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Abstract
Given three positive integers a, b, c, a proportionally modular Diophantine inequality
is an expression of the form ax mod b  cx. Our aim is to give a recursive formula
for the least solution to such an inequality. We then use the formula to derive
an algorithm. Finally, we apply our results to a question of Rosales and Garćıa-
Sánchez.

1. Introduction

A proportionally modular Diophantine inequality is an expression of the form

(ax mod b)  cx,

where the positive integers a, b, c are called respectively the factor, modulus and
proportion. It is well-known that the set of the non-negative integer solutions of
this inequality is a numerical semigroup (cf. [8], [9]), i.e. a submonoid S of (N,+)
with finite complement in it. Denoting by S(a, b, c) the set of solutions, the structure
of this set (called a proportionally modular semigroup) has been widely studied, but
is not completely understood yet. In particular, it is an open problem (cf. [8]) to
find explicit formulas for several classical invariants of these numerical semigroups.
Several works in literature focused on the multiplicity of these numerical semigroup,
which is the smallest positive solution of the inequality (ax mod b)  cx. Although
some partial results are known (cf. [9], [11], [12]) as of today the main problem of
finding a formula for this invariant still remains unsolved. Notably, this particular
invariant pops up in other problems: it has been proved (cf. [8]) that each propor-
tionally modular numerical semigroups is exactly the set of numerators of fractions
belonging to a certain bounded rational interval. Thus, another formulation for this
problem asks for the least possible numerator of a rational number in a given inter-
val, or , equivalently, for the least possible denominator of such rational numbers.
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This formulation also highlights a connection with continued fractions and Farey
sequences (cf. [2], [6]). Moreover, Bullejos and Rosales showed that this problem is
strictly related to that of finding the common ancestor of two rational numbers in
the Stern-Brocot tree (cf. [4]). These equivalences lead to di↵erent approaches and
formulas, based on the context in which the problem is studied. Using elementary
number theory we will provide a recursive formula for the smallest positive solution
of the inequality (ax mod b)  cx a, b 2 Z+, c 2 Q+, and thus an algorithm for its
computation (with similar complexity to the Euclidean algorithm).

Our work is structured as follows: in the first section we prove our main theorem,
and provide the recursive formula for the computation of the multiplicity of S. In
Section 2 we describe the algorithm that can be derived from our main theorem. In
the final section we explain how our result can be applied to a question of Rosales
and Garćıa-Sánchez ([8, Problem 5.20]).

2. Main Result

Given two integers m and n with n > 0 we define the remainder operator [m]n as
follows

[m]n = min{i 2 N | i ⌘ m (mod n)}.

Notice that, if m and n are positive integers such that m < n, then m = [m]n. The
following properties follow from the definition of floor and ceiling function, and we
will use them extensively.

Proposition 1. Let a, b 2 Z+. Then:

1.
�

b

a

⌫
a + [b]a = b,

2.
⇠

b

a

⇡
a� [�b]a = b.

Let a, b 2 Z+, and let c 2 Q+. Consider the inequality (ax mod b) = [ax]b  cx,
and define

L(a, b, c) = min{x 2 Z+ | [ax]b  cx} = min{S(a, b, c) \ {0}}.

Clearly, if a � b, then [ax]b = [[a]bx]b, and hence L(a, b, c) = L([a]b, b, c), so the
condition a < b that we will impose in the next results is not restrictive. Moreover,
if d = gcd(a, b) and a = da0 and b = db0, we have [a]b = d[a0]b0 ; therefore [ax]b 
cx if and only if [a0x]b0 

c

d
x, which implies S(a, b, c) = S(a

d , b
d , c

d ). Conversely,
if d is a positive integer, then S(a, b, c) = S(ad, bd, cd). Furthermore, if c = m

n

is a positive rational number, then S(a, b, c) = S(an, bn, cn) is a proportionally
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modular numerical semigroup: thus the set of numerical semigroups S(a, b, c), with
c a positive rational number, equals the set of proportionally modular numerical
semigroups.

Proposition 2. Let a, b 2 Z+ be such that a < b, and let c 2 Q+ be a positive
rational number. Then:

1. If c � a, then L(a, b, c) = 1,

2. If c < a and a | b, then L(a, b, c) = b
a .

Proof. The first part is obvious. If x < b
a , then ax < b and [ax]b = ax > cx; hence

the inequality is false for x < b
a . Since for x = b

a we have ax = b and [ax]b = 0  cx,
we conclude that L(a, b, c) = b

a .

With these premises we can reduce our problem to the case c < a < b, a 6 | b.

