ON THE LEAST POSITIVE SOLUTION TO A PROPORTIONALLY MODULAR DIOPHANTINE INEQUALITY

Alessio Moscariello
Dipartimento di Matematica e Informatica, Università di Catania, Catania,Italy
alessio.moscariello@studium.unict.it

Received: 10/25/14, Revised: 10/23/15, Accepted: 5/15/16, Published: 6/10/16

Abstract

Given three positive integers a, b, c, a proportionally modular Diophantine inequality is an expression of the form $a x \bmod b \leq c x$. Our aim is to give a recursive formula for the least solution to such an inequality. We then use the formula to derive an algorithm. Finally, we apply our results to a question of Rosales and GarcíaSánchez.

1. Introduction

A proportionally modular Diophantine inequality is an expression of the form

$$
(a x \bmod b) \leq c x,
$$

where the positive integers a, b, c are called respectively the factor, modulus and proportion. It is well-known that the set of the non-negative integer solutions of this inequality is a numerical semigroup (cf. [8], [9]), i.e. a submonoid S of ($\mathbb{N},+$) with finite complement in it. Denoting by $\mathrm{S}(a, b, c)$ the set of solutions, the structure of this set (called a proportionally modular semigroup) has been widely studied, but is not completely understood yet. In particular, it is an open problem (cf. [8]) to find explicit formulas for several classical invariants of these numerical semigroups. Several works in literature focused on the multiplicity of these numerical semigroup, which is the smallest positive solution of the inequality $(a x \bmod b) \leq c x$. Although some partial results are known (cf. [9], [11], [12]) as of today the main problem of finding a formula for this invariant still remains unsolved. Notably, this particular invariant pops up in other problems: it has been proved (cf. [8]) that each proportionally modular numerical semigroups is exactly the set of numerators of fractions belonging to a certain bounded rational interval. Thus, another formulation for this problem asks for the least possible numerator of a rational number in a given interval, or , equivalently, for the least possible denominator of such rational numbers.

This formulation also highlights a connection with continued fractions and Farey sequences (cf. [2], [6]). Moreover, Bullejos and Rosales showed that this problem is strictly related to that of finding the common ancestor of two rational numbers in the Stern-Brocot tree (cf. [4]). These equivalences lead to different approaches and formulas, based on the context in which the problem is studied. Using elementary number theory we will provide a recursive formula for the smallest positive solution of the inequality $(a x \bmod b) \leq c x \quad a, b \in \mathbb{Z}^{+}, c \in \mathbb{Q}^{+}$, and thus an algorithm for its computation (with similar complexity to the Euclidean algorithm).

Our work is structured as follows: in the first section we prove our main theorem, and provide the recursive formula for the computation of the multiplicity of S. In Section 2 we describe the algorithm that can be derived from our main theorem. In the final section we explain how our result can be applied to a question of Rosales and García-Sánchez ([8, Problem 5.20]).

2. Main Result

Given two integers m and n with $n>0$ we define the remainder operator $[m]_{n}$ as follows

$$
[m]_{n}=\min \{i \in \mathbb{N} \mid i \equiv m \quad(\bmod n)\}
$$

Notice that, if m and n are positive integers such that $m<n$, then $m=[m]_{n}$. The following properties follow from the definition of floor and ceiling function, and we will use them extensively.

Proposition 1. Let $a, b \in \mathbb{Z}^{+}$. Then:

1. $\left\lfloor\frac{b}{a}\right\rfloor a+[b]_{a}=b$,
2. $\left\lceil\frac{b}{a}\right\rceil a-[-b]_{a}=b$.

Let $a, b \in \mathbb{Z}^{+}$, and let $c \in \mathbb{Q}^{+}$. Consider the inequality $(a x \bmod b)=[a x]_{b} \leq c x$, and define

$$
\mathrm{L}(a, b, c)=\min \left\{x \in \mathbb{Z}^{+} \mid[a x]_{b} \leq c x\right\}=\min \{\mathrm{S}(a, b, c) \backslash\{0\}\}
$$

