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Abstract
The combinatorial sum of binomial coe�cients
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has been studied widely in combinatorial number theory, especially when a = 1 and
a = �1. In this paper, we connect it with integer factorization for the first time.
More precisely, given a composite n, we prove that for any a coprime to n there exists
a modulus r such that the combinatorial sum has a nontrivial greatest common
divisor with n. Denote by FAC(n, a) the least r. We present some elementary upper
bounds for it and believe that some bounds can be improved further since FAC(n, a)
is usually much smaller in the experiments. We also proposed an algorithm based
on the combinatorial sum to factor integers. Unfortunately, it does not work as
well as the existing modern factorization methods. However, our method yields
some interesting phenomena and some new ideas to factor integers, which makes it
worthwhile to study further.

1. Introduction

Let n, i, r and a be integers with n > 0 and r > 0. Consider the sum of binomial
coe�cients 
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where
�n

k

�
is the binomial coe�cient with the convention

�n
k

�
= 0 for k < 0 or

k > n. The combinatorial sum has been studied widely in combinatorial number
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theory and many of its properties have been explored. For example, Weisman [18]
proved that for any prime p and any positive integer ↵,


n

n� i

�
p↵

(�1) ⌘ 0 (mod p

j
n

p↵�1(p�1)

k
�1).

Furthermore, Sun [13] showed that for ↵ > 1 and a ⌘ �1 (mod p),


n
n� i

�
p↵

(a) ⌘ 0 (mod pb
n�p↵�1

'(p↵) c).

Other results about the combinatorial sum can be found in [12, 14, 15, 16].
However, we have to point out that the exact value of the combinatorial sum

seems hard to obtain for general r, even when a = 1 or a = �1. For example,
Sun [9, 10, 11] studied the values of the combinatorial sum for a = 1, when r =
3, 4, 5, 6, 8, 9, 10, 12, 16. Among them, the values are explicitly given just for r =
3, 4, 6, whereas the other values are implicitly given by some Lucas sequences.

Note that the former works are combinatorial in nature, which aim to obtain
congruences or combinatorial identities. In this paper, we connect the combinatorial
sum with integer factorization for the first time.

It is well-known that the integer factorization problem is one of the most famous
computational problems, as written by Gauss (Disquisitiones Arithmeticae, 1801,
art. 329):

“The problem of distinguishing prime numbers from composite numbers, and of
resolving the latter into their prime factors is known to be one of the most important
and useful in arithmetic. It has engaged the industry and wisdom of ancient and
modern geometers to such an extent that it would be superfluous to discuss the
problem at length. ... Further, the dignity of the science itself seems to require
that every possible means be explored for the solution of a problem so elegant and
so celebrated ...”

In 2004, Agrawal, Kayal and Saxena [1] gave a deterministic polynomial-time
algorithm to test the primality of a number, which solved the problem of distin-
guishing prime numbers from composite numbers in theory. However, the problem
of resolving composite numbers into their prime factors seems far from being solved,
since the best known algorithm to factor integers, the number field sieve method
[6], takes subexponential time.

In this paper, we propose a new algorithm to factor integers based on the com-
binatorial sum. The key observation is that for any composite n and any integer a
coprime to n, there always exists a modulus r less than n such that the combina-

torial sum
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(a) has a nontrivial greatest common divisor (gcd) with n. By

computing the greatest common divisor, a nontrivial divisor of n can be obtained
easily.
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Note that the combinatorial sum can be computed e�ciently for fixed a and r as
in [1]. It remains to show how to find the modulus r for some fixed a. A natural way
is to check every r from 1 to n by deciding whether the corresponding combinatorial
sum has a nontrivial greatest common divisor with n or not. It is obvious that the
time complexity of this procedure depends on the size of r. We denote by FAC(n, a)
the least r such that the sum has a nontrivial greatest common divisor with n, and
call it the factorization number of n with respect to a. For any even composite,
which is of course easy to be factored, we find that the factorization number is
at most 3 when a = ±1, which means that the even composite can also be easily
factored with our algorithm. For the RSA modulus, which is considered hard to be
factored, we present some elementary upper bounds for the factorization number.
However, our bounds seem rather rough since the experiments show that FAC(n, a)
is usually much smaller than the bounds. Hence, we believe that the bounds can
be improved further in theory.

