers
is 2k � 1.

Proof. For k = 1, 2, this is trivial. For k = 3, it’s not hard to show by hand that
any good sequence A on 3 numbers (not just a palindrome) has |A|  7. (There
are 18 good sequences of length 7 (six of these are palindromes) on 3 distinct
numbers, namely abacaba, abacbab, abcbabc, where a, b, c is any permutation of the
three numbers.)

Now assume that w is a good palindrome on 4 numbers with |w| � 16. We may
assume without loss of generality that w has odd length, say w = AxAr, where
|x| = 1, |A| � 8, and Ar denotes the reversal of A. Since |A| > 7, all four numbers
must occur in A, in particular A = BxC. But then w = BxCxCrxBr, and w
contains the additive square (in fact, the abelian square) xCxCr, contradicting the
assumption that w is good. Finally, w = 01020104010201 is a good palindrome on
four numbers, of length 15.

Remark For k = 5, there are arbitrarily long good palindromes on five numbers.
For let N be given. Then as previously remarked, there is a good word of length
N � 1 on the numbers {1, N,N2, N3}. Denote this word by w. Then w(

P
w)wr is

a good palindrome on 5 numbers, with length 2N � 1.
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Corollary 2. For each k, 2  k  4, if T is a set of k numbers, and there is no
infinite good sequence on T , then the number of maximum length good sequences on
T numbers is even.

Proof. For k = 2, 3, this can be checked by hand. If |T | = 4, then by Theorem 1
and Corollary 1, g(T ) � 50 > 24 � 1, hence by Lemma 1 there are no palindromes
among the set of maximum length good sequences. Since the reversal of a good
sequence is good, the Corollary follows.

Comment. While Theorem 1 provides a precise answer, Theorem 2 and Corollary
1 leave considerable room for improvement.

Programs. Programs 1 through 4, written in Perl, are available from either author.
They require a Perl processor such as TextWrangler.

Acknowledgement. The authors are indebted to the referee for the observation
that enabled us to use the notation S(x, y, z, w) in the Appendix (instead of writing
out the 8 sequences found in Theorem 1), and for a number of other comments, all
of which improved the exposition of the paper.
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Appendix

Here we describe all the maximum length good sequences mentioned in Theorem 1.
It will be convenient to use the notation in the following definition.

Definition 5. If w = x1x2 . . . xn is a sequence on the 4-tuple {a, b, c, d} in B (a <
b < c < d and a + d = b + c), we set w⇤ = x⇤1x

⇤
2 . . . x⇤n, where

x⇤i = a + d� xi, 1  i  n.

Since x ! x⇤ is an a�ne transformation it is clear that w is a good sequence if
and only if w⇤ is a good sequence (see Section 1.1).

First we describe the 8 maximum length (length 60) sequences for all the 4-
tuples {a, b, c, d} in B, which are not equivalent to any of the 4-tuples in Table 1.
Let S(x, y, z, w) be the sequence

S(x, y, z, w) = x y z x w y w z y z x z y w y z y w x w z x z y z x w x z x w y w
x w y z y w y x w x z y z x z y w y z y x z x w y z w.

Then the eight good sequences of length 60 on {a, b, c, d} are S(a, d, b, c),
S(a, d, c, b), S(d, a, b, c), S(d, a, c, b), and their reversals, which are S(b, c, a, d),
S(b, c, d, a), S(c, b, a, d), S(c, b, d, a). Alternatively, these are

R, Rr, R⇤, Rr⇤, T, T r, T ⇤, T r⇤,

where

R = S(a, d, b, c) = a d b a c d c b d b a b d c d b d c a c b a b d b a c a b a c d
c a c d b d c d a c a b d b a b d c d b d a b a c d b c,

T = S(a, d, c, b) = a d c a b d b c d c a c d b d c d b a b c a c d c a b a c a b d
b a b d c d b d a b a c d c a c d b d c d a c a b d c b.

In the three cases in Table 1 where g(a, b, c, d) = 60 (that is, when {a, b, c, d} is
equivalent to one of {0, 1, 5, 6} or {0, 2, 5, 7} or {0, 3, 5, 8}) the 4 maximum length
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good sequences are S(a, d, c, b), S(d, a, b, c), and their reversals S(b, c, d, a), and
S(c, b, a, d). Alternatively, these are T, T r, T ⇤, T r⇤, where T is as above.

In the case where {a, b, c, d} is equivalent to {0, 1, 2, 3}, the 16 length 50 good
sequences on {0, 1, 2, 3} are

A,B,C,D,Ar, Br, Cr,Dr, A⇤, B⇤, C⇤,D⇤, Ar⇤, Br⇤, Cr⇤,Dr⇤,

where

A = b a c a d c a b d c d a c a b a c a d c a b d c a d c d b d c d a c a b
a c a d c a b d c d a c a b,

B = b a c a d c d b a c d a c a b a c a d c d b d c d a c d b a c d a c a b
a c a d c d b a c a d c a b,

C = b d c a d c d b a c a d c d b d c d a c d b a c d a c a b a c a d c d b
d c d a c d b a c a d c d b,

D = b d c d a c a b d c a d c d b d c d a c a b a c a d c a b d c a d c d b
d c d a c a b d c a d c d b.

(It is curious that the first 45 terms of Ar and B are identical, as are the first 45
terms of Cr and D.)

For the cases where {a, b, c, d} is equivalent to one of {0, 1, 3, 4}, {0, 1, 4, 5},
{0, 2, 3, 5}, the four good sequences of length 55 are E, Er, E⇤, Er⇤, where

E = b a b d a c a b d b a b d c d b d a b a c a b a d b a c d b a d b d c d
b d a b a c a b d b a b d c d a b d b.

Finally, for the case {a, b, c, d} equivalent to {0, 3, 4, 7}, the four good sequences
of length 58 are F, F ⇤, F r, F r⇤, where

F = a b a c a d c a b d c a d c d b d c d a c a b a c a d c a b d c b d b a
b d b c d c a c d c b d c a b d c b d b a b.

It is a bit of a curiosity that (since {0, 1, 5, 6} is an exceptional 4-tuple) the
sequences S(0, 6, 5, 1), S(6, 0, 1, 5), S(1, 5, 6, 0), S(5, 1, 0, 6) are good, whereas the
sequences S(0, 6, 1, 5), S(6, 0, 5, 1), S(1, 5, 0, 6), S(5, 1, 6, 0) are not good. Indeed,
S(0,6,1,5) =

061056 5161016561650510161 0501056505616560501 6101656160105615,

where the smallest additive square has been underlined. Each of the two segments
has length 19 and sum 57. (This is not an abelian square, since the first segment
has 3 zeros and the second segment has 6 zeros.)


