q-MULTIPARAMETER-BERNOULLI POLYNOMIALS AND q-MULTIPARAMETER-CAUCHY POLYNOMIALS BY JACKSON'S INTEGRALS

Takao Komatsu ${ }^{1}$
School of Mathematics and Statistics, Wuhan University, Wuhan, China komatsu@whu.edu.cn
\section*{László Szalay}
Institute of Mathematics, University of West Hungary, Sopron, Hungary and
Department of Mathematics and Informatics, University J. Selye, Komarno, Slovakia
szalay.laszlo@emk.nyme.hu

Received: 7/15/15, Revised: 1/6/16, Accepted: 5/25/16, Published: 6/10/16

Abstract

We define q-multiparameter-Bernoulli polynomials and q-multiparameter-Cauchy polynomials by using Jackson's integrals, which generalize the previously known numbers, including poly-Bernoulli $B_{n}^{(k)}$ and the poly-Cauchy numbers of the first kind $c_{n}^{(k)}$ and of the second kind $\widehat{c}_{n}^{(k)}$. We investigate their properties connected with multiparameter Stirling numbers which generalize the original Stirling numbers. We also give the relations between q-multiparameter-Bernoulli polynomials and q -multiparameter-Cauchy polynomials.

1. Introduction

Let n and k be integers with $n \geq 0$, and let $L=\left(l_{1}, \ldots, l_{k}\right)$ be a k-tuple of real numbers with $\ell:=l_{1} \cdots l_{k} \neq 0$ and $A=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right)$ be a n-tuple of real numbers. Let q be a real number with $0 \leq q<1$.

Jackson's q-derivative with $0<q<1$ (see e.g., [1, (10.2.3)], [12]) is defined by

$$
D_{q} f=\frac{d_{q} f}{d_{q} x}=\frac{f(x)-f(q x)}{(1-q) x}
$$

[^0]and Jackson's q-integral ([1, (10.1.3)], [12]) is defined by
$$
\int_{0}^{x} f(t) d_{q} t=(1-q) x \sum_{n=0}^{\infty} f\left(q^{n} x\right) q^{n}
$$

The Jackson integral gives a unique q-antiderivative within a certain class of functions. In particular, when $f(x)=x^{m}$ for some nonnegative integer m, then

$$
D_{q} f=\frac{x^{m}-q^{m} x^{m}}{(1-q) x}=[m]_{q} x^{m-1}
$$

and

$$
\begin{aligned}
\int_{0}^{x} t^{m} d_{q} t & =(1-q) x \sum_{n=0}^{\infty} q^{m n} x^{m} q^{n} \\
& =(1-q) x^{m+1} \sum_{n=0}^{\infty} q^{n(m+1)}=\frac{x^{m+1}}{[m+1]_{q}}
\end{aligned}
$$

Here,

$$
[x]_{q}=\frac{1-q^{x}}{1-q}
$$

is the q-number with $[0]_{q}=0$ (see e.g. $[1,(10.2 .3)],[12]$). Note that $\lim _{q \rightarrow 1}[x]_{q}=x$.
Define poly-Bernoulli polynomials $B_{n, \rho, q}^{(k)}(z)$ with a parameter ρ by

$$
\begin{equation*}
\frac{\rho}{1-e^{-\rho t}} \operatorname{Li}_{k, q}\left(\frac{1-e^{-\rho t}}{\rho}\right) e^{-t z}=\sum_{n=0}^{\infty} B_{n, \rho, q}^{(k)}(z) \frac{t^{n}}{n!} \tag{1}
\end{equation*}
$$

where $\operatorname{Li}_{k, q}(z)$ is the q-polylogarithm function (see [16]) defined by

$$
\operatorname{Li}_{k, q}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{[n]_{q}^{k}}
$$