Due to lack of good mathematical tools to deal with the combinatorial sum, we
do not know how to estimate the factorization number FAC(n, a) as well as possible
when a is fixed. Furthermore, we do not know how to estimate mina FAC(n, a)
where a runs over some specific set either. We conjecture that both of the two
questions are very di�cult and propose them as open problems.

We also implemented our algorithm to factor integers. Unfortunately, it did not
work as well as the existing modern factorization methods, such as the number field
sieve method. However, our method yields some interesting phenomena and some
new ideas to factor integers, which makes it worthwhile to study further.

The paper is organized as follows. We give the definition of the factorization
number of a composite in Section 2. We give some properties for the factorization
number of an even composite in Section 3. In Section 4, we prove some elementary
upper bounds for the factorization number of an RSA modulus. We list some ex-
perimental results in Section 5. Finally, a short conclusion and some open problems
are given in Section 6.

2. The Factorization Number of a Composite

2.1. The Combinatorial Sum and its Proposition

Definition 2.1. Let n, r, i and a be integers with n > 0 and r > 0. We define the
combinatorial sum of binomial coe�cients as
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For simplicity, we define 
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(1).

The following lemma is useful to compute
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r

(a) when r is small.

Lemma 2.2. Let ⇣ 2 C be a primitive r-th root of unity. Then for 0  i  r � 1,
we have 
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(a) =
1
r

r�1X
j=0

(⇣j + a)n(⇣j)�i.

Proof. Since (X + a)n =
Pn

i=0

�n
i

�
an�iXi, we have

r�1X
j=0

(⇣j + a)n(⇣j)�i =
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⇣(s�i)j

= r ·
X

0sn

s⌘i (mod r)
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s

◆
an�s.

The lemma follows.

2.2. Integer Factorization and the Factorization Number of a Composite

Given a composite number n > 1, integer factorization refers to the question of
finding a nontrivial divisor d of n, i.e., d | n and 1 < d < n.

To factor a composite n, we observe the following:

Proposition 2.3. For any positive composite n, there exists an integer j with
1 < j < n� 1 such that 1 < gcd(n,

�n
j

�
) < n.

Proof. To prove the proposition, we consider the following two cases.

Case 1. n has a square divisor. Assume n has a prime divisor p such that pk k n
with k > 1, i.e., pk | n but pk+1 - n. Notice that✓

n

p

◆
=

n(n� 1)(n� 2) · · · (n� p + 1)
p!

.

Since p - (n� i) for 1  i  p� 1, we have pk�1 k
�n

p

�
. Hence 1 < gcd(n,

�n
p

�
) < n.

Case 2. n is square-free. Let p and q be two prime divisors of n with p < q. As in
the first case, it can be concluded that p -

�n
p

�
but q |

�n
p

�
. Hence 1 < gcd(n,

�n
p

�
) <

n.
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Note that every
�n

j

�
is a coe�cient of the polynomial (X + 1)n. By Proposition

2.3, a natural way to obtain a nontrivial divisor of n is expanding (X + 1)n, and
then computing each greatest common divisor of its coe�cients and n. However,
this will take exponential time since there are a total of n coe�cients. To reduce
the time complexity, we turn to employ another polynomial

(X + a)n ⌘
r�1X
i=0

aiX
i mod (Xr � 1, n),

as considered in [1], which yields the definition of the factorization-friendly number
of n.

Definition 2.4. Let n be a positive composite, a be an integer coprime to n, and
r be a positive integer. Consider the polynomial with an indeterminate X:

(X + a)n ⌘
r�1X
i=0

aiX
i mod (Xr � 1, n),

where ai’s are integers with 0  ai  n�1 for 0  i  r�1. We call r a factorization-
friendly number of n with respect to a if there exists an i with 0  i  r � 1 such
that gcd(n, ai) is a nontrivial divisor of n.

