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Abstract
We define q-multiparameter-Bernoulli polynomials and q-multiparameter-Cauchy
polynomials by using Jackson’s integrals, which generalize the previously known
numbers, including poly-Bernoulli B(k)

n and the poly-Cauchy numbers of the first
kind c(k)

n and of the second kind bc(k)
n . We investigate their properties connected with

multiparameter Stirling numbers which generalize the original Stirling numbers.
We also give the relations between q-multiparameter-Bernoulli polynomials and q-
multiparameter-Cauchy polynomials.

1. Introduction

Let n and k be integers with n � 0, and let L = (l1, . . . , lk) be a k-tuple of real
numbers with ` := l1 · · · lk 6= 0 and A = (↵0,↵1, . . . ,↵n�1) be a n-tuple of real
numbers. Let q be a real number with 0  q < 1.

Jackson’s q-derivative with 0 < q < 1 (see e.g., [1, (10.2.3)], [12]) is defined by

Dqf =
dqf

dqx
=

f(x)� f(qx)
(1� q)x

1The first author was supported in part by the grant of Wuhan University and by the grant of
Hubei Provincial Experts Program.
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and Jackson’s q-integral ([1, (10.1.3)], [12]) is defined by

Z x

0
f(t)dqt = (1� q)x

1X
n=0

f(qnx)qn .

The Jackson integral gives a unique q-antiderivative within a certain class of func-
tions. In particular, when f(x) = xm for some nonnegative integer m, then

Dqf =
xm � qmxm

(1� q)x
= [m]qxm�1

and
Z x

0
tmdqt = (1� q)x

1X
n=0

qmnxmqn

= (1� q)xm+1
1X

n=0

qn(m+1) =
xm+1

[m + 1]q
.

Here,

[x]q =
1� qx

1� q

is the q-number with [0]q = 0 (see e.g. [1, (10.2.3)], [12]). Note that limq!1[x]q = x.
Define poly-Bernoulli polynomials B(k)

n,⇢,q(z) with a parameter ⇢ by

⇢

1� e�⇢t
Lik,q

✓
1� e�⇢t

⇢

◆
e�tz =

1X
n=0

B(k)
n,⇢,q(z)

tn

n!
, (1)

where Lik,q(z) is the q-polylogarithm function (see [16]) defined by

Lik,q(z) =
1X

n=1

zn

[n]kq
.

Notice that
lim
q!1

B(k)
n,⇢,q(z) = B(k)

n,⇢(z) ,

which is the poly-Bernoulli polynomial with a ⇢ parameter (see [6]), and

lim
q!1

Lik,q(z) = Lik(z) ,

which is the ordinary polylogarithm function, defined by

Lik(z) =
1X

m=1

zm

mk
. (2)
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In addition, when z = 0, B(k)
n,⇢(0) = B(k)

n,⇢ is the poly-Bernoulli number with a ⇢

parameter. When z = 0 and ⇢ = 1, B(k)
n,1(0) = B(k)

n is the poly-Bernoulli number
(see [15]) defined by

Lik(1� e�t)
1� e�t

=
1X

n=0

B(k)
n

tn

n!
. (3)

The poly-Bernoulli numbers are expressed as special values at negative arguments
of certain combinations of multiple zeta values. The poly-Bernoulli numbers can be
expressed in terms of the Stirling numbers of the second kind.

B(k)
n =

nX
m=0

(�1)n�mm!S2(n,m)
(m + 1)k

(n � 0, k � 1)

([15, Theorem 1]), where S2(n,m) is the Stirling number of the second kind, see [7],
determined by the falling factorial:

xn =
nX

m=0

S2(n,m)x(x� 1) · · · (x�m + 1) .

The poly-Bernoulli numbers are extended to the poly-Bernoulli polynomials (see
[3, 8]) and to the special multi-poly-Bernoulli numbers (see [11]). The Bernoulli
polynomials occur in the study of many special functions and in particular the
Riemann zeta function and the Hurwitz zeta function. They are an Appell sequence,
i.e., a She↵er sequence for the ordinary derivative operator.

Define the q-multiparameter-poly-Cauchy polynomials of the first kind c(k)
n,L,A,q(z)

by

c(k)
n,L,A,q(z) =

Z l1

0
· · ·

Z lk

0
(x1 · · · xk � ↵0 � z) · · · (x1 · · · xk � ↵n�1 � z)dqx1 · · · dqxk .

(4)
Notice that

lim
q!1

c(k)
n,L,A,q(z) = c(k)

n,L,A(z) ,

which are the multiparameter-poly-Cauchy polynomials of the first kind. The idea of
dealing with multiparameters ↵0,↵1, . . . ,↵n�1 instead of 0, 1, . . . , n� 1 has already
been considered in [25]. Namely, If l1 = · · · = lk = 1 and z = 0, the number
c(k)
n,(1,...,1),A = c(k)

n,A has been studied to prove the convexity. It has been proven that

c(k)
n,A is log-convex, satisfying (c(k)

n,A)2 � c(k)
n�1,Ac(k)

n+1,A  0.