Notice that

$$
\lim _{q \rightarrow 1} B_{n, \rho, q}^{(k)}(z)=B_{n, \rho}^{(k)}(z)
$$

which is the poly-Bernoulli polynomial with a ρ parameter (see [6]), and

$$
\lim _{q \rightarrow 1} \operatorname{Li}_{k, q}(z)=\operatorname{Li}_{k}(z)
$$

which is the ordinary polylogarithm function, defined by

$$
\begin{equation*}
\operatorname{Li}_{k}(z)=\sum_{m=1}^{\infty} \frac{z^{m}}{m^{k}} \tag{2}
\end{equation*}
$$

In addition, when $z=0, B_{n, \rho}^{(k)}(0)=B_{n, \rho}^{(k)}$ is the poly-Bernoulli number with a ρ parameter. When $z=0$ and $\rho=1, B_{n, 1}^{(k)}(0)=B_{n}^{(k)}$ is the poly-Bernoulli number (see [15]) defined by

$$
\begin{equation*}
\frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}}=\sum_{n=0}^{\infty} B_{n}^{(k)} \frac{t^{n}}{n!} \tag{3}
\end{equation*}
$$

The poly-Bernoulli numbers are expressed as special values at negative arguments of certain combinations of multiple zeta values. The poly-Bernoulli numbers can be expressed in terms of the Stirling numbers of the second kind.

$$
B_{n}^{(k)}=\sum_{m=0}^{n} \frac{(-1)^{n-m} m!S_{2}(n, m)}{(m+1)^{k}} \quad(n \geq 0, k \geq 1)
$$

([15, Theorem 1]), where $S_{2}(n, m)$ is the Stirling number of the second kind, see [7], determined by the falling factorial:

$$
x^{n}=\sum_{m=0}^{n} S_{2}(n, m) x(x-1) \cdots(x-m+1) .
$$

The poly-Bernoulli numbers are extended to the poly-Bernoulli polynomials (see $[3,8]$) and to the special multi-poly-Bernoulli numbers (see [11]). The Bernoulli polynomials occur in the study of many special functions and in particular the Riemann zeta function and the Hurwitz zeta function. They are an Appell sequence, i.e., a Sheffer sequence for the ordinary derivative operator.

Define the q-multiparameter-poly-Cauchy polynomials of the first kind $c_{n, L, A, q}^{(k)}(z)$ by
$c_{n, L, A, q}^{(k)}(z)=\int_{0}^{l_{1}} \cdots \int_{0}^{l_{k}}\left(x_{1} \cdots x_{k}-\alpha_{0}-z\right) \cdots\left(x_{1} \cdots x_{k}-\alpha_{n-1}-z\right) d_{q} x_{1} \cdots d_{q} x_{k}$.
Notice that

$$
\begin{equation*}
\lim _{q \rightarrow 1} c_{n, L, A, q}^{(k)}(z)=c_{n, L, A}^{(k)}(z) \tag{4}
\end{equation*}
$$

which are the multiparameter-poly-Cauchy polynomials of the first kind. The idea of dealing with multiparameters $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}$ instead of $0,1, \ldots, n-1$ has already been considered in [25]. Namely, If $l_{1}=\cdots=l_{k}=1$ and $z=0$, the number $c_{n,(1, \ldots, 1), A}^{(k)}=c_{n, A}^{(k)}$ has been studied to prove the convexity. It has been proven that $c_{n, A}^{(k)}$ is log-convex, satisfying $\left(c_{n, A}^{(k)}\right)^{2}-c_{n-1, A}^{(k)} c_{n+1, A}^{(k)} \leq 0$.

In addition, if $\alpha_{i}=i \rho(i=0,1, \ldots, n-1)$, then the number $c_{n, A}^{(k)}$ is reduced to the poly-Cauchy numbers of the first kind with a parameter ρ (see [19]). Furthermore, if $\rho=1$, then the number $c_{n, A}^{(k)}$ is reduced to the poly-Cauchy number $c_{n}^{(k)}$ (see [18]). If $k=1$, then $c_{n}^{(1)}=c_{n}$ is the classical Cauchy number (see [7, 27]). The
number c_{n} / n ! is sometimes referred to as the Bernoulli number of the second kind (see $[4,13,28]$).