Clearly, if $a \geq b$, then $[a x]_{b}=\left[[a]_{b} x\right]_{b}$, and hence $\mathrm{L}(a, b, c)=\mathrm{L}\left([a]_{b}, b, c\right)$, so the condition $a<b$ that we will impose in the next results is not restrictive. Moreover, if $d=\operatorname{gcd}(a, b)$ and $a=d a^{\prime}$ and $b=d b^{\prime}$, we have $[a]_{b}=d\left[a^{\prime}\right]_{b^{\prime}}$; therefore $[a x]_{b} \leq$ $c x$ if and only if $\left[a^{\prime} x\right]_{b^{\prime}} \leq \frac{c}{d} x$, which implies $\mathrm{S}(a, b, c)=\mathrm{S}\left(\frac{a}{d}, \frac{b}{d}, \frac{c}{d}\right)$. Conversely, if d is a positive integer, then $\mathrm{S}(a, b, c)=\mathrm{S}(a d, b d, c d)$. Furthermore, if $c=\frac{m}{n}$ is a positive rational number, then $\mathrm{S}(a, b, c)=\mathrm{S}(a n, b n, c n)$ is a proportionally
modular numerical semigroup: thus the set of numerical semigroups $\mathrm{S}(a, b, c)$, with c a positive rational number, equals the set of proportionally modular numerical semigroups.

Proposition 2. Let $a, b \in \mathbb{Z}^{+}$be such that $a<b$, and let $c \in \mathbb{Q}^{+}$be a positive rational number. Then:

1. If $c \geq a$, then $\mathrm{L}(a, b, c)=1$,
2. If $c<a$ and $a \mid b$, then $\mathrm{L}(a, b, c)=\frac{b}{a}$.

Proof. The first part is obvious. If $x<\frac{b}{a}$, then $a x<b$ and $[a x]_{b}=a x>c x$; hence the inequality is false for $x<\frac{b}{a}$. Since for $x=\frac{b}{a}$ we have $a x=b$ and $[a x]_{b}=0 \leq c x$, we conclude that $\mathrm{L}(a, b, c)=\frac{b}{a}$.

With these premises we can reduce our problem to the case $c<a<b, a \nless b$.
Proposition 3. Let $a, b \in \mathbb{Z}^{+}$and $c \in \mathbb{Q}^{+}$be such that $c<a<b$ and $a \not \backslash b$. Then there exists $\mu \in \mathbb{Z}^{+}$such that

$$
\mathrm{L}(a, b, c)=\left\lceil\frac{\mu b}{a}\right\rceil
$$

Proof. If $x<\left\lceil\frac{b}{a}\right\rceil$ is a positive integer, then $a x<b$ and $[a x]_{b}=a x>c x$, so $\mathrm{L}(a, b, c) \geq\left\lceil\frac{b}{a}\right\rceil$. From this bound it follows that there exists $\mu \in \mathbb{Z}^{+}$such that

$$
\left\lceil\frac{\mu b}{a}\right\rceil \leq \mathrm{L}(a, b, c)<\left\lceil\frac{(\mu+1) b}{a}\right\rceil
$$

Suppose now that $\mathrm{L}(a, b, c) \neq\left\lceil\frac{\mu b}{a}\right\rceil$; this is equivalent to saying that there exists $r \in \mathbb{N}, r \neq 0$ such that

$$
\mathrm{L}(a, b, c)=\left\lceil\frac{\mu b}{a}\right\rceil+r \quad \text { where } r<\left\lceil\frac{(\mu+1) b}{a}\right\rceil-\left\lceil\frac{\mu b}{a}\right\rceil .
$$

Therefore $a \mathrm{~L}(a, b, c)=a\left\lceil\frac{\mu b}{a}\right\rceil+a r \leq a\left\lceil\frac{(\mu+1) b}{a}\right\rceil-a$, and by Proposition 1

$$
a\left\lceil\frac{(\mu+1) b}{a}\right\rceil=(\mu+1) b+[-(\mu+1) b]_{a} .
$$

Hence, if $r \neq 0$ we have

$$
\mu b \leq a\left\lceil\frac{\mu b}{a}\right\rceil<a \mathrm{~L}(a, b, c)=(\mu+1) b+[-(\mu+1) b]_{a}-a<(\mu+1) b
$$

By definition of remainder, we have $\mu b<a \mathrm{~L}(a, b, c)<(\mu+1) b$, implying

$$
b>[a \mathrm{~L}(a, b, c)]_{b}=a \mathrm{~L}(a, b, c)-\mu b=\left(a\left\lceil\frac{\mu b}{a}\right\rceil-\mu b\right)+a r \geq a r \geq a
$$