In addition, if ↵i = i⇢ (i = 0, 1, . . . , n�1), then the number c(k)
n,A is reduced to the

poly-Cauchy numbers of the first kind with a parameter ⇢ (see [19]). Furthermore,
if ⇢ = 1, then the number c(k)

n,A is reduced to the poly-Cauchy number c(k)
n (see

[18]). If k = 1, then c(1)
n = cn is the classical Cauchy number (see [7, 27]). The
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number cn/n! is sometimes referred to as the Bernoulli number of the second kind
(see [4, 13, 28]).

The poly-Cauchy numbers have been considered as analogues of the poly-Bernoulli
numbers B(k)

n . The poly-Cauchy numbers of the first kind, c(k)
n , can be expressed

in terms of the Stirling numbers of the first kind:

c(k)
n =

nX
m=0

(�1)n�mS1(n,m)
(m + 1)k

(n � 0, k � 1)

([18, Theorem 1]), where S1(n,m) is the (unsigned) Stirling number of the first kind
(see [7]), determined by the rising factorial:

x(x + 1) · · · (x + n� 1) =
nX

m=0

S1(n,m)xm . (5)

Similarly, define the q-multiparameter-poly-Cauchy polynomials of the second
kind bc(k)

n,L,A,q(z) by

bc(k)
n,L,A,q(z)

=
Z l1

0
· · ·

Z lk

0
(�x1 · · · xk � ↵0 + z) · · · (�x1 · · · xk � ↵n�1 + z)dqx1 · · · dqxk . (6)

If q ! 1, l1 = · · · = lk = 1, ↵i = i⇢ (i = 0, 1, . . . , n� 1) and z = 0, the number bc(k)
n,A

is reduced to the poly-Cauchy numbers of the second kind with a parameter ⇢ (see
[19]). Furthermore, if ⇢ = 1, then the number bc(k)

n,A is reduced to the poly-Cauchy
numbers of the second kind bc(k)

n (see [18]). If k = 1, then bc(1)
n = bcn is the classical

Cauchy number (see [7, 27]). The poly-Cauchy numbers of the second kind bc(k)
n can

be expressed in terms of the Stirling numbers of the first kind by

bc(k)
n = (�1)n

nX
m=0

S1(n,m)
(m + 1)k

(n � 0, k � 1)

([18, Theorem 4]). The generating function of the poly-Cauchy numbers of the
second kind bc(k)

n is given by

Lifk

�
� ln(1 + t)

�
=
1X

n=0

bc(k)
n

tn

n!
(7)

([18, Theorem 5]).
The poly-Cauchy numbers (of the both kinds) are extended to the poly-Cauchy

polynomials (see [14]), and to the poly-Cauchy numbers with a q parameter (see
[19]). The corresponding poly-Bernoulli numbers with a q parameter can be ob-
tained in [6]. A di↵erent direction of generalizations of Cauchy numbers is about
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hypergeometric Cauchy numbers (see [21]). Arithmetical and combinatorial prop-
erties including sums of products have been studied (see [20, 23, 24]).

Various kinds of q-analogues or extensions have been studied. In [17], as gener-
alizations of the poly-Cauchy numbers of the first kind c(k)

n and of the second kind
bc(k)
n , by using Jackson’s q-integrals, q-analogues or extensions of the poly-Cauchy

numbers of the first kind c(k)
n,q and of the second kind bc(k)

n,q are introduced, and their
properties are investigated. In [22], by using Jackson’s q-integrals, the concept
about q-analogues or extensions of the poly-Bernoulli polynomials B(k)

n,q(z) with a
parameter were also introduced.

In this paper, by using Jackson’s q-integrals, as essential generalizations of the
previously known numbers and polynomials, including poly-Bernoulli numbers B(k)

n ,
the poly-Cauchy numbers of the first kind c(k)

n and of the second kind bc(k)
n , we

introduce the concept of q-analogues or extensions of the poly-Bernoulli polynomials
B(k)

n,⇢,q(z) with a parameter, and the poly-Cauchy polynomials of the first kind c(k)
n,⇢,q

and of the second kind bc(k)
n,⇢,q with a parameter. We investigate their properties

connected with the usual Stirling numbers and the weighted Stirling numbers. We
also give the relations between generalized poly-Bernoulli polynomials and two kinds
of generalized poly-Cauchy polynomials.