The poly-Cauchy numbers have been considered as analogues of the poly-Bernoulli numbers $B_{n}^{(k)}$. The poly-Cauchy numbers of the first kind, $c_{n}^{(k)}$, can be expressed in terms of the Stirling numbers of the first kind:

$$
c_{n}^{(k)}=\sum_{m=0}^{n} \frac{(-1)^{n-m} S_{1}(n, m)}{(m+1)^{k}} \quad(n \geq 0, k \geq 1)
$$

($\left[18\right.$, Theorem 1]), where $S_{1}(n, m)$ is the (unsigned) Stirling number of the first kind (see [7]), determined by the rising factorial:

$$
\begin{equation*}
x(x+1) \cdots(x+n-1)=\sum_{m=0}^{n} S_{1}(n, m) x^{m} \tag{5}
\end{equation*}
$$

Similarly, define the q-multiparameter-poly-Cauchy polynomials of the second kind $\widehat{c}_{n, L, A, q}^{(k)}(z)$ by

$$
\begin{align*}
& \hat{c}_{n, L, A, q}^{(k)}(z) \\
& =\int_{0}^{l_{1}} \cdots \int_{0}^{l_{k}}\left(-x_{1} \cdots x_{k}-\alpha_{0}+z\right) \cdots\left(-x_{1} \cdots x_{k}-\alpha_{n-1}+z\right) d_{q} x_{1} \cdots d_{q} x_{k} . \tag{6}
\end{align*}
$$

If $q \rightarrow 1, l_{1}=\cdots=l_{k}=1, \alpha_{i}=i \rho(i=0,1, \ldots, n-1)$ and $z=0$, the number $\widehat{c}_{n, A}^{(k)}$ is reduced to the poly-Cauchy numbers of the second kind with a parameter ρ (see [19]). Furthermore, if $\rho=1$, then the number $\widehat{c}_{n, A}^{(k)}$ is reduced to the poly-Cauchy numbers of the second kind $\widehat{c}_{n}^{(k)}$ (see [18]). If $k=1$, then $\widehat{c}_{n}^{(1)}=\widehat{c}_{n}$ is the classical Cauchy number (see [7, 27]). The poly-Cauchy numbers of the second kind $\widehat{c}_{n}^{(k)}$ can be expressed in terms of the Stirling numbers of the first kind by

$$
\widehat{c}_{n}^{(k)}=(-1)^{n} \sum_{m=0}^{n} \frac{S_{1}(n, m)}{(m+1)^{k}} \quad(n \geq 0, k \geq 1)
$$

([18, Theorem 4]). The generating function of the poly-Cauchy numbers of the second kind $\widehat{c}_{n}^{(k)}$ is given by

$$
\begin{equation*}
\operatorname{Lif}_{k}(-\ln (1+t))=\sum_{n=0}^{\infty} \widehat{c}_{n}^{(k)} \frac{t^{n}}{n!} \tag{7}
\end{equation*}
$$

([18, Theorem 5]).
The poly-Cauchy numbers (of the both kinds) are extended to the poly-Cauchy polynomials (see [14]), and to the poly-Cauchy numbers with a q parameter (see [19]). The corresponding poly-Bernoulli numbers with a q parameter can be obtained in [6]. A different direction of generalizations of Cauchy numbers is about
hypergeometric Cauchy numbers (see [21]). Arithmetical and combinatorial properties including sums of products have been studied (see [20, 23, 24]).

Various kinds of q-analogues or extensions have been studied. In [17], as generalizations of the poly-Cauchy numbers of the first kind $c_{n}^{(k)}$ and of the second kind $\widehat{c}_{n}^{(k)}$, by using Jackson's q-integrals, q-analogues or extensions of the poly-Cauchy numbers of the first kind $c_{n, q}^{(k)}$ and of the second kind $\widehat{c}_{n, q}^{(k)}$ are introduced, and their properties are investigated. In [22], by using Jackson's q-integrals, the concept about q-analogues or extensions of the poly-Bernoulli polynomials $B_{n, q}^{(k)}(z)$ with a parameter were also introduced.