By Definition 2.4, it is easy to conclude that for 0  i  r � 1, we have

ai ⌘


n
i

�
r

(a) (mod n).

Next we show that the factorization-friendly number of n with respect to an
arbitrary a coprime to n must exist.

Proposition 2.5. For any positive composite n and an integer a coprime to n,
n� 1 is a factorization-friendly number of n with respect to a.

Proof. Since

(X + a)n =
nX

i=0

✓
n

i

◆
an�iXi,

we have

(X + a)n ⌘ an + X +
n�2X
i=2

✓
n

i

◆
an�iXi mod (Xn�1 � 1, n).

The result follows by Proposition 2.3.



INTEGERS: 16 (2016) 6

By Proposition 2.5, we can always factor n by computing the corresponding
n � 1 coe�cients. Unfortunately, it will take exponential time too. Generally
speaking, for any factorization-friendly number r, it will take eO (r log2 n) time (see
[17]) to obtain all the ai’s in Definition 2.4. Therefore, we are interested in the least
factorization-friendly number of n.

Definition 2.6. For any positive composite n and an integer a coprime to n, the
least factorization-friendly number of n with respect to a is called the factorization
number of n with respect to a and is denoted by FAC(n, a).

By Proposition 2.5, we immediately have

Proposition 2.7. For any positive composite n and an integer a coprime to n, we
have FAC(n, a)  n� 1.

To find the exact value of FAC(n, a), a natural way is to check every r from 1 to
n� 1, which yields a new algorithm to factor a composite n.

Input: a composite n.
Output: a nontrivial divisor d of n.
1. Choose some a 2 [2, n� 1], if 1 < d = gcd(a, n) < n, output d.
2. Otherwise, for r from 1 to n� 1 do 3–4:
3. expand (X + a)n mod (Xr � 1, n) as

Pr�1
i=0 aixi,

4. compute each greatest common divisor di of ai and n. If 1 < di < n, output di.

We remark that the time complexity of the algorithm depends on the size of
FAC(n, a).

3. The Factorization Number of an Even Composite Number

In this section, we show that the factorization number of an even composite number
is usually very small when a = ±1.

3.1. The Factorization Number of an Even Composite Number
when a = 1

Let

(X + 1)n ⌘
r�1X
i=0

aiX
i mod (Xr � 1, n).

Note that for 0  i  r � 1, we have

ai ⌘


n
i

�
r

(mod n).
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The statements in the following proposition are well-known. The first two are
easy to check, and we omit their proof. The third statement is well-known, but for
completeness we provide a proof.

Proposition 3.1. Let n be any positive integer. Then we have:

(1) for r = 1,


n
0

�
1

= 2n;

(2) for r = 2,


n
0

�
2

=


n
1

�
2

= 2n�1;

(3) for r = 3,


n
0

�
3

=
1
3

⇣
2n + 2 cos

⇣n⇡

3

⌘⌘
,


n
1

�
3

=
1
3

✓
2n + 2 cos

✓
(n� 2)⇡

3

◆◆
,


n
2

�
3

=
1
3

✓
2n + 2 cos

✓
(n + 2)⇡

3

◆◆
.

Proof of (3). Set i =
p
�1. By Lemma 2.2, let ⇣ be a primitive 3-rd root of unity.

Then we know

⇣ = �1
2

+
p

3
2

i, ⇣2 = �1
2
�
p

3
2

i,

and

1 + ⇣ =
1
2

+
p

3
2

i = ei ⇡
3 , 1 + ⇣2 =

1
2
�
p

3
2

i = e�i ⇡
3 .

Thus, we have
(1 + ⇣)n = ei n⇡

3 , (1 + ⇣2)n = e�i n⇡
3 ,

which implies


n
0

�
3

=
1
3

2X
j=0

(1 + ⇣j)n =
1
3
�
2n + ei n⇡

3 + e�i n⇡
3
�

=
1
3

⇣
2n + 2 cos

⇣n⇡

3

⌘⌘
.