Proposition 3. Let a, b 2 Z+ and c 2 Q+ be such that c < a < b and a 6 | b. Then
there exists µ 2 Z+ such that

L(a, b, c) =
⇠

µb

a

⇡
.

Proof. If x <
⌃

b
a

⌥
is a positive integer, then ax < b and [ax]b = ax > cx, so

L(a, b, c) �
⌃

b
a

⌥
. From this bound it follows that there exists µ 2 Z+ such that

⇠
µb

a

⇡
 L(a, b, c) <

⇠
(µ + 1)b

a

⇡
.

Suppose now that L(a, b, c) 6=
l

µb
a

m
; this is equivalent to saying that there exists

r 2 N, r 6= 0 such that

L(a, b, c) =
⇠

µb

a

⇡
+ r where r <

⇠
(µ + 1)b

a

⇡
�
⇠

µb

a

⇡
.

Therefore aL(a, b, c) = a
l

µb
a

m
+ ar  a

l
(µ+1)b

a

m
� a, and by Proposition 1

a

⇠
(µ + 1)b

a

⇡
= (µ + 1)b + [�(µ + 1)b]a.

Hence, if r 6= 0 we have

µb  a

⇠
µb

a

⇡
< aL(a, b, c) = (µ + 1)b + [�(µ + 1)b]a � a < (µ + 1)b.

By definition of remainder, we have µb < aL(a, b, c) < (µ + 1)b, implying

b > [aL(a, b, c)]b = aL(a, b, c)� µb =
✓

a

⇠
µb

a

⇡
� µb

◆
+ ar � ar � a.
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Thus b > [aL(a, b, c)]b � a, and we obtain that [aL(a, b, c)]b � a = [aL(a, b, c)� a]b.
Now consider x = L(a, b, c)� 1. We get

[ax]b = [a(L(a, b, c)� 1)]b = [aL(a, b, c)� a]b = [aL(a, b, c)]b � a

and cx = cL(a, b, c)� c. Hence we have

[ax]b = [aL(a, b, c)]b � a < [aL(a, b, c)]b � c  cL(a, b, c)� c = cx,

leading to x = L(a, b, c)� 1 2 S(a, b, c), which is a contradiction.

Note that by definition it is clear that L(a, b, c)  b, and hence 1  µ  a.
Define, for every µ = 1, . . . , a, Rµ as the unique positive integer satisfying

(Rµ � 1)a
[b]a

< µ  Rµa

[b]a
.

Lemma 4. Let a, b 2 Z+ and c 2 Q+ be such that c < a < b and a 6 | b. Let µ 2 Z+.
Then we have:

1.
l

µb
a

m
= µ

⌅
b
a

⇧
+ Rµ,

2. [a
l

µb
a

m
]b = Rµa� µ[b]a.

Proof.

1. By using Proposition 1 we have that b =
⌅

b
a

⇧
a + [b]a, and then

⇠
µb

a

⇡
=

&
µ
�⌅

b
a

⇧
a + [b]a

�
a

'
=
⇠
µ

�
b

a

⌫
+

µ[b]a
a

⇡
.

Since µ
⌅

b
a

⇧
2 Z+, we can deduce easily from the definition of Rµ that Rµ =l

µ[b]a
a

m
. Then it follows that:

⇠
µb

a

⇡
=
⇠
µ

�
b

a

⌫
+

µ[b]a
a

⇡
= µ

�
b

a

⌫
+ Rµ.

2. From the definition of Rµ we know that (Rµ�1)a
[b]a

< µ. This implies Rµa �
µ[b]a < a < b, and consequently [Rµa� µ[b]a]b = Rµa � µ[b]a, which is our
thesis.

In order to find a recursion, we will prove that Rµ itself is the smallest solution
of another proportionally modular Diophantine inequality with smaller values of
factor, modulus and proportion, and then we will compute µ from Rµ.
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Theorem 5. Let a, b 2 Z+, c 2 Q+ be such that c < a < b and a 6 | b. Let µ 2 Z+

be such that L(a, b, c) =
l

µb
a

m
. Then

Rµ = L

 
[a][b]a , [b]a,

cb

c
⌅

b
a

⇧
+ [b]a

!
, µ =

&
Rµ(a� c)
c
⌅

b
a

⇧
+ [b]a

'
.

Proof. Using Lemma 4 we have that cL(a, b, c) = cµ
⌅

b
a

⇧
+ Rµc and [aL(a, b, c)]b =

Rµa � µ[b]a. Then, from cL(a, b, c) � [aL(a, b, c)]b it follows that cL(a, b, c) �
[aL(a, b, c)]b, which leads, by substitution, to

cµ

�
b

a

⌫
+ Rµc � Rµa� µ[b]a.