In this paper, by using Jackson's q-integrals, as essential generalizations of the previously known numbers and polynomials, including poly-Bernoulli numbers $B_{n}^{(k)}$, the poly-Cauchy numbers of the first kind $c_{n}^{(k)}$ and of the second kind $\widehat{c}_{n}^{(k)}$, we introduce the concept of q-analogues or extensions of the poly-Bernoulli polynomials $B_{n, \rho, q}^{(k)}(z)$ with a parameter, and the poly-Cauchy polynomials of the first kind $c_{n, \rho, q}^{(k)}$ and of the second kind $\widehat{c}_{n, \rho, q}^{(k)}$ with a parameter. We investigate their properties connected with the usual Stirling numbers and the weighted Stirling numbers. We also give the relations between generalized poly-Bernoulli polynomials and two kinds of generalized poly-Cauchy polynomials.

2. q-multiparameter-Cauchy Polynomials

For an n-tuple $A=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right)$ of real numbers, define multiparameter Stirling numbers of the first kind $S_{1}(n, m, A)$ and of the second kind $S_{2}(n, m, A)$ by

$$
\begin{equation*}
\left(t-\alpha_{0}\right)\left(t-\alpha_{1}\right) \cdots\left(t-\alpha_{n-1}\right)=\sum_{m=0}^{n} S_{1}(n, m, A) t^{m} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{m=0}^{n} S_{2}(n, m, A)\left(t-\alpha_{0}\right)\left(t-\alpha_{1}\right) \cdots\left(t-\alpha_{m-1}\right)=t^{n} \tag{9}
\end{equation*}
$$

respectively (cf. [7, 9, 26]). If $\alpha_{i}=i \rho(i=0,1, \ldots, n-1)$, then

$$
\begin{aligned}
& S_{1}(n, m,(0, \rho, \ldots,(n-1) \rho))=(-\rho)^{n-m} S_{1}(n, m), \\
& S_{2}(n, m,(0, \rho, \ldots,(n-1) \rho))=\rho^{n-m} S_{2}(n, m),
\end{aligned}
$$

where $S_{1}(n, m)$ and $S_{2}(n, m)$ are the (unsigned) Stirling numbers of the first kind and the Stirling numbers of the second kind, respectively.

The q-multiparameter-poly-Cauchy polynomials of the first kind can be expressed explicitly in terms of the multiparameter Stirling numbers of the first kind.

Theorem 1. For all integers n and k with $n \geq 0$ and a real number q with $0<q<$ 1, we have

$$
c_{n, L, A, q}^{(k)}(z)=\sum_{m=0}^{n} S_{1}(n, m, A) \sum_{i=0}^{m}\binom{m}{i} \frac{(-z)^{i} \ell^{m-i+1}}{[m-i+1]_{q}^{k}}
$$

Proof. By definitions of (4) and (8), we have

$$
\begin{aligned}
c_{n, L, A, q}^{(k)}(z) & =\int_{0}^{l_{1}} \cdots \int_{0}^{l_{k}} \sum_{m=0}^{n} S_{1}(n, m, A)\left(x_{1} \cdots x_{k}-z\right)^{m} d_{q} x_{1} \cdots d_{q} x_{k} \\
& =\sum_{m=0}^{n} S_{1}(n, m, A) \sum_{i=0}^{m}\binom{m}{i}(-z)^{m-i} \int_{0}^{l_{1}} \cdots \int_{0}^{l_{k}} x_{1}^{i} \cdots x_{k}^{i} d_{q} x_{1} \cdots d_{q} x_{k} \\
& =\sum_{m=0}^{n} S_{1}(n, m, A) \sum_{i=0}^{m}\binom{m}{i} \frac{(-z)^{m-i}}{[i+1]_{q}^{k}} \ell^{i+1} \\
& =\sum_{m=0}^{n} S_{1}(n, m, A) \sum_{i=0}^{m}\binom{m}{i} \frac{(-z)^{i}}{[m-i+1]_{q}^{k}} \ell^{m-i+1}
\end{aligned}
$$

If $z=0$, then we have the expression of the q-multiparameter-poly-Cauchy numbers of the first kind.

