ON THE RELATIONSHIP BETWEEN THE NUMBER OF SOLUTIONS OF CONGRUENCE SYSTEMS AND THE RESULTANT OF TWO POLYNOMIALS

Dmitry I. Khomovsky
Lomonosov Moscow State University, Moscow, RF
khomovskij@physics.msu.ru

Received: 9/1/15, Revised: 12/31/15, Accepted: 5/31/16, Published: 6/10/16

Abstract

Let q be an odd prime and $f(x), g(x)$ be polynomials with integer coefficients. If the system of congruences $f(x) \equiv g(x) \equiv 0(\bmod q)$ has ℓ solutions, then $R(f(x), g(x)) \equiv 0\left(\bmod q^{\ell}\right)$, where $R(f(x), g(x))$ is the resultant of the polynomials. Using this result we give new proofs of some known congruences involving the Lucas sequences.

1. Introduction

The resultant $R(f, g)$ of two polynomials $f(x)=a_{n} x^{n}+\cdots+a_{0}$ and $g(x)=$ $b_{m} x^{m}+\cdots+b_{0}$ of degrees n and m, respectively, with coefficients in a field F is defined by the determinant of the $(m+n) \times(m+n)$ Sylvester matrix [10]

$$
R(f, g)=\left|\begin{array}{ccccccccc}
a_{n} & a_{n-1} & \cdots & \cdots & \cdots & a_{0} & & & \tag{1}\\
& a_{n} & a_{n-1} & \cdots & \cdots & \cdots & a_{0} & & \\
& & \cdots & & & & & & \\
b_{m} & b_{m-1} & \cdots & \cdots & b_{0} & & & & a_{0} \\
& b_{m} & b_{m-1} & \cdots & \cdots & b_{0} & & & \\
& & \cdots & & & & & & \\
& & & \cdots & & & & & \\
& & & & b_{m} & b_{m-1} & \cdots & \cdots & b_{0}
\end{array}\right| .
$$

Let f, g, h and v be the polynomials below. Some important properties of the resultant are:
(i) If $f(x)=a_{n} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ and $g(x)=b_{m} \prod_{j=1}^{m}\left(x-\beta_{j}\right)$, then

$$
R(f, g)=a_{n}^{m} \prod_{i=1}^{n} g\left(\alpha_{i}\right)=(-1)^{m n} b_{m}^{n} \prod_{i=1}^{m} f\left(\beta_{i}\right)=a_{n}^{m} b_{m}^{n} \prod_{i=1}^{n} \prod_{j=1}^{m}\left(\alpha_{i}-\beta_{j}\right)
$$

where α_{i} and β_{j} are the roots of $f(x)$ and $g(x)$, respectively, in some extension of F, each repeated according to its multiplicity. This property is often taken as the definition of the resultant.
(ii) f and g have a common root in some extension of F if and only if $R(f, g)=0$.
(iii) $R(f, g)=(-1)^{n m} R(g, f)$.
(iv) $R(f h, g)=R(f, g) R(h, g)$ and $R(f, g h)=R(f, g) R(f, h)$.
(v) If $g=v f+h$ and $\operatorname{deg}(h)=d$, then $R(f, g)=a_{n}^{m-d} R(f, h)$.
(vi) If p is a positive integer, then $R\left(f\left(x^{p}\right), g\left(x^{p}\right)\right)=R(f(x), g(x))^{p}$.

