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Abstract
This is the third paper in a series involving Geometry of Numbers (GoN) methods
to provide proofs of representation by positive definite integral quadratic forms.
Specifically, we provide here elementary GoN proofs of universality of 105 of the
112 quaternary positive definite integral quadratic forms of square discriminant.

1. Introduction

This is the third in a sequence of papers exploring applications of Geometry of
Numbers (GoN) to quadratic forms. The first paper [5] treated primes represented
by positive definite binary quadratic forms. The second paper [6] concerned the
universality of positive definite quaternary quadratic forms; however, that paper
restricted its attention to GoN proofs of universality for the nine such diagonal
forms with square discriminant.

In this paper, we again use GoN methods to provide proofs of universality of pos-
itive definite quaternary integral quadratic forms. Now, however, we only require
that the forms have square discriminant. The work of Conway [8] and Bhargava-
Hanke [2] shows there are 112 such forms (a list of all 6436 universal quaternary
integral quadratic forms is available at [14]). Of the 112 candidates, 105 have lent
themselves to our methods and GoN universality proofs can be given. In light of
the nine forms discussed in [6], this paper adds 96 universality statements. Of these
96 forms only 11 are classically integral. Although all the forms treated here come
under the aegis of the 290 Theorem (a work of at least ten years in the making,
which is at the time of this writing computationally complete but unpublished), it is
our understanding that for many of the forms treated here universality was known
only because of the Bhargava-Hanke 290 Theorem and thus complete universality
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proofs are appearing here for the first time.

The primary interest of this work is not the universality theorems themselves but
how we prove them. To prove the 290 Theorem, Bhargava-Hanke must analyze
the universality of more than 6000 individual forms, and they do so by consid-
ering the associated theta series and applying deep and sophisticated techniques
from the theory of modular forms. To analyze the Fourier coe�cients of the theta-
series, Siegel’s work on local densities is used to bound the Eisenstein coe�cients,
and the theory of newforms and Deligne’s bounds on Hecke eigenvalues (i.e., the
Ramanujan-Petersson Conjecture) are used to bound the cusp coe�cients. In con-
strast, the present method is almost entirely self-contained. The only GoN result
which does not receive a full proof here or in [6] is Korkine-Zolotarev’s computation
of the 4-dimensional Hermite constant �4 [12]. In fact, for 95 out of the 96 forms
treated here, the upper bound on �4 coming from Minkowski’s Convex Body Theo-
rem is su�cient. That state-of-the-art universality theorems can be proved by such
elementary methods seems truly remarkable and also somewhat mysterious.

Our techniques prove universality of 78 forms of class number greater than one.
To the best of our knowledge all previous applications of GoN methods to repre-
sentation theorems for integral quadratic forms (including [5] and [6]) treat only
class number one forms. One might have guessed that such elementary methods
were inherently limited to the class number one case. The present paper shows
that the range of applicability of GoN methods is considerably larger. It would be
interesting to probe this range more thoroughly, and we hope to do so in the future.

2. Background

We recall the following definitions and results from the theory of quadratic forms.
When applicable, references for more detailed explanations are provided.

Let n 2 N. An n-ary integral quadratic form is a homogeneous integral polyno-
mial of degree two of the form

q(x) = q(x1, ..., xn) =
X

1ijn

aijxixj 2 Z[x1, ..., xn].

Equivalently, there is a unique symmetric matrix Aq 2 Mn(Q) such that

q(x) = xtAqx.

Under this matrix representation all diagonal entries are integers, while the o↵-
diagonal entries are allowed to be half-integers. We say that q is non-degenerate
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when det(Aq) 6= 0 and henceforth only consider non-degenerate forms. We say that
q is classically integral if Aq 2 Mn(Z). Two n-ary forms q and q0 are equivalent
over Z if and only if there exists M 2 GLn(Z) such that Aq0 = MAqM t. Then
det(Aq0) = (detM)2 detAq = detAq. We call this value the discriminant of q, de-
noted �(q). When q is classically integral and non-degenerate, �(q) is a nonzero
integer.