Corollary 1. For all integers n and k with $n \geq 0$ and a real number q with $0<$ $q<1$, we have

$$
c_{n, L, A, q}^{(k)}=\sum_{m=0}^{n} \frac{S_{1}(n, m, A) \ell^{m+1}}{[m+1]_{q}^{k}}
$$

Similarly, the q-multiparameter-poly-Cauchy polynomials of the second kind can be expressed explicitly in terms of the multiparameter Stirling numbers of the first kind. The proof is similar to that of Theorem 1 and is omitted.

Theorem 2. For all integers n and k with $n \geq 0$ and a real number q with $0<q<$ 1, we have

$$
\widehat{c}_{n, L, A, q}^{(k)}(z)=\sum_{m=0}^{n}(-1)^{m} S_{1}(n, m, A) \sum_{i=0}^{m}\binom{m}{i} \frac{(-z)^{i} \ell^{m-i+1}}{[m-i+1]_{q}^{k}} .
$$

If $z=0$, then we have the expression of the q-multiparameter-poly-Cauchy numbers of the second kind.

Corollary 2. For all integers n and k with $n \geq 0$ and a real number q with $0<$ $q<1$, we have

$$
\widehat{c}_{n, L, A, q}^{(k)}=\sum_{m=0}^{n} \frac{(-1)^{m} S_{1}(n, m, A) \ell^{m+1}}{[m+1]_{q}^{k}} .
$$

There are simple relations between two kinds of q-multiparameter-poly-Cauchy polynomials.

Theorem 3. For all integers n and k with $n \geq 1$ and a real number q with $0<q<$ 1, we have

$$
\begin{align*}
& (-1)^{n} c_{n, L, A, q}^{(k)}(z)=\widehat{c}_{n, L,-A, q}^{(k)}(z), \tag{10}\\
& (-1)^{n} \widehat{c}_{n, L, A, q}^{(k)}(z)=c_{n, L,-A, q}^{(k)}(z), \tag{11}
\end{align*}
$$

where $-A=\left(-\alpha_{0},-\alpha_{1}, \ldots,-\alpha_{n-1}\right)$.
Proof. We shall prove identity (11). The identity (10) is proven similarly and omitted. By the definition of $\widehat{c}_{n, L, A, q}^{(k)}(z)$, we see that

$$
\begin{aligned}
& (-1)^{n} \widehat{c}_{n, L, A, q}^{(k)}(z) \\
& =(-1)^{n} \int_{0}^{l_{1}} \cdots \int_{0}^{l_{k}}\left(-x_{1} \cdots x_{k}+z-\alpha_{0}\right) \cdots\left(-x_{1} \cdots x_{k}+z-\alpha_{n-1}\right) d_{q} x_{1} \cdots d_{q} x_{k} \\
& =\int_{0}^{l_{1}} \cdots \int_{0}^{l_{k}}\left(x_{1} \cdots x_{k}-z+\alpha_{0}\right) \cdots\left(x_{1} \cdots x_{k}-z+\alpha_{n-1}\right) d_{q} x_{1} \cdots d_{q} x_{k} \\
& =c_{n, L,-A, q}^{(k)}(z) .
\end{aligned}
$$

3. q-multiparameter-poly-Bernoulli Polynomials

Define the q-multiparameter-poly-Bernoulli polynomials $B_{n, L, A, q}^{(k)}(z)$ by

$$
\begin{equation*}
B_{n, L, A, q}^{(k)}(z)=\sum_{m=0}^{n} S_{2}(n, m, A) m!\sum_{i=0}^{m}\binom{m}{i} \frac{(-z)^{i} \ell^{m-i+1}}{[m-i+1]_{q}^{k}} . \tag{12}
\end{equation*}
$$

This is a generalization of poly-Bernoulli polynomials $B_{n}^{(k)}(z)$, defined in [24]. If $q \rightarrow 1, l_{1}=\cdots=l_{k}=1$ and $\alpha_{i}=i(i=0,1, \ldots, n-1)$, then the polynomial $B_{n, L, A, q}^{(k)}(z)$ are reduced to the polynomial $B_{n}^{(k)}(z)$ in [24].