Similarly, we have


n
1

�
3

=
1
3

2X
j=0

(1 + ⇣j)n⇣�j =
1
3

✓
2n + 2 cos

✓
(n� 2)⇡

3

◆◆
,


n
2

�
3

=
1
3

2X
j=0

(1 + ⇣j)n⇣�2j =
1
3

✓
2n + 2 cos

✓
(n + 2)⇡

3

◆◆
.
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Theorem 3.2. Let n be a positive composite number. We have:

(1) if n is even and n is not a power of 2, then FAC(n, 1) = 1;

(2) if n is odd, then FAC(n, 1) � 3;

(3) if n is a power of 2, then FAC(n, 1) = 3.

Proof. By Proposition 3.1, it is easy to prove (1) and (2). It remains to prove (3).
Suppose n is a power of 2, i.e., n = 2m,m � 2. If m is even, then n ⌘ 1 (mod 3) and
n+2

3 is even. Thus a2 ⌘


n
2

�
3

= 1
3 (2n +2) (mod n), which implies gcd(n, a2) = 2.

If m is odd, we have gcd(n, a1) = 2 similarly.

The following proposition can be used to reduce the computation of greatest
common divisors.

Proposition 3.3. Let n, r be two positive integers and i be an integer. Then we
have 

n
i

�
r

=


n
n� i

�
r

.

Proof. We have 
n

n� i

�
r

=
X

0kn

k⌘n�i (mod r)

✓
n

k

◆

=
X

0n�kn

n�k⌘i (mod r)

✓
n

n� k

◆

=


n
i

�
r

.

3.2. The Factorization Number of an Even Composite Number
when a = �1

Let

(X � 1)n ⌘
r�1X
i=0

aiX
i mod (Xr � 1, n).

Note that for 0  i  r � 1, we have

ai ⌘


n
i

�
r

(�1) =
X

0kn

k⌘i (mod r)

✓
n

k

◆
(�1)n�k (mod n).



INTEGERS: 16 (2016) 9

Proposition 3.4. Let n be any positive integer. Then we have:

(1) for r = 1,


n
0

�
1

(�1) = 0;

(2) for r = 2,


n
0

�
2

(�1) = (�1)n2n�1 and


n
1

�
2

(�1) = (�1)n�12n�1;

(3) for r = 3,


n
0

�
3

(�1) =3
n
2�1 · 2 cos

✓
5n⇡

6

◆
,


n
1

�
3

(�1) =3
n
2�1 · 2 cos

✓
(5n� 4)⇡

6

◆
,


n
2

�
3

(�1) =3
n
2�1 · 2 cos

✓
(5n� 8)⇡

6

◆
.

Proof. The proof is similar to the one of Proposition 3.1 and we omit the details.

Theorem 3.5. Let n be a positive composite number. We have:

(1) if n is even and n is not a power of 2, then FAC(n,�1) = 2;

(2) if n is odd, then FAC(n,�1) � 3;

(3) if n is a power of 2, then FAC(n,�1) = 3.

Proof. By Proposition 3.4, it is easy to prove (1) and (2). It remains to prove
(3). Suppose n is a power of 2, i.e., n = 2m,m � 2. Then 5n�4

6 = 5·2m�1�2
3

and 5n�8
6 = 5·2m�1�4

3 . It is easy to conclude that either 5n�4
6 or 5n�8

6 must be

even, thus either


n
1

�
3

(�1) or


n
2

�
3

(�1) is 2 · 32m�1�1. Hence we have either

gcd(n, a1) = 2 or gcd(n, a2) = 2.

Similar to Proposition 3.3, we have

Proposition 3.6. Let n, r be two positive integers, and i be an integer. Then we
have 

n
i

�
r

(�1) = (�1)n ·


n
n� i

�
r

(�1).
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4. The Factorization Number of an RSA Modulus

In this section, we consider the factorization number of an RSA modulus. An RSA
modulus n is a product of two distinct odd primes, that is, n = pq where p < q are
two distinct odd primes. The RSA modulus n = pq where p < q are two distinct
big odd primes with the same number of bits is considered hard to be factored. To
analyze the time complexity of our algorithm for an RSA modulus n, we present
some upper bounds for FAC(n, a). First, we introduce some useful results.