All these properties are well-known [1, 7]. More details concerning the resultant can be found in $[3,4]$. Another important classical result is (see [4]):
Lemma 1. Let $f=\sum_{i=0}^{n} a_{i} x^{i}$ and $g=\sum_{j=0}^{m} b_{j} x^{j}$ be two polynomials of degrees n and m, respectively. Let, for $k \geq 0, r_{k}(x)=r_{k, n-1} x^{n-1}+\cdots+r_{k, 0}$ be the remainder of $x^{k} g(x)$ modulo $f(x)$, i.e., $x^{k} g(x)=v_{k}(x) f(x)+r_{k}(x)$, where v_{k} is some polynomial and $\operatorname{deg}\left(r_{k}\right) \leq n-1$. Then

$$
R(f, g)=a_{n}^{m}\left|\begin{array}{cccc}
r_{n-1, n-1} & r_{n-1, n-2} & \cdots & r_{n-1,0} \tag{2}\\
r_{n-2, n-1} & r_{n-2, n-2} & \cdots & r_{n-2,0} \\
\vdots & & & \vdots \\
r_{0, n-1} & r_{0, n-2} & \cdots & r_{0,0}
\end{array}\right|
$$

In the next section we prove a theorem on the relationship between the number of solutions of the congruence system $f(x) \equiv g(x) \equiv 0(\bmod q)$ and the resultant of two polynomials $R(f(x), g(x))$. Then using this result we give new proofs of some congruences involving the Lucas sequences.

2. Properties of the Resultant

A polynomial $f(x)$ with integer coefficients is called not identically zero in \mathbb{Z}_{q} if at least one of its coefficients is not divisible by q. Let $A=\left(a_{i, j}\right)$ be an arbitrary matrix. Then by $A^{<q>}$ we will denote the matrix $\left(a_{i, j}^{\prime}\right)$ over \mathbb{Z}_{q} of the same type such that $a_{i, j}^{\prime}$ is the residue of $a_{i, j}$ modulo q.

Theorem 1. Let q be a prime and $f(x), g(x)$ be polynomials with integer coefficients that are not identically zero in \mathbb{Z}_{q}. If the system of congruences $f(x) \equiv 0(\bmod q)$ and $g(x) \equiv 0(\bmod q)$ has ℓ solutions, then $R(f(x), g(x)) \equiv 0\left(\bmod q^{\ell}\right)$.

Proof. Let $\operatorname{deg} f=n$ and $\operatorname{deg} g=m$. Then we have that the system $f(x) \equiv g(x) \equiv$ $0(\bmod q)$ has ℓ solutions by the theorem conditions and $\ell \leq \min [n, m]$ as the polynomials are not identically zero in \mathbb{Z}_{q}. Let $r_{k}(x)=r_{k, n-1} x^{n-1}+\cdots+r_{k, 0}$ be the remainder of $x^{k} g(x)$ modulo $f(x)$, i.e., $x^{k} g(x)=v_{k}(x) f(x)+r_{k}(x)$, where $v_{k}(x)$ is some polynomial and $\operatorname{deg}\left(r_{k}\right) \leq n-1$. Then we get the system of congruences

$$
\left(\begin{array}{cccc}
r_{n-1, n-1} & r_{n-1, n-2} & \cdots & r_{n-1,0} \tag{3}\\
r_{n-2, n-1} & r_{n-2, n-2} & \cdots & r_{n-2,0} \\
\vdots & & & \vdots \\
r_{0, n-1} & r_{0, n-2} & \cdots & r_{0,0}
\end{array}\right)\left(\begin{array}{c}
x^{n-1} \\
x^{n-2} \\
\vdots \\
1
\end{array}\right) \equiv\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \quad(\bmod q)
$$

This system has at least ℓ solutions, since each congruence of (3) is derived from $f(x) \equiv 0(\bmod q)$ and $g(x) \equiv 0(\bmod q)$. Let $A=\left(a_{i, j}\right)$ be a matrix of the system (3). With the help of the procedure analogous to row reduction using operations of swapping the rows and adding a multiple of one row to another row, we can reduce A to a matrix A_{1} with integer coefficients such that $\operatorname{det}(A)= \pm \operatorname{det}\left(A_{1}\right)$ and $A_{1}^{<q>}$ is an upper triangular matrix. We can see that each solution of the system (3) is also a solution of the following system over \mathbb{Z}_{q} :