Thus $b>[a \mathrm{~L}(a, b, c)]_{b} \geq a$, and we obtain that $[a \mathrm{~L}(a, b, c)]_{b}-a=[a \mathrm{~L}(a, b, c)-a]_{b}$. Now consider $x=\mathrm{L}(a, b, c)-1$. We get

$$
[a x]_{b}=[a(\mathrm{~L}(a, b, c)-1)]_{b}=[a \mathrm{~L}(a, b, c)-a]_{b}=[a \mathrm{~L}(a, b, c)]_{b}-a
$$

and $c x=c \mathrm{~L}(a, b, c)-c$. Hence we have

$$
[a x]_{b}=[a \mathrm{~L}(a, b, c)]_{b}-a<[a \mathrm{~L}(a, b, c)]_{b}-c \leq c \mathrm{~L}(a, b, c)-c=c x
$$

leading to $x=\mathrm{L}(a, b, c)-1 \in \mathrm{~S}(a, b, c)$, which is a contradiction.
Note that by definition it is clear that $\mathrm{L}(a, b, c) \leq b$, and hence $1 \leq \mu \leq a$. Define, for every $\mu=1, \ldots, a, R_{\mu}$ as the unique positive integer satisfying

$$
\frac{\left(R_{\mu}-1\right) a}{[b]_{a}}<\mu \leq \frac{R_{\mu} a}{[b]_{a}}
$$

Lemma 4. Let $a, b \in \mathbb{Z}^{+}$and $c \in \mathbb{Q}^{+}$be such that $c<a<b$ and $a \nmid b$. Let $\mu \in \mathbb{Z}^{+}$. Then we have:

1. $\left\lceil\frac{\mu b}{a}\right\rceil=\mu\left\lfloor\frac{b}{a}\right\rfloor+R_{\mu}$,
2. $\left[a\left[\frac{\mu b}{a}\right\rceil\right]_{b}=R_{\mu} a-\mu[b]_{a}$.

Proof.

1. By using Proposition 1 we have that $b=\left\lfloor\frac{b}{a}\right\rfloor a+[b]_{a}$, and then

$$
\left\lceil\frac{\mu b}{a}\right\rceil=\left\lceil\frac{\mu\left(\left\lfloor\frac{b}{a}\right\rfloor a+[b]_{a}\right)}{a}\right\rceil=\left\lceil\mu\left\lfloor\frac{b}{a}\right\rfloor+\frac{\mu[b]_{a}}{a}\right\rceil .
$$

Since $\mu\left\lfloor\frac{b}{a}\right\rfloor \in \mathbb{Z}^{+}$, we can deduce easily from the definition of R_{μ} that $R_{\mu}=$ $\left\lceil\frac{\mu[b]_{a}}{a}\right\rceil$. Then it follows that:

$$
\left\lceil\frac{\mu b}{a}\right\rceil=\left\lceil\mu\left\lfloor\frac{b}{a}\right\rfloor+\frac{\mu[b]_{a}}{a}\right\rceil=\mu\left\lfloor\frac{b}{a}\right\rfloor+R_{\mu} .
$$

2. From the definition of R_{μ} we know that $\frac{\left(R_{\mu}-1\right) a}{[b]_{a}}<\mu$. This implies $R_{\mu} a-$ $\mu[b]_{a}<a<b$, and consequently $\left[R_{\mu} a-\mu[b]_{a}\right]_{b}=R_{\mu} a-\mu[b]_{a}$, which is our thesis.

In order to find a recursion, we will prove that R_{μ} itself is the smallest solution of another proportionally modular Diophantine inequality with smaller values of factor, modulus and proportion, and then we will compute μ from R_{μ}.

Theorem 5. Let $a, b \in \mathbb{Z}^{+}, c \in \mathbb{Q}^{+}$be such that $c<a<b$ and $a \nmid b$. Let $\mu \in \mathbb{Z}^{+}$ be such that $\mathrm{L}(a, b, c)=\left\lceil\frac{\mu b}{a}\right\rceil$. Then

$$
R_{\mu}=\mathrm{L}\left([a]_{[b]_{a}},[b]_{a}, \frac{c b}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}\right), \quad \mu=\left\lceil\frac{R_{\mu}(a-c)}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}\right\rceil .
$$