Let q(x) be an n-ary integral quadratic form, and let d 2 Z. We say that q repre-
sents d if there exists ~v 2 Zn such that q(~v) = d. When q(~v) � 0 (resp.  0) for
all ~v 2 Zn, we say that q is positive definite (resp. negative definite). We say q
is positive universal (resp. negative universal) if q represents every element of Z�0

(resp. Z0).

Unless otherwise specified, from now on by “form” we mean an “integral, posi-
tive definite, quaternary quadratic form” and by “universal” we mean “positive
universal”.

With respect to positive universality of forms, the following results are fundamental.
All counts of forms are made up to integer equivalence.

Theorem 1.

(a) (Ramanujan, Dickson, [9], [16]) There are 54 diagonal universal forms.

(b) (Conway-Schneeberger, Bhargava [1], [8]) Let q be a classically integral form.
Then q is universal if and only if it represents 1 through 15, and there are 204
such forms.

(c) (Bhargava-Hanke, [2]) Let q be a form. Then q is universal if and only if it
represents 1 through 290, and there are 6436 such forms.

Our GoN input is limited to the following result, which was established in [6].

Theorem 2. (Small Multiple Theorem) Let q(x) be a form of square discriminant.
Let n 2 Z+ be squarefree and prime to 2�(q).

• (Using the Minkowski Convex Body Theorem [4, § III.2.2, Thm. II])
There are x1, x2, x3, x4, k 2 Z such that

q(x1, x2, x3, x4) = kn

and

1  k 
$ 

4
p

2
⇡

!
(�q)1/4

%
.
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• (Using Korkine-Zolotarev’s Theorem on �4 [12] [4, § X.3.2, Cor.])
There are x1, x2, x3, x4, k 2 Z such that

q(x1, x2, x3, x4) = kn

and
1  k  b(4�q)1/4c.

Proof. See [6, Thm. 7].

Remark. Since 4 1
4 = 1.4142 . . . < 1.8006 . . . = 4

p
2

⇡ , the second assertion of Theo-
rem 2 is an improvement on the first. On the other hand, the Minkowski Convex
Body Theorem is significantly easier to prove than the Korkine-Zolotarev Theorem.

3. Proving Universality

Theorem 3. The 105 integral, positive definite, quaternary quadratic forms ap-
pearing in Tables I and II of the Appendix are universal.

Proof. Let q =
P

1ijn aijxixj = xtAqx be a form in Table I or II. Suppose we
can show:

(a) For all squarefree n 2 Z+ with gcd(n, 2�q) = 1, q represents n.

(b) If q represents n 2 Z+ and p | 2�q, then q represents pn.

Then q represents every squarefree positive integer and is thus universal: write
n 2 Z+ as ts2 with t squarefree. There is ~v 2 Z4 with q(~v) = t, so q(s~v) = ts2 = n.

We now explain how to establish (a) and (b) for q: the method includes com-
puter computation, and an example is provided in the following section.

Establishing (a): By the Small Multiple Theorem (Theorem 2), for all n 2 Z+

there is ~v 2 Z4 such that q(~v) = kn for some k 2 {1, 2, ..., b(4�q)1/4c}.

If q(~v) = kn, suppose we can find a matrix A 2 M4(Z) such that q(Ax) = kq(x):
an identity of quadratic forms. Then q(A~v) = kq(~v) = k2n. If, however, we could
show A~v 2 (kZ)4, allowing ~w = (A~v)/k 2 Z4, we would have q(~w) = 1

k2 q(A~v) = n.

The strategy is to use a computer to create a set of such matrices. Since the
A~v 2 (kZ)4 condition can be checked modulo k, we have a finite set of vectors to
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consider. If for each vector we can find a matrix, we will have shown (a). Consider
the set of such matrices:

Oq(k) = {A 2 M4(Z) : q(A~v) = kq(~v)} .