4.1. Some Useful Results

Theorem 4.1 (Lucas’ Theorem). For any prime p, suppose a = a0 +a1p+ · · ·+
akpk, b = b0 + b1p + · · · + bkpk, where 0  ai, bi < p for i = 0, 1, . . . , k. Then we
have ✓

a

b

◆
⌘

kY
i=0

✓
ai

bi

◆
(mod p).

See [2] for a proof of Lucas’ Theorem.

Lemma 4.2. For any positive integer n > 1, let m be an integer satisfying 0 <
m < n and gcd(n,m) = 1. Then we have n |

�n
m

�
.

Proof. Notice that
✓

n

m

◆
=

n!
m!(n�m)!

=
n

m
· (n� 1)!
(m� 1)!(n�m)!

=
n

m
·
✓

n� 1
m� 1

◆

is an integer and
�n�1
m�1

�
is also an integer. We have m | n

�n�1
m�1

�
. Since gcd(n,m) = 1,

we have m |
�n�1
m�1

�
, which yields n |

�n
m

�
.

Lemma 4.3. Suppose n = pq, where p < q are two distinct odd primes. Then we
have

(1) for 0 < i < q, q |
�n
pi

�
;

(2) for 0 < j < p, p |
�n
qj

�
but q -

�n
qj

�
.

Proof. Since q - pi for 0 < i < q, we have q |
�n
pi

�
by Lucas’ Theorem. Similarly, we

have p |
�n
qj

�
for 0 < j < p. For 0 < j < p, we have

�n
qj

�
⌘
�p

j

�
(mod q) by Lucas’

Theorem. Since p < q, we have q -
�p

j

�
. Hence q -

�n
qj

�
for 0 < j < p.
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4.2. The Factorization Number of an RSA Modulus

Now we present some upper bounds for FAC(n, 1), where n is an RSA modulus.
First we show that

Theorem 4.4. For an RSA modulus n = pq with p < q, p is a factorization-friendly
number of n with respect to 1, which yields FAC(n, 1)  p <

p
n.

Proof. It is su�cient to prove that p is a factorization-friendly number of n with
respect to 1. Write q = ap + k, where a > 0 and 0 < k < p. We will prove the
theorem by showing that

gcd

 
n,


n
k

�
p

!
= p.

Set I = {k + ps | s 2 Z, 0  k + ps  n}. Obviously, 0, n and pi(0 < i < q) are
not in I but q is in I. If qj is in I for some j with 0 < j < p, then k ⌘ qj ⌘ kj
(mod p), which yields j ⌘ 1 (mod p), that is, j = 1. Hence q 2 I and the other
elements in I are coprime to n. By Lemma 4.2, we have

n
k

�
p

=
X

0tn

t⌘k (mod p)

✓
n

t

◆
⌘
✓

n

q

◆
(mod n).

By Lemma 4.3, we have p |
�n

q

�
but q -

�n
q

�
. Hence gcd

 
n,


n
k

�
p

!
= p.

Together with Theorem 3.2, we have

Corollary 4.5. For an integer n = 3q where q > 3 is a prime, we have FAC(n, 1) =
3.

In fact, we can do a little better.

Theorem 4.6. Let n = pq be an RSA modulus with p < q < 2p, and c be a positive
integer such that 3c  2p� q � 1. Then p� c is a factorization-friendly number of
n with respect to 1, which yields FAC(n, 1)  p� c.