Proof. Using Lemma 4 we have that $c \mathrm{~L}(a, b, c)=c \mu\left\lfloor\frac{b}{a}\right\rfloor+R_{\mu} c$ and $[a \mathrm{~L}(a, b, c)]_{b}=$ $R_{\mu} a-\mu[b]_{a}$. Then, from $c \mathrm{~L}(a, b, c) \geq[a \mathrm{~L}(a, b, c)]_{b}$ it follows that $c \mathrm{~L}(a, b, c) \geq$ $[a \mathrm{~L}(a, b, c)]_{b}$, which leads, by substitution, to

$$
c \mu\left\lfloor\frac{b}{a}\right\rfloor+R_{\mu} c \geq R_{\mu} a-\mu[b]_{a}
$$

Solving the inequality in μ we have

$$
\mu \geq \frac{R_{\mu}(a-c)}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}} .
$$

However, by definition of R_{μ}, we also have $\mu \leq \frac{R_{\mu} a}{[b]_{a}}$. Therefore, we proved that

$$
\begin{equation*}
\frac{R_{\mu}(a-c)}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}} \leq \mu \leq \frac{R_{\mu} a}{[b]_{a}} \tag{1}
\end{equation*}
$$

Then, the interval $\left[\frac{R_{\mu}(a-c)}{c\left[\frac{b}{a}\right]+[b]_{a}}, \frac{R_{\mu} a}{[b]_{a}}\right]$ contains at least one integer. Let N be the smallest positive integer such that

$$
\left[\frac{N(a-c)}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}, \frac{N a}{[b]_{a}}\right] \cap \mathbb{Z} \neq \emptyset
$$

let $\sigma<\mu$ be the smallest integer in this interval, and assume that $N<R_{\mu}$. From the definition of $R_{\sigma}, \sigma \leq \frac{N a}{[b]_{a}}$ implies that $R_{\sigma} \leq N$ and $\frac{R_{\sigma}(a-c)}{c\left[\frac{b}{a}\right]+[b]_{a}} \leq \frac{N(a-c)}{c\left[\frac{b}{a}\right]+[b]_{a}}$. However, the last inequality affirms that σ is actually contained in the interval $\left[\frac{R_{\sigma}(a-c)}{c\left[\frac{b}{a}\right]+[b]_{a}}, \frac{R_{\sigma} a}{[b]_{a}}\right] ;$ hence $R_{\sigma}=N$.

By Lemma 4, we have

$$
\left\lceil\frac{\sigma b}{a}\right\rceil=\sigma\left\lfloor\frac{b}{a}\right\rfloor+R_{\sigma},\left[a\left\lceil\frac{\sigma b}{a}\right\rceil\right]_{b}=R_{\sigma} a-\sigma[b]_{a}
$$

Moreover $\frac{R_{\sigma}(a-c)}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}} \leq \frac{N(a-c)}{c\left[\frac{b}{a}\right\rfloor+[b]_{a}} \leq \sigma$, and hence $R_{\sigma} a-\sigma[b]_{a} \leq c\left(\sigma\left\lfloor\frac{b}{a}\right\rfloor+R_{\sigma}\right)$. Thus we obtain the inequality

$$
\left[a\left\lceil\frac{\sigma b}{a}\right\rceil\right]_{b} \leq c\left\lceil\frac{\sigma b}{a}\right\rceil,
$$

which implies that $\left\lceil\frac{\sigma b}{a}\right\rceil \in \mathrm{S}(a, b, c)$. However, since $\sigma<\mu$ and $a<b$, we have $\left\lceil\frac{\sigma b}{a}\right\rceil<\left\lceil\frac{\mu b}{a}\right\rceil=\mathrm{L}(a, b, c)$, which is a contradiction. Therefore, we deduce that

$$
\begin{equation*}
R_{\mu}=\min \left\{z \in \mathbb{Z}^{+} \left\lvert\,\left[\frac{z(a-c)}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}, \frac{z a}{[b]_{a}}\right] \cap \mathbb{N} \neq \emptyset\right.\right\} \tag{2}
\end{equation*}
$$

From the definition of R_{μ}, we further deduce that

$$
\begin{equation*}
\mu=\min \left\{\left[\frac{R_{\mu}(a-c)}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}, \frac{R_{\mu} a}{[b]_{a}}\right] \cap \mathbb{N}\right\}=\left[\frac{R_{\mu}(a-c)}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}\right\rceil, \tag{3}
\end{equation*}
$$

which proves the second part of our thesis. In order to prove the first part, by simple calculations we see that

$$
\left[\frac{z(a-c)}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}, \frac{z a}{[b]_{a}}\right] \cap \mathbb{N} \neq \emptyset \quad \text { if and only if } \quad\left\lfloor\frac{z a}{[b]_{a}}\right\rfloor \geq \frac{z(a-c)}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}
$$