Solving the inequality in µ we have

µ � Rµ(a� c)
c
⌅

b
a

⇧
+ [b]a

.

However, by definition of Rµ, we also have µ  Rµa
[b]a

. Therefore, we proved that

Rµ(a� c)
c
⌅

b
a

⇧
+ [b]a

 µ  Rµa

[b]a
. (1)

Then, the interval


Rµ(a�c)

cb b
ac+[b]a

, Rµa
[b]a

�
contains at least one integer. Let N be the

smallest positive integer such that
"

N(a� c)
c
⌅

b
a

⇧
+ [b]a

,
Na

[b]a

#
\ Z 6= ;,

let � < µ be the smallest integer in this interval, and assume that N < Rµ. From
the definition of R�, �  Na

[b]a
implies that R�  N and R�(a�c)

cb b
ac+[b]a

 N(a�c)

cb b
ac+[b]a

.
However, the last inequality a�rms that � is actually contained in the interval

R�(a�c)

cb b
ac+[b]a

, R�a
[b]a

�
; hence R� = N .

By Lemma 4, we have
⇠

�b

a

⇡
= �

�
b

a

⌫
+ R� ,


a

⇠
�b

a

⇡�
b

= R�a� �[b]a.

Moreover R�(a�c)

cb b
ac+[b]a

 N(a�c)

cb b
ac+[b]a

 �, and hence R�a��[b]a  c
�
�
⌅

b
a

⇧
+ R�

�
. Thus

we obtain the inequality 
a

⇠
�b

a

⇡�
b

 c

⇠
�b

a

⇡
,
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which implies that
⌃

�b
a

⌥
2 S(a, b, c). However, since � < µ and a < b, we have⇠

�b

a

⇡
<

⇠
µb

a

⇡
= L(a, b, c), which is a contradiction. Therefore, we deduce that

Rµ = min

(
z 2 Z+ |

"
z(a� c)

c
⌅

b
a

⇧
+ [b]a

,
za

[b]a

#
\ N 6= ;

)
. (2)

From the definition of Rµ, we further deduce that

µ = min

("
Rµ(a� c)
c
⌅

b
a

⇧
+ [b]a

,
Rµa

[b]a

#
\ N

)
=

&
Rµ(a� c)
c
⌅

b
a

⇧
+ [b]a

'
, (3)

which proves the second part of our thesis. In order to prove the first part, by
simple calculations we see that"

z(a� c)
c
⌅

b
a

⇧
+ [b]a

,
za

[b]a

#
\ N 6= ; if and only if

�
za

[b]a

⌫
� z(a� c)

c
⌅

b
a

⇧
+ [b]a

.

By recalling Proposition 1, we get the two identities
j

za
[b]a

k
= za�[za][b]a

[b]a
and

⌅
b
a

⇧
=

b�[b]a
a . Plugging these equations in our last inequality we obtain that

za� [za][b]a
[b]a

� z
a� c

c
⌅

b
a

⇧
+ [b]a

if and only if z

 
cb

c
⌅

b
a

⇧
+ [b]a

!
� [za][b]a .

Finally, plugging this condition in Eq. (2), we obtain

Rµ = min

(
z 2 Z+ | z

 
cb

c
⌅

b
a

⇧
+ [b]a

!
� [za][b]a

)
= L

 
[a][b]a , [b]a,

cb

c
⌅

b
a

⇧
+ [b]a

!
,

which proves our thesis.

Combining Proposition 3 and Theorem 5, we obtain the promised recursive for-
mula for L(a, b, c).

Corollary 6. Let a, b 2 Z+, c 2 Q+ be such that c < a < b and a 6 | b. Then

L(a, b, c) =

&&
L1(a� c)

c
⌅

b
a

⇧
+ [b]a

'
b

a

'
, where L1 = L

 
[a][b]a , [b]a,

cb

c
⌅

b
a

⇧
+ [b]a

!
.

3. The Algorithm

The main result of the previous section gives rise to the following algorithm, which
computes L(a, b, c) for any given triple (a, b, c) such that a, b 2 Z+ and c 2 Q+.
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Algorithm 1 Algorithm for L(a, b, c)
1: if c � a then return 1;
2: if a|b then return b

a ;
3: den := c*Floor(b/a)+(b mod a);
4: L1 := L(a mod (b mod a),b mod a,c*b/den);
5: return Ceiling(b/a*Ceiling(L1*(a-c)/den));

Proposition 7. Algorithm 1 stops after a finite number of steps.