By [6, Lemma 20], Oq(k) is finite. Here is another algorithm to compute Oq(k):

We create the set of vectors Vi = {~v 2 Z4 : q(~v) = kaii} for i 2 {1, 2, 3, 4}. By
positivity of q, the finite set Vi can be enumerated by evaluating q(~v) at all vectors
inside a bounded ellipsoid. Let M = [v1|v2|v3|v4] 2 M4(Q). Then M 2 Oq(k) if
and only if:

• For all 1  i  4, vi 2 Vi, and
• For all 1  i < j  4, vt

iAqvj = kaij .

However Oq(k) is not large enough to prove (a) for many of the forms. So we
introduce d 2 Z+ to act as a denominator while still allowing the computer to
perform integer arithmetic. We put

Oq(k, d) = {A 2 M4(Z) : q(Ax) = kd2q(x)}.

The map 7! dM induces an injection Oq(k) = Oq(k, 1) ,! Oq(k, d).

We have q(A~v) = kd2q(~v) = k2d2n. We need A~v 2 (kdZ)4 to set ~w = ~v
kd 2 Z4

and q(~w) = n. To check these conditions requires only considering the reduction of
the coordinates of vectors modulo kd, so it su�ces to look at the finite collection
of vectors in (Z/kdZ)4. But we do not need to consider every one of these vectors
in (Z/kdZ)4: since q(~v) = kn we only need consider vectors such that q(~v) ⌘ 0
(mod k). We call such vectors admissible, and the set of all admissible vectors for
a fixed k and d is given by

Aq(k, d) = {~v 2 (Z/kdZ)4 : q(~v) ⌘ 0 (mod k)}.

For an admissible vector ~v 2 Aq(k, d), we say that a matrix, A 2 Oq(k, d), reduces ~v
if A~v 2 (kdZ)4. We say that Oq(k, d) covers Aq(k, d) if for every ~v 2 Aq(k, d) there
exists a A~v 2 Oq(k, d) such that A~v reduces ~v.

The problem has been reduced to a computer search to find a d such that Oq(k, d)
covers Aq(k, d). For all the forms in Tables I and II, the computer search was suc-
cessful.

Establishing (b): fix a prime p such that p | 2�q and a vector ~v 2 Z4. This
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time we wish to find a matrix A 2 M4(Z) such that q(A~v) = pq(~v). We again
consider matrices in Oq(p, d). Now all vectors in (Z/pdZ)4 are admissible. We say
a matrix A 2 Oq(p, d) multiplies a vector ~v 2 (Z/pdZ)4 if A~v 2 (dZ)4, which then
gives ~x = A~v

d 2 Z4 and q(~x) = q
�
A~v

d

�
= 1

d2 q(A~v) = pq(~v).

We are again reduced to a computer search, and upon finding a d for all (q, p)
pairs required, we have shown that if q represents n then q represents pn. This
search was successful for all the forms in Tables I and II.

This completes the proof.

Remark. For 104 of the 105 forms of Theorem 3, using the first assertion of the
Small Multiple Theorem – coming from the Minkowski bound – either does not
change the computations at all or does not significantly lengthen them. However
for

q = x2
1 + 2x2

2 + x2x3 + 4x2
3 + 31x2

4,

the last form in Table II, using the first assertion of the Small Multiple Theorem
requires consideration of k = 7, and our computation has not terminated for this
value. If we use the second assertion of the Small Multiple Theorem – coming from
the Korkine-Zolotarev bound – then k = 7 does not need to be considered.

4. An Example

We will now illustrate all steps of the algorithm with a particular form:

q(x) = x2
1 + x1x2 + 2x2

2 + 3x2
3 + 3x3x4 + 6x2

4.

The form q is not classically integral, has class number 3 and discriminant 441
16 .