By putting $z=0$ in (12), the q-multiparameter-poly-Bernoulli numbers $B_{n, L, A, q}^{(k)}$ are given by

$$
\begin{equation*}
B_{n, L, A, q}^{(k)}=\sum_{m=0}^{n} \frac{S_{2}(n, m, A) m!\ell^{m+1}}{[m+1]_{q}^{k}} . \tag{13}
\end{equation*}
$$

Since the orthogonality relations

$$
\begin{equation*}
\sum_{k=i}^{n} S_{1}(n, k, A) S_{2}(k, i, A)=\sum_{k=i}^{n} S_{1}(k, i, A) S_{2}(n, k, A)=\delta_{n, i} \tag{14}
\end{equation*}
$$

where $\delta_{n, i}$ is the Kronecker's delta, we obtain the inverse relation

$$
\begin{equation*}
f_{n}=\sum_{m=0}^{n} S_{1}(n, m, A) g_{m} \quad \Longleftrightarrow \quad g_{n}=\sum_{m=0}^{n} S_{2}(n, m, A) f_{m} \tag{15}
\end{equation*}
$$

Theorem 4. For q-multiparameter-poly-Bernoulli and q-multiparameter-poly-Cauchy polynomials, we have

$$
\begin{align*}
& \sum_{m=0}^{n} S_{1}(n, m, A) B_{m, L, A, q}^{(k)}(z)=n!\sum_{i=0}^{n}\binom{n}{i} \frac{(-z)^{i} \ell^{n-i+1}}{[n-i+1]_{q}^{k}} \tag{16}\\
& \sum_{m=0}^{n} S_{2}(n, m, A) c_{m, L, A, q}^{(k)}(z)=\sum_{i=0}^{n}\binom{n}{i} \frac{(-z)^{i} \ell^{n-i+1}}{[n-i+1]_{q}^{k}} \tag{17}\\
& \sum_{m=0}^{n} S_{2}(n, m, A) \widehat{c}(k) \tag{18}\\
& m, L, A, q
\end{align*}(z)=(-1)^{n} \sum_{i=0}^{n}\binom{n}{i} \frac{(-z)^{i} \ell^{n-i+1}}{[n-i+1]_{q}^{k}} .
$$

Remark. If $q \rightarrow 1$ and $\alpha_{i}=i \rho(i=0,1, \ldots, n-1)$, then Theorem 4 is reduced to Theorem 3.2 in [6].

Proof. By (12), applying (15) with

$$
f_{m}=m!\sum_{i=0}^{m}\binom{m}{i} \frac{(-z)^{i} \ell^{m-i+1}}{[m-i+1]_{q}^{k}} \quad \text { and } \quad g_{n}=B_{n, L, A, q}^{(k)}(z)
$$

we get the identity (16). Similarly, by Theorem 1 and Theorem 2 we have the identities (17) and (18), respectively.