Proof. Consider the three sequences of integers ai, bi and ci defined recursively as

ai =
⇢

a0 = a
ai = [ai�1]bi if i > 0,

bi =
⇢

b0 = b
bi = [bi�1]ai�1 if i > 0,

ci =

8><
>:

c0 = c

ci =
ci�1bi�1

ci�1

j
bi�1
ai�1

k
+ [bi�1]ai�1

if i > 0.

It is obvious that ai+1 < ai if ai � 2 and that ci � 1 for any i � 1. Therefore,
after a finite number of steps we will have ai  1 and ci � ai, thus meeting the
condition for termination.

4. Applications

The given algorithm has an application in the context of numerical semigroups.
Given two coprime integers a1 and a2, consider the numerical semigroup

S = ha1, a2i = {�1a1 + �2a2 | �1,�2 2 N}.

We define the quotient of a numerical semigroup S by a positive integer d as follows:

S

d
:= {x 2 N | xd 2 S}.

The quotient S
d is a numerical semigroup, but it does not have necessarily the same

structure as S; actually, little is known about the existence of a relation between
the invariants of S and S

d . In particular, given three positive integers a1, a2, d, it is
an open problem (cf. [8, Problem 5.20]) to find a formula for the smallest multiple
of d that belongs to ha1, a2i and for the largest multiple of d that does not belong
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to ha1, a2i; these problems ask for invariants of the quotient semigroup ha1,a2i
d .

Moreover, this class of quotients of numerical semigroups is tightly related to the
Diophantine inequalities we have studied, as it has been proved that a numerical
semigroup is proportionally modular if and only if it is the quotient of an embedding
dimension two numerical semigroup. In particular, the numerical semigroup ha1, a2i
is proportionally modular, and the next result provides its related proportionally
modular Diophantine inequality.

Lemma 8 ([12, Lemma 18]). Let a1, a2 be relatively prime positive integers and
let u be a positive integer such that ua2 ⌘ 1 (mod a1). Then

ha1, a2i = {x 2 N | [ua2x](a1a2)  x}.

This lemma directly implies that

ha1, a2i =
⇢

x 2 N | [ux]a1 
x

a2

�
.

Consider now the quotient

ha1, a2i
d

= {x 2 N | xd 2 ha1, a2i} =
⇢

x 2 N | [uxd]a1 
xd

a2

�
.

Its multiplicity is

m
✓
ha1, a2i

d

◆
= min

⇢
x 2 N | [uxd]a1 

xd

a2

�
= L

✓
[ud]a1 , a1,

d

a2

◆
,

and therefore it can be obtained by applying Algorithm 1.
The second application regards the set S(a, b, c) itself. Since this set is a numerical

semigroup, it has finite complement in N; the greatest integer not belonging to
S(a, b, c) is called the Frobenius number of S(a, b, c), which we will denote here with
F (a, b, c). In [13] the authors give a relation between F (a, b, 1) and the multiplicity
of a particular proportionally modular numerical semigroup. Given p, q 2 Q+ such
that p < q, denote by [p, q] and h[p, q]i the sets

[p, q] = {x 2 Q | p  x  q} and

h[p, q]i = {�1a1+�2a2+. . .+�nan| �1, . . . ,�n 2 N, a1, . . . , an 2 [p, q], n 2 N\{0}},

respectively. It is known that, for any p, q 2 Q+ such that p < q, the set S([p, q]) =
h[p, q]i\N is a proportionally modular numerical semigroup, as the next proposition
shows:

Proposition 9 ([13, Proposition 1]). Let a1, b1, a2, b2 2 Z+ be such that b1
a1

< b2
a2

.
Then S([ b1

a1
, b2

a2
]) = S(a1b2, b1b2, a1b2 � a2b1).
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A direct consequence of Proposition 9 is that m(S([ b1
a1

, b2
a2

])) = L(a1b2, b1b2, a1b2�
a2b1). Furthermore, we can divide each term by b2, obtaining

m
✓

S
✓

b1

a1
,
b2

a2

�◆◆
= L

✓
a1, b1,

a1b2 � a2b1

b1

◆
. (4)

Theorem 10 ([13, Theorem 18]). Let a, b 2 Z+ be such that 2  a < b and
S = S([2b2+1

2ab , 2b2�1
2b(a�1) ]). Then F (a, b, 1) = b�m(S).

By Theorem 10 and Eq. (4) we have

F (a, b, 1) = b�m(S) = b� L
✓

2b, 2b2 + 1,
4b3 � 4ab + 2b

2b2 + 1

◆
,

and hence we can apply Algorithm 1.
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