Proof. Write q = p+k, where 0 < k < p. Since k is even, we have p � 3c+3, which
yields c + 1 < p� c and k + c < p� c. It is easy to show that gcd(p� c, c) = 1 since
(p� c) + c = p is a prime. Hence the set {�ci (mod p� c) | i = 1, 2, . . . , c + 1} has
exactly c+1 elements. Similarly, it can be shown that gcd(p� c, k + c) = 1 and the
set {(k + c)j (mod p � c) | j = 1, 2, . . . , c} has c elements. Thus there must exist
an element a in the first set but not in the second set. Let a ⌘ �ci1 (mod p � c)
with 1  i1  c + 1 and 0 < a < p� c.

Set I = {a + (p � c)s | s 2 Z, 0  a + (p � c)s  n}. Obviously, 0 /2 I.
Since n = pq ⌘ c(k + c) (mod p � c), we have n /2 I by the choice of a. For
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0 < i < q, if pi 2 I, then pi ⌘ a (mod p � c). We have ci ⌘ �ci1 (mod p � c),
which implies i ⌘ �i1 (mod p � c). Hence i = p � c � i1 + (p � c)s, s � 0. Since
p�c� i1 +p�c = 2p�2c� i1 � 2p�3c�1 � p+k = q, we have i = p�c� i1 , i0,
which means that for 0 < i < q only pi0 2 I. For 0 < j < p, if qj 2 I, then qj ⌘ a
(mod p�c). We have (k+c)j ⌘ a (mod p�c). The equation has a unique solution
j0 with 0  j0 < p� c. We know j0 � c +1 by the choice of a. Since j0 + p� c > p,
we have j = j0, which means that for 0 < j < p only qj0 2 I. Thus, we get

n
a

�
p�c

⌘
✓

n

pi0

◆
+
✓

n

qj0

◆
(mod n).

By Lemma 4.3, we have

q -


n
a

�
p�c

.

Since q � i0 + 1  p, we have p |
� n
pi0

�
, which implies

p |


n
a

�
p�c

.

Hence, we have

gcd

 
n,


n
a

�
p�c

!
= p.

Therefore p� c is a factorization-friendly number of n with respect to 1.

Corollary 4.7. Let n = pq be an RSA modulus with p < q < 2p. Write q = p + k
with 0 < k < p. If k < "p for some 0 < " < 1 and p � 3

1�" , then FAC(n, 1) 
p� b1�"

3 pc t 2+"
3 p.

Proof. Put c = b1�"
3 pc and then the result follows by Theorem 4.6.

Theorem 4.8. Let n = pq be an RSA modulus with p < q < 2p. Write q = p + k
with 0 < k < p. If n ⌘ �1 (mod 4) and 2 < k < 2

3p, then r := p
2 + 3

4k is
a factorization-friendly number of n with respect to 1, which yields FAC(n, 1) 
p
2 + 3

4k.

Proof. Since n ⌘ �1 (mod 4), it can be concluded that one of p and q is congruent
to 1 modulo 4, whereas the other is congruent to �1 modulo 4. Hence we have
k ⌘ 2 (mod 4), which yields that r is a positive integer and r < p.

Let a 2 Z satisfy 0  a < r and a ⌘ (r � 1)p (mod r). We have a > 0 since
r > 1. Set I = {a + rs | s 2 Z, 0  a + rs  n}. By a similar analysis as in the
proof of Theorem 4.6, we have p(r� 1) 2 I, q(r� 3) 2 I, and the other elements in
I are coprime to n. Thus

n
a

�
r

⌘
✓

n

p(r � 1)

◆
+
✓

n

q(r � 3)

◆
(mod n).
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Similarly, we have

gcd
✓

n,


n
a

�
r

◆
= p,

which implies that r is a factorization-friendly number of n with respect to 1.

Corollary 4.9. With notation as in Theorem 4.8, if we further suppose k < "p
with 0 < "  2

3 , then we have FAC(n, 1)  (1
2 + 3

4")p.

Remark 4.10. Comparing the bounds in Corollary 4.7 and Corollary 4.9, it is easy
to see that 2+"

3 = 1
2 + 3

4" when " = 2
5 , 2+"

3 < 1
2 + 3

4" when " > 2
5 , and 2+"

3 > 1
2 + 3

4"
when " < 2

5 .