If we put $z=0$ in Theorem 4, we have the identities for appropriate numbers.
Corollary 3. For q-multiparameter-poly-Bernoulli and q-multiparameter-poly-Cauchy
numbers, we have

$$
\begin{align*}
\sum_{m=0}^{n} S_{1}(n, m, A) B_{m, L, A, q}^{(k)} & =\frac{n!\ell^{n+1}}{[n+1]_{q}^{k}}, \tag{19}\\
\sum_{m=0}^{n} S_{2}(n, m, A) c_{m, L, A, q}^{(k)} & =\frac{\ell^{n+1}}{[n+1]_{q}^{k}}, \tag{20}\\
\sum_{m=0}^{n} S_{2}(n, m, A) \widehat{c}_{m, L, A, q}^{(k)} & =\frac{(-1)^{n} \ell^{n+1}}{[n+1]_{q}^{k}} \tag{21}
\end{align*}
$$

4. Several Relations of q-poly-Bernoulli Polynomials and q-poly-Cauchy Polynomials

Theorem 5. For any z we have

$$
\begin{aligned}
B_{n, L, A, q}^{(k)}(z) & =\sum_{\mu=0}^{n} \sum_{m=\mu}^{n} m!S_{2}(n, m, A) S_{2}(m, \mu, A) c_{\mu, L, A, q}^{(k)}(z) \\
B_{n, L, A, q}^{(k)}(z) & =\sum_{\mu=0}^{n} \sum_{m=\mu}^{n}(-1)^{m} m!S_{2}(n, m, A) S_{2}(m, \mu, A) \widehat{c}_{\mu, L, A, q}^{(k)}(z) \\
c_{n, L, A, q}^{(k)}(z) & =\sum_{\mu=0}^{n} \sum_{m=\mu}^{n} \frac{1}{m!} S_{1}(n, m, A) S_{1}(m, \mu, A) B_{\mu, L, A, q}^{(k)}(z) \\
\widehat{c}_{n, L, A, q}^{(k)}(z) & =\sum_{\mu=0}^{n} \sum_{m=\mu}^{n} \frac{(-1)^{m}}{m!} S_{1}(n, m, A) S_{1}(m, \mu, A) B_{\mu, L, A, q}^{(k)}(z)
\end{aligned}
$$

Remark. If $\rho=1$ and $q \rightarrow 1$ and $\alpha_{i}=i \rho(i=0,1, \ldots, n-1)$, then Theorem 5 is reduced to Theorem 4.1 in [24]. A different generalization without Jackson's integrals is discussed in [23].

Proof. We shall prove the first and the fourth identities. The other two are proven similarly and omitted. By (17) in Theorem 4 and (12), we have

$$
\begin{aligned}
B_{n, L, A, q}^{(k)}(z) & =\sum_{m=0}^{n} S_{2}(n, m, A) m!\sum_{\mu=0}^{m} S_{2}(m, \mu, A) c_{\mu, L, A, q}^{(k)}(z) \\
& =\sum_{\mu=0}^{n} \sum_{m=\mu}^{n} m!S_{2}(n, m, A) S_{2}(m, \mu, A) c_{\mu, L, A, q}^{(k)}(z) .
\end{aligned}
$$

By (16) in Theorem 4 and Theorem 2, we have

$$
\begin{aligned}
\widehat{c}_{n, L, A, q}^{(k)}(z) & =\sum_{m=0}^{n} \frac{(-1)^{m}}{m!} S_{1}(n, m, A) \sum_{\mu=0}^{m} S_{1}(m, \mu, A) B_{\mu, L, A, q}^{(k)}(z) \\
& =\sum_{\mu=0}^{n} \sum_{m=\mu}^{n} \frac{(-1)^{m}}{m!} S_{1}(n, m, A) S_{1}(m, \mu, A) B_{\mu, L, A, q}^{(k)}(z) .
\end{aligned}
$$

Acknowledgement This work has been partly done when the first author stayed in University of West Hungary by Balassi Institute Program in 2014. He was also supported by a grant of Wuhan University and by the Hubei Provincial Program.