2. q-multiparameter-Cauchy Polynomials

For an n-tuple A = (↵0,↵1, . . . ,↵n�1) of real numbers, define multiparameter Stir-
ling numbers of the first kind S1(n,m,A) and of the second kind S2(n,m,A) by

(t� ↵0)(t� ↵1) · · · (t� ↵n�1) =
nX

m=0

S1(n,m,A)tm (8)

and
nX

m=0

S2(n,m,A)(t� ↵0)(t� ↵1) · · · (t� ↵m�1) = tn , (9)

respectively (cf. [7, 9, 26]). If ↵i = i⇢ (i = 0, 1, . . . , n� 1), then

S1

�
n,m, (0, ⇢, . . . , (n� 1)⇢)

�
= (�⇢)n�mS1(n,m) ,

S2

�
n,m, (0, ⇢, . . . , (n� 1)⇢)

�
= ⇢n�mS2(n,m) ,

where S1(n,m) and S2(n,m) are the (unsigned) Stirling numbers of the first kind
and the Stirling numbers of the second kind, respectively.

The q-multiparameter-poly-Cauchy polynomials of the first kind can be expressed
explicitly in terms of the multiparameter Stirling numbers of the first kind.
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Theorem 1. For all integers n and k with n � 0 and a real number q with 0 < q <
1, we have

c(k)
n,L,A,q(z) =

nX
m=0

S1(n,m,A)
mX

i=0

✓
m

i

◆
(�z)i`m�i+1

[m� i + 1]kq
.

Proof. By definitions of (4) and (8), we have

c(k)
n,L,A,q(z) =

Z l1

0
· · ·

Z lk

0

nX
m=0

S1(n,m,A)(x1 · · · xk � z)mdqx1 · · · dqxk

=
nX

m=0

S1(n,m,A)
mX

i=0

✓
m

i

◆
(�z)m�i

Z l1

0
· · ·

Z lk

0
xi

1 · · · xi
kdqx1 · · · dqxk

=
nX

m=0

S1(n,m,A)
mX

i=0

✓
m

i

◆
(�z)m�i

[i + 1]kq
`i+1

=
nX

m=0

S1(n,m,A)
mX

i=0

✓
m

i

◆
(�z)i

[m� i + 1]kq
`m�i+1 .

If z = 0, then we have the expression of the q-multiparameter-poly-Cauchy num-
bers of the first kind.

Corollary 1. For all integers n and k with n � 0 and a real number q with 0 <
q < 1, we have

c(k)
n,L,A,q =

nX
m=0

S1(n,m,A)`m+1

[m + 1]kq
.

Similarly, the q-multiparameter-poly-Cauchy polynomials of the second kind can
be expressed explicitly in terms of the multiparameter Stirling numbers of the first
kind. The proof is similar to that of Theorem 1 and is omitted.

Theorem 2. For all integers n and k with n � 0 and a real number q with 0 < q <
1, we have

bc(k)
n,L,A,q(z) =

nX
m=0

(�1)mS1(n,m,A)
mX

i=0

✓
m

i

◆
(�z)i`m�i+1

[m� i + 1]kq
.

If z = 0, then we have the expression of the q-multiparameter-poly-Cauchy num-
bers of the second kind.
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Corollary 2. For all integers n and k with n � 0 and a real number q with 0 <
q < 1, we have

bc(k)
n,L,A,q =

nX
m=0

(�1)mS1(n,m,A)`m+1

[m + 1]kq
.

There are simple relations between two kinds of q-multiparameter-poly-Cauchy
polynomials.

Theorem 3. For all integers n and k with n � 1 and a real number q with 0 < q <
1, we have

(�1)nc(k)
n,L,A,q(z) = bc(k)

n,L,�A,q(z) , (10)

(�1)nbc(k)
n,L,A,q(z) = c(k)

n,L,�A,q(z) , (11)

where �A = (�↵0,�↵1, . . . ,�↵n�1).

Proof. We shall prove identity (11). The identity (10) is proven similarly and omit-
ted. By the definition of bc(k)

n,L,A,q(z), we see that

(�1)nbc(k)
n,L,A,q(z)

= (�1)n

Z l1

0
· · ·

Z lk

0
(�x1 · · · xk + z � ↵0) · · · (�x1 · · · xk + z � ↵n�1)dqx1 · · · dqxk

=
Z l1

0
· · ·

Z lk

0
(x1 · · · xk � z + ↵0) · · · (x1 · · · xk � z + ↵n�1)dqx1 · · · dqxk

= c(k)
n,L,�A,q(z) .

3. q-multiparameter-poly-Bernoulli Polynomials

Define the q-multiparameter-poly-Bernoulli polynomials B(k)
n,L,A,q(z) by

B(k)
n,L,A,q(z) =

nX
m=0

S2(n,m,A)m!
mX

i=0

✓
m

i

◆
(�z)i`m�i+1

[m� i + 1]kq
. (12)

This is a generalization of poly-Bernoulli polynomials B(k)
n (z), defined in [24].