Moreover, from the proofs of Theorems 4.4, 4.6 and 4.8 we know that there is only
one binomial coe�cient left when the combinatorial sum is reduced modulo p (or
modulo q). Therefore, all the bounds for FAC(n, 1) above hold also for FAC(n, a)
with a 2 Z coprime to n.

Finally, we have to point out that the upper bounds for FAC(n, 1) above are
rather rough, since our experiments show that FAC(n, 1) is usually much smaller
than p. See Section 5 for more details.

4.3. The Factorization Number of an RSA Modulus with Twin Primes

We next present two interesting results, which provide partial evidence of our con-
jecture that a number that can be easily factored by other methods can also be
easily factored by our method.

Theorem 4.11. Let n = pq be an RSA modulus. If q = p + 2, i.e., p and q are
twin primes, then we have FAC(n, 1)  6.

Proof. Since FAC(15, 1) = 3 by Corollary 4.5, we can assume p � 5. It is easy to
conclude that, there is a positive integer k such that p = 6k � 1 and q = 6k + 1.
Hence it can be shown that

n
2

�
6

⌘
X

0<i<q

i⌘4 (mod 6)

✓
n

pi

◆
+

X
0<j<p

j⌘2 (mod 6)

✓
n

qj

◆
(mod n).

By Lemma 4.3, we know p |
�n
qj

�
for each j with 0 < j < p. Moreover, for each i

with 0 < i < q and i ⌘ 4 (mod 6), we have 4  i  q � 3 = p � 1, which implies�n
pi

�
⌘
�q

i

�
=
�p+2

i

�
⌘
�1
0

��2
i

�
= 0 (mod p) by Lucas’ theorem. Thus

p |


n
2

�
6

.
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By Lemma 4.3, we have q |
�n
pi

�
for each i with 0 < i < q similarly. By Lucas’

theorem, we have
�n
qj

�
⌘
�p

j

�
(mod q) for each j with 0 < j < p. Hence


n
2

�
6

⌘


p
2

�
6

(mod q).

Notice that it can be concluded from [9] that
p
2

�
6

=
1
6
(1 + 2p � 3

p+1
2 ), for an even k,


p
2

�
6

=
1
6
(1 + 2p + 3

p+1
2 ), for an odd k.

By Euler’s criterion and the Quadratic Reciprocity Law of the Legendre symbol,
we know

3
p+1
2 = 3

q�1
2 ⌘

✓
3
q

◆
= (�1)(q�1)/2

⇣q

3

⌘
= (�1)k

✓
1
3

◆
= (�1)k (mod q).

Thus, in both cases, we have
p
2

�
6

⌘ 1
6
· 2p (mod q),

which implies q -


p
2

�
6

. Therefore, we have

q -


n
2

�
6

.

Finally, we get

gcd
✓

n,


n
2

�
6

◆
= p.

It is interesting that we can improve the bound in Theorem 4.11 for some n’s.

Theorem 4.12. Let n = pq be an RSA modulus. Suppose q = p + 2, i.e., p and q
are twin primes. If p > 5 and p ⌘ ±1 (mod 5), then FAC(n, 1)  5.

Proof. We first consider the case when p ⌘ 1 (mod 5), q ⌘ 3 (mod 5). It is easy to
conclude that 

n
4

�
5

⌘


q
4

�
5

(mod p),


n
4

�
5

⌘


p
3

�
5

(mod q).
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Define two sequences {ui}i�0, {vi}i�0 as follows:

u0 = 0, u1 = 1, ui+1 = ui + ui�1 for i � 1,
v0 = 2, v1 = 1, vi+1 = vi + vi�1 for i � 1.

Since the Legendre symbol
⇣

5
p

⌘
=
�p

5

�
=
�

1
5

�
= 1, we have vp�1 ⌘ 2 (mod p), up�1 ⌘

0 (mod p) and up ⌘ 1 (mod p) by a well-known result of the Fibonacci sequence
(see [4]). It follows that vq = vp+2 ⌘ 4 (mod p). Moreover, by a result of Sun [9],
we have

�2vq = 5


q
4

�
5

� 2q.