$$
\left(A_{1}^{<q>}\right)\left(\begin{array}{c}
x^{n-1} \tag{4}\\
x^{n-2} \\
\vdots \\
1
\end{array}\right) \equiv\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \quad(\bmod q)
$$

so (4) has at least ℓ solutions. Note that the last ℓ congruences of (4) have degrees less than ℓ. On the other hand, these congruences have at least ℓ solutions. Hence all these congruences must be congruences with zero coefficients, i.e., the last ℓ rows of $A_{1}^{<q>}$ are zero rows. Therefore, all elements of the last ℓ rows of A_{1} are divisible by q, so $\operatorname{det}(A)= \pm \operatorname{det}\left(A_{1}\right)$ is divisible by q^{ℓ}. Thus, by Lemma 1 we have $R(f, g) \equiv 0\left(\bmod q^{\ell}\right)$.

Remark. If one or both polynomials equal zero in \mathbb{Z}_{q}, then by property (i) we obtain that either $R(f, g) \equiv 0\left(\bmod q^{n}\right)$ or $R(f, g) \equiv 0\left(\bmod q^{m}\right)$. We do not consider this trivial case in Theorem 1.
Example. Let $f(x)=x^{6}+1, g(x)=(x+1)^{6}+1$. The system of congruences $x^{6}+1 \equiv 0(\bmod 13)$ and $(x+1)^{6}+1 \equiv 0(\bmod 13)$ has three solution in \mathbb{Z}_{13} : $x=5,6,7$. The matrix of the system (3) for these polynomials is:

$$
A=\left(\begin{array}{cccccc}
1 & -6 & -15 & -20 & -15 & -6 \tag{5}\\
6 & 1 & -6 & -15 & -20 & -15 \\
15 & 6 & 1 & -6 & -15 & -20 \\
20 & 15 & 6 & 1 & -6 & -15 \\
15 & 20 & 15 & 6 & 1 & -6 \\
6 & 15 & 20 & 15 & 6 & 1
\end{array}\right)
$$

Since the resulting echelon form of matrices after row reduction is not unique, we obtain the reduced row echelon form of the matrix A, which is unique:

$$
A_{1}^{<13>}=\left(\begin{array}{cccccc}
1 & 7 & 11 & 6 & 11 & 7 \tag{6}\\
0 & 1 & 9 & 11 & 1 & 11 \\
0 & 0 & 1 & 8 & 3 & 11 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & 7 & 4 & 8 \\
0 & 1 & 0 & 4 & 0 & 3 \\
0 & 0 & 1 & 8 & 3 & 11 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

So we get $\operatorname{det} A \equiv 0\left(\bmod 13^{3}\right)$ and $R\left(x^{6}+1,(x+1)^{6}+1\right) \equiv 0\left(\bmod 13^{3}\right)$. This resultant is actually equal to $2^{4} \times 5 \times 13^{3}$.

Corollary 1. Let q be a prime and $f(x), g(x)$ be polynomials of degrees n and m, respectively, with integer coefficients that are not identically zero in \mathbb{Z}_{q}. Let A be a matrix of the system (3) for $f(x), g(x)$. If $\operatorname{Rank} A=p$ in \mathbb{Z}_{q}, then $R(f, g) \equiv 0$ $\left(\bmod q^{n-p}\right)$. If the system $f(x) \equiv g(x) \equiv 0(\bmod q)$ has ℓ solutions, then $n-p \geq \ell$. Moreover, if M is any $k \times k$ minor of the matrix A and $k>p$, then $M \equiv 0$ $\left(\bmod q^{k-p}\right)$.

Proof. This follows from Theorem 1.
The question about the relation of the multiplicity of q as a factor of $R(f, g)$ and the degree of common factor of the polynomials f and g modulo q was studied in [2]. This question is closely related to Theorem 1 and first appeared in [5].