By recalling Proposition 1, we get the two identities $\left\lfloor\frac{z a}{[b]_{a}}\right\rfloor=\frac{z a-[z a]_{[b]_{a}}}{[b]_{a}}$ and $\left\lfloor\frac{b}{a}\right\rfloor=$ $\frac{b-[b]_{a}}{a}$. Plugging these equations in our last inequality we obtain that

$$
\frac{z a-[z a]_{[b]_{a}}}{[b]_{a}} \geq z \frac{a-c}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}} \quad \text { if and only if } \quad z\left(\frac{c b}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}\right) \geq[z a]_{[b]_{a}}
$$

Finally, plugging this condition in Eq. (2), we obtain

$$
R_{\mu}=\min \left\{z \in \mathbb{Z}^{+} \left\lvert\, z\left(\frac{c b}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}\right) \geq[z a]_{[b]_{a}}\right.\right\}=\mathrm{L}\left([a]_{[b]_{a}},[b]_{a}, \frac{c b}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}\right)
$$

which proves our thesis.
Combining Proposition 3 and Theorem 5, we obtain the promised recursive formula for $\mathrm{L}(a, b, c)$.

Corollary 6. Let $a, b \in \mathbb{Z}^{+}, c \in \mathbb{Q}^{+}$be such that $c<a<b$ and $a \nmid b$. Then

$$
\mathrm{L}(a, b, c)=\left\lceil\left\lceil\frac{L_{1}(a-c)}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}\right\rceil \frac{b}{a}\right\rceil, \quad \text { where } L_{1}=\mathrm{L}\left([a]_{[b]_{a}},[b]_{a}, \frac{c b}{c\left\lfloor\frac{b}{a}\right\rfloor+[b]_{a}}\right) .
$$

3. The Algorithm

The main result of the previous section gives rise to the following algorithm, which computes $\mathrm{L}(a, b, c)$ for any given triple (a, b, c) such that $a, b \in \mathbb{Z}^{+}$and $c \in \mathbb{Q}^{+}$.

```
Algorithm 1 Algorithm for \(\mathrm{L}(a, b, c)\)
    if \(c \geq a\) then return 1 ;
    if \(a \mid b\) then return \(\frac{b}{a}\);
    den \(:=c^{*}\) Floor \((b / a)+(b \bmod a) ;\)
    \(\mathrm{L} 1:=\mathrm{L}\left(\mathrm{a} \bmod (\mathrm{b} \bmod \mathrm{a}), \mathrm{b} \bmod \mathrm{a}, \mathrm{c}^{*} \mathrm{~b} /\right.\) den \() ;\)
    return Ceiling(b/a*Ceiling(L1*(a-c)/den));
```

Proposition 7. Algorithm 1 stops after a finite number of steps.
Proof. Consider the three sequences of integers a_{i}, b_{i} and c_{i} defined recursively as

$$
\begin{gathered}
a_{i}= \begin{cases}a_{0}=a \\
a_{i}=\left[a_{i-1}\right]_{b_{i}} & \text { if } i>0,\end{cases} \\
b_{i}= \begin{cases}b_{0}=b \\
b_{i}=\left[b_{i-1}\right]_{a_{i-1}} & \text { if } i>0,\end{cases} \\
c_{i}= \begin{cases}c_{0}=c \\
c_{i}=\frac{c_{i-1} b_{i-1}}{c_{i-1}\left\lfloor\frac{b_{i-1}}{a_{i-1}}\right\rfloor+\left[b_{i-1}\right]_{a_{i-1}}} & \text { if } i>0\end{cases}
\end{gathered}
$$

It is obvious that $a_{i+1}<a_{i}$ if $a_{i} \geq 2$ and that $c_{i} \geq 1$ for any $i \geq 1$. Therefore, after a finite number of steps we will have $a_{i} \leq 1$ and $c_{i} \geq a_{i}$, thus meeting the condition for termination.