If q ! 1, l1 = · · · = lk = 1 and ↵i = i (i = 0, 1, . . . , n � 1), then the polynomial
B(k)

n,L,A,q(z) are reduced to the polynomial B(k)
n (z) in [24].
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By putting z = 0 in (12), the q-multiparameter-poly-Bernoulli numbers B(k)
n,L,A,q

are given by

B(k)
n,L,A,q =

nX
m=0

S2(n,m,A)m!`m+1

[m + 1]kq
. (13)

Since the orthogonality relations

nX
k=i

S1(n, k,A)S2(k, i, A) =
nX

k=i

S1(k, i, A)S2(n, k,A) = �n,i , (14)

where �n,i is the Kronecker’s delta, we obtain the inverse relation

fn =
nX

m=0

S1(n,m,A)gm () gn =
nX

m=0

S2(n,m,A)fm . (15)

Theorem 4. For q-multiparameter-poly-Bernoulli and q-multiparameter-poly-Cauchy
polynomials, we have

nX
m=0

S1(n,m,A)B(k)
m,L,A,q(z) = n!

nX
i=0

✓
n

i

◆
(�z)i`n�i+1

[n� i + 1]kq
, (16)

nX
m=0

S2(n,m,A)c(k)
m,L,A,q(z) =

nX
i=0

✓
n

i

◆
(�z)i`n�i+1

[n� i + 1]kq
, (17)

nX
m=0

S2(n,m,A)bc(k)
m,L,A,q(z) = (�1)n

nX
i=0

✓
n

i

◆
(�z)i`n�i+1

[n� i + 1]kq
. (18)

Remark. If q ! 1 and ↵i = i⇢ (i = 0, 1, . . . , n� 1), then Theorem 4 is reduced to
Theorem 3.2 in [6].

Proof. By (12), applying (15) with

fm = m!
mX

i=0

✓
m

i

◆
(�z)i`m�i+1

[m� i + 1]kq
and gn = B(k)

n,L,A,q(z) ,

we get the identity (16). Similarly, by Theorem 1 and Theorem 2 we have the
identities (17) and (18), respectively.

If we put z = 0 in Theorem 4, we have the identities for appropriate numbers.

Corollary 3. For q-multiparameter-poly-Bernoulli and q-multiparameter-poly-Cauchy
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numbers, we have

nX
m=0

S1(n,m,A)B(k)
m,L,A,q =

n!`n+1

[n + 1]kq
, (19)

nX
m=0

S2(n,m,A)c(k)
m,L,A,q =

`n+1

[n + 1]kq
, (20)

nX
m=0

S2(n,m,A)bc(k)
m,L,A,q =

(�1)n`n+1

[n + 1]kq
. (21)

4. Several Relations of q-poly-Bernoulli Polynomials and q-poly-Cauchy
Polynomials

Theorem 5. For any z we have

B(k)
n,L,A,q(z) =

nX
µ=0

nX
m=µ

m!S2(n,m,A)S2(m,µ,A)c(k)
µ,L,A,q(z) ,

B(k)
n,L,A,q(z) =

nX
µ=0

nX
m=µ

(�1)mm!S2(n,m,A)S2(m,µ,A)bc(k)
µ,L,A,q(z) ,

c(k)
n,L,A,q(z) =

nX
µ=0

nX
m=µ

1
m!

S1(n,m,A)S1(m,µ,A)B(k)
µ,L,A,q(z) ,

bc(k)
n,L,A,q(z) =

nX
µ=0

nX
m=µ

(�1)m

m!
S1(n,m,A)S1(m,µ,A)B(k)

µ,L,A,q(z) .

Remark. If ⇢ = 1 and q ! 1 and ↵i = i⇢ (i = 0, 1, . . . , n � 1), then Theorem
5 is reduced to Theorem 4.1 in [24]. A di↵erent generalization without Jackson’s
integrals is discussed in [23].

Proof. We shall prove the first and the fourth identities. The other two are proven
similarly and omitted. By (17) in Theorem 4 and (12), we have

B(k)
n,L,A,q(z) =

nX
m=0

S2(n,m,A)m!
mX

µ=0

S2(m,µ,A)c(k)
µ,L,A,q(z)

=
nX

µ=0

nX
m=µ

m!S2(n,m,A)S2(m,µ,A)c(k)
µ,L,A,q(z) .
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By (16) in Theorem 4 and Theorem 2, we have

bc(k)
n,L,A,q(z) =

nX
m=0

(�1)m

m!
S1(n,m,A)

mX
µ=0

S1(m,µ,A)B(k)
µ,L,A,q(z)

=
nX

µ=0

nX
m=µ

(�1)m

m!
S1(n,m,A)S1(m,µ,A)B(k)

µ,L,A,q(z) .
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