3. The Congruences Involving the Terms of the Lucas Sequences

Theorem 2. Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$ be a polynomial of degree n with integer coefficients and q be an odd prime. Let $a_{0} \not \equiv 0(\bmod q)$ and let the congruence $f(x) \equiv 0(\bmod q)$ have ℓ solutions. Then

$$
\begin{equation*}
R\left(f(x), x^{q-1}-1\right) \equiv a_{n}^{q-1} \prod_{i=1}^{n}\left(\alpha_{i}^{q-1}-1\right) \equiv 0 \quad\left(\bmod q^{\ell}\right) \tag{7}
\end{equation*}
$$

where α_{i} are the roots of $f(x)$, each repeated according to its multiplicity.
Proof. Consider $R\left(f(x), x^{q-1}-1\right)$. Since $f(x)=a_{n} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$, then

$$
\begin{equation*}
R\left(f(x), x^{q-1}-1\right)=a_{n}^{q-1} \prod_{i=1}^{n}\left(\alpha_{i}^{q-1}-1\right) \tag{8}
\end{equation*}
$$

We know that q is an odd prime, so the congruence $x^{q-1}-1 \equiv 0(\bmod q)$ has $q-1$ solutions (zero is not one of them). On the other hand, the congruence
$f(x) \equiv 0(\bmod q)$ has ℓ nonzero solutions, as $a_{0} \not \equiv 0(\bmod q)$. Hence the system of congruences $f(x) \equiv x^{q-1}-1 \equiv 0(\bmod q)$ also has ℓ solutions. Then by Theorem 1 we have $R\left(f(x), x^{q-1}-1\right) \equiv 0\left(\bmod q^{\ell}\right)$.

Theorem 3. Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$ be a polynomial of degree n with integer coefficients and q be an odd prime. Let $a_{0} \not \equiv 0(\bmod q)$ and let the congruence $f(x) \equiv 0(\bmod q)$ have ℓ solutions. If b solutions of them are quadratic residues modulo q, then

$$
\begin{equation*}
R\left(f(x), x^{\frac{q-1}{2}}-1\right) \equiv a_{n}^{\frac{q-1}{2}} \prod_{i=1}^{n}\left(\alpha_{i}^{\frac{q-1}{2}}-1\right) \equiv 0 \quad\left(\bmod q^{b}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
R\left(f(x), x^{\frac{q-1}{2}}+1\right) \equiv a_{n}^{\frac{q-1}{2}} \prod_{i=1}^{n}\left(\alpha_{i}^{\frac{q-1}{2}}+1\right) \equiv 0 \quad\left(\bmod q^{\ell-b}\right) \tag{10}
\end{equation*}
$$

where α_{i} are the roots of $f(x)$, each repeated according to its multiplicity.
Proof. Consider $R\left(f(x), x^{\frac{q-1}{2}}-1\right)$. Since $f(x)=a_{n} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$, then

$$
\begin{equation*}
R\left(f(x), x^{\frac{q-1}{2}}-1\right)=a_{n}^{\frac{q-1}{2}} \prod_{i=1}^{n}\left(\alpha_{i}^{\frac{q-1}{2}}-1\right) \tag{11}
\end{equation*}
$$

We know that $f(x) \equiv 0(\bmod q)$ has b nonzero solutions which are quadratic residues modulo q. Hence the system of congruences $f(x) \equiv x^{\frac{q-1}{2}}-1 \equiv 0(\bmod q)$ has b solutions. Then by Theorem 1 we have $R\left(f(x), x^{q-1}-1\right) \equiv 0\left(\bmod q^{b}\right)$. Since $\ell-b$ solutions of $f(x) \equiv 0(\bmod q)$ are quadratic nonresidues modulo q, then by analogy we prove that $R\left(f(x), x^{\frac{q-1}{2}}+1\right) \equiv 0\left(\bmod q^{\ell-b}\right)$.