References

[1] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia Math. Appl., Vol.71, Cambridge Univ. Press, Cambridge, 1999.
[2] T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers and related zeta functions, Nagoya Math. J. 153 (1999), 189-209.
[3] A. Bayad and Y. Hamahata, Polylogarithms and poly-Bernoulli polynomials, Kyushu J. Math. 65 (2011), 15-24.
[4] L. Carlitz, A note on Bernoulli and Euler polynomials of the second kind, Scripta Math. 25 (1961), 323-330.
[5] L. Carlitz, Weighted Stirling numbers of the first and second kind - I, Fibonacci Quart. 18 (1980), 147-162.
[6] M. Cenkci and T. Komatsu, Poly-Bernoulli numbers and polynomials with a q parameter, J. Number Theory 152 (2015), 38-54.
[7] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.
[8] M.-A. Coppo and B. Candelpergher, The Arakawa-Kaneko zeta function, Ramanujan J. 22 (2010), 153-162.
[9] B. S. El-Desouky, The multiparameter noncentral Stirling numbers, Fibonacci Quart. 32 (1992), 218-225.
[10] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Second Edition, Addison-Wesley, Reading, 1994.
[11] Y. Hamahata and H. Masubuchi, Special multi-poly-Bernoulli numbers, J. Integer Seq. 10 2007, Article 07.4.1.
[12] F. H. Jackson, On q-definite integrals, Quart. J. 41 (1910), 193-203.
[13] Ch. Jordan, Sur des polynômes analogues aux polynômes de Bernoulli et sur des formules de sommation ana-logues à celle de MacLaurin-Euler, Acta Sci. Math. (Szeged) 4 (1928-29), 130-150.
[14] K. Kamano and T. Komatsu, Poly-Cauchy polynomials, Mosc. J. Comb. Number Theory 3 (2013), 183-209.
[15] M. Kaneko, Poly-Bernoulli numbers, J. Th. Nombres Bordeaux 9 (1997), 221-228.
[16] M. Katsurada, Complete asymptotic expansions for certain multiple q-integrals and q differentials of Thomae-Jackson type, Acta Arith. 152 (2012), 109-136.
[17] T. Kim, T. Komatsu, S.-H. Lee, and J.-J. Seo, q-poly-Cauchy numbers associated with Jackson integral, J. Comput. Anal. Appl. 18 (2015), 685-698.
[18] T. Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
[19] T. Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
[20] T. Komatsu, Sums of products of Cauchy numbers, including poly-Cauchy numbers, J. Discrete Math. 2013 (2013), Article ID 373927, 10 pages.
[21] T. Komatsu, Hypergeometric Cauchy numbers, Int. J. Number Theory 9 (2013), 545-560.
[22] T. Komatsu, q-poly-Bernoulli numbers and q-poly-Cauchy numbers with a parameter by Jackson's integrals, Indag. Math. 27 (2016), 100-111.
[23] T. Komatsu, K. Liptai, and L. Szalay, Some relationships between poly-Cauchy type numbers and poly-Bernoulli type numbers, East-West J. Math. 14 (2012), 114-120.
[24] T. Komatsu and F. Luca, Some relationships between poly-Cauchy numbers and polyBernoulli numbers, Ann. Math. Inform. 41 (2013), 99-105.
[25] T. Komatsu and F.-Z. Zhao, The log-convexity of the poly-Cauchy numbers, Quaest. Math. (to appear), arXiv:1603.06725.
[26] M. Koutras, Non-central Stirling numbers and some applications, Discrete Math. 42 (1982), 73-89.
[27] D. Merlini, R. Sprugnoli and M. C. Verri, The Cauchy numbers, Discrete Math. 306 (2006) 1906-1920.
[28] N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
[29] J. Riordan, Combinatorial identities, John Wiley \& Sons, New York, 1968.
[30] W. Wang, Generalized higher order Bernoulli number pairs and generalized Stirling number pairs, J. Math. Anal. Appl. 364 (2010), 255-274.
[31] P. T. Young, A 2-adic formula for Bernoulli numbers of the second kind and for the Nörlund numbers, J. Number Theory 128 (2008), 2951-2962.
[32] F.-Z. Zhao, Sums of products of Cauchy numbers, Discrete Math. 309 (2009), 3830-3842.

[^0]: ${ }^{1}$ The first author was supported in part by the grant of Wuhan University and by the grant of Hubei Provincial Experts Program.