Hence we have p |


q
4

�
5

since 2q ⌘ 8 (mod p), which implies

p |


n
4

�
5

.

On the other hand, since the Legendre symbol
⇣

5
q

⌘
= �1, similarly we have

vq+1 ⌘ �2 (mod q), uq+1 ⌘ 0 (mod q) and uq ⌘ �1 (mod q), and it follows that

vp = vq�2 ⌘ 4 (mod q).

By a result of Sun [9], we have

�2vp = 5


p
3

�
5

� 2p.

Hence q -


p
3

�
5

, which implies

q -


n
4

�
5

.

Therefore,

gcd
✓

n,


n
4

�
5

◆
= p.

For the case p ⌘ �1(mod 5), the proof is similar.

Notice that for the case p ⌘ 2(mod 5), the experiments show that the bound 6
can not be replaced by 5.
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5. Experimental Results

We have done numerous experiments using NTL library [8]. These experiments show
the remarkable fact that FAC(n, a)’s, even FAC(n, 1)’s, are usually much smaller
than n, and they grow very slowly as n increases. In Table 1 we list some values of
FAC(n, 1)’s for n = pq where p and q have three digits.

n = pq F (1) n = pq F (1) n = pq F (1)
10403=101*103 5 10807=101*107 8 11009=101*109 13
11413=101*113 17 12827=101*127 21 13231=101*131 8
13837=101*137 22 14039=101*139 12 15049=101*149 21
15251=101*151 17 15857=101*157 18 16463=101*163 9
16867=101*167 15 17473=101*173 21 18079=101*179 12
18281=101*181 22 19291=101*191 20 19493=101*193 9
19897=101*197 13 20099=101*199 12 21311=101*211 9
251659=359*701 38 254531=359*709 17 258121=359*719 5
235247=367*641 20 235981=367*643 9 237449=367*647 12
255067=379*673 33 256583=379*677 51 258857=379*683 36
409763=593*691 25 415693=593*701 7 420437=593*709 15
563903=607*929 24 571187=607*941 43 586969=607*967 60
621787=701*887 52 536713=709*757 59 750187=757*991 72
812909=853*953 17 756731=857*883 33 782549=859*911 61
921551=953*967 17 936799=953*983 34 988027=991*997 9

Table 1

For a fixed n, di↵erent a’s will generally lead to distinct FAC(n, a)’s. Usually,
there exists some a such that the corresponding FAC(n, a) is remarkably less than
FAC(n, 1), which indicates that we can obtain that combinatorial sum much more
quickly when choosing such a. We also list some experimental results in Table 2.

n = pq FAC(n, 1) a FAC(n, a)
323910211=16453*19687 266 224606094 25
401112223=16487*24329 266 254658360 62
481118119=18371*26189 260 447652040 16
556453211=20333*27367 39 501040105 23
580839353=20201*28753 209 494398594 17
712415273=25237*28229 113 395527894 47

89441974637=276839*323083 712 49599857930 68
91457375567=300721*304127 584 41380446395 123
154709636971=332933*464687 1161 16603703892 162
408187969489=531911*767399 1025 142966224429 67
702358343579=733003*958193 2467 413854661934 245

1039342803007=1012751*1026257 1771 176505030244 198

Table 2
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6. Conclusion and Open Problems

It is well-known that integer factorization is a very important computational prob-
lem. However, there has been no substantial progress on solving this problem since
the invention of the general number field sieve method in 1993 [6, 5, 3]. We propose
a new method to factor integers based on combinatorial sums of binomial coe�cients
in this paper. As we know, it is the first time to connect the combinatorial sum
with integer factorization. We believe that our method yields new and important
idea, which makes it worthwhile to study further.

Of course, there are still some open problems left. One is to obtain a tighter upper
bound of FAC(n, a) for some fixed a since the experiments show that FAC(n, a) is
usually much smaller than our bounds in this paper. The other is to give a better
theoretic estimate for mina FAC(n, a) when a runs over some specific set.
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