4. Applications

The given algorithm has an application in the context of numerical semigroups. Given two coprime integers a_{1} and a_{2}, consider the numerical semigroup

$$
S=\left\langle a_{1}, a_{2}\right\rangle=\left\{\lambda_{1} a_{1}+\lambda_{2} a_{2} \mid \lambda_{1}, \lambda_{2} \in \mathbb{N}\right\}
$$

We define the quotient of a numerical semigroup S by a positive integer d as follows:

$$
\frac{S}{d}:=\{x \in \mathbb{N} \mid x d \in S\}
$$

The quotient $\frac{S}{d}$ is a numerical semigroup, but it does not have necessarily the same structure as S; actually, little is known about the existence of a relation between the invariants of S and $\frac{S}{d}$. In particular, given three positive integers a_{1}, a_{2}, d, it is an open problem (cf. [8, Problem 5.20]) to find a formula for the smallest multiple of d that belongs to $\left\langle a_{1}, a_{2}\right\rangle$ and for the largest multiple of d that does not belong
to $\left\langle a_{1}, a_{2}\right\rangle$; these problems ask for invariants of the quotient semigroup $\frac{\left\langle a_{1}, a_{2}\right\rangle}{d}$. Moreover, this class of quotients of numerical semigroups is tightly related to the Diophantine inequalities we have studied, as it has been proved that a numerical semigroup is proportionally modular if and only if it is the quotient of an embedding dimension two numerical semigroup. In particular, the numerical semigroup $\left\langle a_{1}, a_{2}\right\rangle$ is proportionally modular, and the next result provides its related proportionally modular Diophantine inequality.

Lemma 8 ([12, Lemma 18]). Let a_{1}, a_{2} be relatively prime positive integers and let u be a positive integer such that $u a_{2} \equiv 1\left(\bmod a_{1}\right)$. Then

$$
\left\langle a_{1}, a_{2}\right\rangle=\left\{x \in \mathbb{N} \mid\left[u a_{2} x\right]_{\left(a_{1} a_{2}\right)} \leq x\right\}
$$

This lemma directly implies that

$$
\left\langle a_{1}, a_{2}\right\rangle=\left\{x \in \mathbb{N} \left\lvert\,[u x]_{a_{1}} \leq \frac{x}{a_{2}}\right.\right\}
$$

Consider now the quotient

$$
\frac{\left\langle a_{1}, a_{2}\right\rangle}{d}=\left\{x \in \mathbb{N} \mid x d \in\left\langle a_{1}, a_{2}\right\rangle\right\}=\left\{x \in \mathbb{N} \left\lvert\,[u x d]_{a_{1}} \leq \frac{x d}{a_{2}}\right.\right\}
$$

Its multiplicity is

$$
\mathrm{m}\left(\frac{\left\langle a_{1}, a_{2}\right\rangle}{d}\right)=\min \left\{x \in \mathbb{N} \left\lvert\,[u x d]_{a_{1}} \leq \frac{x d}{a_{2}}\right.\right\}=\mathrm{L}\left([u d]_{a_{1}}, a_{1}, \frac{d}{a_{2}}\right)
$$

and therefore it can be obtained by applying Algorithm 1.
The second application regards the set $\mathrm{S}(a, b, c)$ itself. Since this set is a numerical semigroup, it has finite complement in \mathbb{N}; the greatest integer not belonging to $\mathrm{S}(a, b, c)$ is called the Frobenius number of $\mathrm{S}(a, b, c)$, which we will denote here with $F(a, b, c)$. In [13] the authors give a relation between $F(a, b, 1)$ and the multiplicity of a particular proportionally modular numerical semigroup. Given $p, q \in \mathbb{Q}^{+}$such that $p<q$, denote by $[p, q]$ and $\langle[p, q]\rangle$ the sets

$$
\begin{gathered}
{[p, q]=\{x \in \mathbb{Q} \mid p \leq x \leq q\} \text { and }} \\
\langle[p, q]\rangle=\left\{\lambda_{1} a_{1}+\lambda_{2} a_{2}+\ldots+\lambda_{n} a_{n} \mid \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{N}, a_{1}, \ldots, a_{n} \in[p, q], n \in \mathbb{N} \backslash\{0\}\right\},
\end{gathered}
$$ respectively. It is known that, for any $p, q \in \mathbb{Q}^{+}$such that $p<q$, the set $\mathrm{S}([p, q])=$ $\langle[p, q]\rangle \cap \mathbb{N}$ is a proportionally modular numerical semigroup, as the next proposition shows:

Proposition 9 ([13, Proposition 1]). Let $a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{Z}^{+}$be such that $\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}$. Then $\mathrm{S}\left(\left[\frac{b_{1}}{a_{1}}, \frac{b_{2}}{a_{2}}\right]\right)=\mathrm{S}\left(a_{1} b_{2}, b_{1} b_{2}, a_{1} b_{2}-a_{2} b_{1}\right)$.