As an illustration of applications of Theorem 1 we consider the following theorem.
Theorem 4. Let q be an odd prime and P, Q be any integers such that $Q \not \equiv 0$ $(\bmod q)$. If the Legendre symbol $\left(\frac{P^{2}-4 Q}{q}\right)$ is equal to 1 , then

$$
\begin{gather*}
V_{q-1}(P, Q) \equiv Q^{q-1}+1 \quad\left(\bmod q^{2}\right) \tag{12}\\
V_{\frac{q-1}{2}}^{2}(P, Q) \equiv\left(Q^{\frac{q-1}{2}}+1\right)^{2} \quad\left(\bmod q^{2}\right) \tag{13}
\end{gather*}
$$

where $V_{n}(P, Q)$ is the n-th term of the Lucas sequence defined by the recurrence relation

$$
\begin{equation*}
V_{0}=2, \quad V_{1}=P, \quad V_{i}=P V_{i-1}-Q V_{i-2}, \quad i \geq 2 \tag{14}
\end{equation*}
$$

Proof. The roots of $x^{2}-P x+Q$ are $\alpha_{1}=\frac{P-\sqrt{P^{2}-4 Q}}{2}, \alpha_{2}=\frac{P+\sqrt{P^{2}-4 Q}}{2}$. Hence $R\left(x^{2}-P x+Q, x^{q-1}-1\right)=\left(\alpha_{1} \alpha_{2}\right)^{q-1}-\left(\alpha_{1}^{q-1}+\alpha_{2}^{q-1}\right)+1=1+Q^{q-1}-V_{q-1}(P, Q)$.

Since we know $\left(\frac{P^{2}-4 Q}{q}\right)=1$ and $Q \not \equiv 0(\bmod q)$, then the system of congruences $x^{2}-P x+Q \equiv x^{q-1}-1 \equiv 0(\bmod q)$ has two solutions. So by Theorem 1 we have $1+Q^{q-1}-V_{q-1}(P, Q) \equiv 0\left(\bmod q^{2}\right)$, thus we get (12). Now using the identity $V_{2 n}(P, Q)=V_{n}^{2}(P, Q)-2 Q^{n}$, we obtain (13).

Note that the congruences (12) and (13) are well-known $[6,8,9]$, but here we give an alternative completely independent proof of these results.
Corollary 2. Let q be an odd prime and k, P, Q be any integers such that $k^{2}+$ $P k+Q \not \equiv 0(\bmod q)$. If $\left(\frac{P^{2}-4 Q}{q}\right)=1$, then

$$
\begin{array}{r}
V_{q-1}\left(P+2 k, k^{2}+P k+Q\right) \equiv\left(k^{2}+P k+Q\right)^{q-1}+1 \quad\left(\bmod q^{2}\right) \\
V_{\frac{q-1}{2}}^{2}\left(P+2 k, k^{2}+P k+Q\right) \equiv\left(\left(k^{2}+P k+Q\right)^{\frac{q-1}{2}}+1\right)^{2} \quad\left(\bmod q^{2}\right) \tag{16}
\end{array}
$$

Proof. Since $(P+2 k)^{2}-4\left(k^{2}+P k+Q\right)=P^{2}-4 Q$, this corollary follows from Theorem 4.

3.1. The Congruences Involving the Lucas Numbers

Let $P=1, Q=-1$ and $\left(\frac{5}{q}\right)=1$, i.e., by the Quadratic Reciprocity Law $q \equiv \pm 1$ $(\bmod 5)$. Let an integer k satisfy $k^{2}+k-1 \not \equiv 0(\bmod q)$, then by Corollary 2

$$
\begin{gather*}
V_{q-1}\left(1+2 k, k^{2}+k-1\right) \equiv\left(k^{2}+k-1\right)^{q-1}+1 \quad\left(\bmod q^{2}\right) \tag{17}\\
V_{\frac{q-1}{2}}^{2}\left(1+2 k, k^{2}+k-1\right) \equiv\left(k^{2}+k-1\right)^{q-1}+2\left(k^{2}+k-1\right)^{\frac{q-1}{2}}+1 \quad\left(\bmod q^{2}\right) . \tag{18}
\end{gather*}
$$