A direct consequence of Proposition 9 is that $\mathrm{m}\left(\mathrm{S}\left(\left[\frac{b_{1}}{a_{1}}, \frac{b_{2}}{a_{2}}\right]\right)\right)=\mathrm{L}\left(a_{1} b_{2}, b_{1} b_{2}, a_{1} b_{2}-\right.$ $\left.a_{2} b_{1}\right)$. Furthermore, we can divide each term by b_{2}, obtaining

$$
\begin{equation*}
\mathrm{m}\left(\mathrm{~S}\left(\left[\frac{b_{1}}{a_{1}}, \frac{b_{2}}{a_{2}}\right]\right)\right)=\mathrm{L}\left(a_{1}, b_{1}, \frac{a_{1} b_{2}-a_{2} b_{1}}{b_{1}}\right) \tag{4}
\end{equation*}
$$

Theorem 10 ([13, Theorem 18]). Let $a, b \in \mathbb{Z}^{+}$be such that $2 \leq a<b$ and $S=\mathrm{S}\left(\left[\frac{2 b^{2}+1}{2 a b}, \frac{2 b^{2}-1}{2 b(a-1)}\right]\right)$. Then $F(a, b, 1)=b-\mathrm{m}(S)$.

By Theorem 10 and Eq. (4) we have

$$
F(a, b, 1)=b-\mathrm{m}(S)=b-\mathrm{L}\left(2 b, 2 b^{2}+1, \frac{4 b^{3}-4 a b+2 b}{2 b^{2}+1}\right)
$$

and hence we can apply Algorithm 1.

Acknowledgements I would like to thank A. Sammartano and P. A. GarcíaSánchez for their helpful comments and suggestions on this work.

References

[1] V. Barucci, D.E.Dobbs, M.Fontana, Maximality Properties in Numerical Semigroups and Applications to One Dimensional Analitically Irreducible Local Domains, Mem. Amer. Math. Soc. 598, 1997.
[2] S. J. Beslin, D. J. Baney and V. de Angelis, Small denominators: no small problem, Math. Mag., 71 No. 2 (1998), 132-138.
[3] A. Brauer, On a problem of partitions, Amer. J. Math. 64 (1942), 299-312.
[4] M. Bullejos, J.C. Rosales, Proportionally modular Diophantine inequalities and the SternBrocot tree, Math. Comp. 78, No. 266 (2009), 1211-1226.
[5] S. M. Johnson, A linear Diophantine problem, Canad. J. Math. 12 (1960), 390-398.
[6] H. Murakami, A continued fraction type method to find a rational number in a given closed interval whose denominator is minimal, ACM Commun. Comput. Algebra 43 No. 3 (2009), 88-90.
[7] J. L. Ramírez Alfonsín, The Diophantine Frobenius Problem, Oxford University Press, Oxford, 2005.
[8] J. C. Rosales, P. A. García-Sánchez, Numerical Semigroups, Springer, 2009.
[9] J. C. Rosales, P. A. García-Sánchez, J. I. García-García, J. M. Urbano-Blanco, Proportionally modular Diophantine inequalities, J. Number Theory 103 (2003), 281-294.
[10] J. C. Rosales, P. A. García-Sánchez, J. M. Urbano-Blanco, The set of solutions of a proportionally modular Diophantine inequality, J. Number Theory 128 (2008), 453-467.
[11] J. C. Rosales, J. M. Urbano-Blanco, Proportionally modular Diophantine inequalities and full semigroups, Semigroup Forum 72 (2006), 362-374.
[12] J. C. Rosales, P. Vasco, The smallest integer that is solution of a proportionally modular Diophantine equation, Math. Inequal. Appl. 11 No. 2 (2008), 203-212.
[13] J. C. Rosales, P. Vasco, On the Frobenius number of a modular Diophantine inequality, Math. Bohem. 133 No. 4 (2008), 367-375.