If $k=0$, then

$$
\begin{gather*}
L_{q-1} \equiv 2 \quad\left(\bmod q^{2}\right) \tag{19}\\
L_{\frac{q-1}{2}}^{2} \equiv 2+2(-1)^{\frac{q-1}{2}} \quad\left(\bmod q^{2}\right) \tag{20}
\end{gather*}
$$

where L_{n} is the n-th Lucas number.

3.2. The Congruences Involving the Pell-Lucas Numbers

Let $P=2, Q=-1$ and $\left(\frac{8}{q}\right)=1$, i.e., by the Quadratic Reciprocity Law $q \equiv \pm 1$ $(\bmod 8)$. Let an integer k satisfy $k^{2}+2 k-1 \not \equiv 0(\bmod q)$, then by Corollary 2

$$
\begin{gather*}
V_{q-1}\left(2+2 k, k^{2}+2 k-1\right) \equiv\left(k^{2}+2 k-1\right)^{q-1}+1 \quad\left(\bmod q^{2}\right) \tag{21}\\
V_{\frac{q-1}{2}}^{2}\left(2+2 k, k^{2}+2 k-1\right) \equiv\left(k^{2}+2 k-1\right)^{q-1}+2\left(k^{2}+2 k-1\right)^{\frac{q-1}{2}}+1 \quad\left(\bmod q^{2}\right) . \tag{22}
\end{gather*}
$$

If $k=0$, then

$$
\begin{equation*}
\widetilde{P}_{q-1} \equiv 2 \quad\left(\bmod q^{2}\right) \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{P}_{\frac{q-1}{2}}^{2} \equiv 2+2(-1)^{\frac{q-1}{2}} \quad\left(\bmod q^{2}\right) \tag{24}
\end{equation*}
$$

where \widetilde{P}_{n} is the n-th Pell-Lucas number defined by:

$$
\begin{equation*}
\widetilde{P}_{0}=2, \quad \widetilde{P}_{1}=2, \quad \widetilde{P}_{i}=2 \widetilde{P}_{i-1}+\widetilde{P}_{i-2}, \quad i \geq 2 \tag{25}
\end{equation*}
$$

Acknowledgments. The author would like to thank Prof. K.A. Sveshnikov and Prof. R.M. Kolpakov for valuable suggestions. Also, the author is indebted to the referee for many useful comments.

References

[1] P.M. Cohn, Algebra, Vol. 1, Wiley, New York, 1980.
[2] D. Gómez-Pérez, J. Gutierrez, A. Ibeas and D. Sevilla. Common factors of resultants modulo p, Bull. Aust. Math. Soc. 79 (2009), 299-302.
[3] C. Helou, G. Terjanian, Arithmetical properties of wendt's determinant, Journal of Number Theory 115 (2005), 45-57.
[4] S. Janson, Resultant and discriminant of polynomials, Notes, September, 22 (2007).
[5] S. V. Konyagin and I. Shparlinski. Character Sums with Exponential Functions and their Applications, Cambridge University Press (1999).
[6] R. J. McIntosh, E. L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp. 76 (2007), 2087-2094.
[7] P. Ribenboim, Fermat's Last Theorem for Amateurs, Springer, New York, 1999.
[8] Z.-H. Sun, Z.-W. Sun, Fibonacci numbers and Fermats last theorem, Acta Arith 60 (1992), 371-388.
[9] Z.W. Sun, R. Tauraso, New congruences for central binomial coefficients, Adv. in Appl. Math.
[10] B.L. van der Waerden, Algebra, vol. 1, F. Ungar Pub. Co., New York, 1977.