Applying the Small Multiple Theorem for n satisfying (n, 42) = 1, we get k  3.
For the cases q(~v) = 3n or q(~v) = 2n, we must prove the existence of a reduction
to a representation of n by q.

For k = 3 (i.e., assuming q(~v) = 3n), using a computer search we find that a
denominator of 1 su�ces. That is, we only need to consider vectors ~v 2 (Z/3Z)4.
Moreover, setting

M =

0
BB@

0 0 3 0
0 0 0 3
1 0 0 0
0 1 0 0

1
CCA
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we have that q(M(x)) = 3q(x)). Noting that M reduces all admissible vectors
v 2 Aq(1, 3):

M (0, 0, 0, 0)t = (0, 0, 0, 0)t

M (0, 0, 0, 1)t = (0, 3, 0, 0)t

M (0, 0, 0, 2)t = (0, 6, 0, 0)t

M (0, 0, 1, 0)t = (3, 0, 0, 0)t

M (0, 0, 1, 1)t = (3, 3, 0, 0)t

M (0, 0, 1, 2)t = (3, 6, 0, 0)t

M (0, 0, 2, 0)t = (6, 0, 0, 0)t

M (0, 0, 2, 1)t = (6, 3, 0, 0)t

M (0, 0, 2, 2)t = (6, 6, 0, 0)t

we see that a representation of 3n by q can be reduced.

Next we address the case where q(~x) = 2n. This time a denominator of 2 suf-
fices. There are 160 admissible vectors and we need to consider vectors in (Z/4Z)4.

Oq(2, 2) =
8>><
>>:M1 =

0
BB@

0 �2 0 �6
1 1 �3 0
0 �2 0 2
1 1 1 0

1
CCA , M2 =

0
BB@

0 �4 0 0
2 2 0 0
0 0 0 4
0 0 2 0

1
CCA , M3 =

0
BB@

0 �4 0 0
2 2 0 0
0 0 3 1
0 0 �1 �3

1
CCA ,

M4 =

0
BB@

0 �4 0 0
2 2 0 0
0 0 2 �2
0 0 �2 �2

1
CCA , M5 =

0
BB@

0 4 0 0
2 0 0 0
0 0 0 4
0 0 2 0

1
CCA , M6 =

0
BB@

0 �2 0 6
1 1 3 0
0 �2 0 �2
1 1 �1 0

1
CCA

9>>=
>>; .

For all Mi 2 Oq(2, 2), we have q(Mix) = 8q(x). For each of the six matrices we
provide an example of an admissible vector that it covers:

M0(0, 0, 0, 2)t = (�12, 0, 4, 0)t

M1(0, 0, 0, 1)t = (0, 0, 4, 0)t

M2(0, 0, 1, 1)t = (0, 0, 4,�4)t

M3(0, 0, 1, 3)t = (0, 0,�4,�8)t

M4(0, 1, 0, 0)t = (4, 0, 0, 0)t

M5(0, 1, 1, 1)t = (4, 4,�4, 0)t.

Similarly all other 154 admissible tuples are covered by one of the six matrices above.
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Now it remains to show that if q represents a positive integer n then it represents
2n, 3n, and 7n. In each case there is an integer matrix that allows multiplication.
Specifically:

P2 =

0
BB@

0 2 0 0
�1 �1 0 0

0 0 0 2
0 0 �1 �1

1
CCA, P3 =

0
BB@

0 0 3 0
0 0 0 3
1 0 0 0
0 1 0 0

1
CCA,

P7 =

0
BB@

1 �2 �3 �3
0 2 0 �3
0 �1 2 �1
1 1 0 1

1
CCA.

Note that for each i, Pi 2 M4(Z), and hence for all ~v 2 Z4, Pi~v 2 Z4. Moreover,
for each i, q(Pix) = i · q(x). This completes the proof of the universality of q.

5. Local Success of the Method

In this section we will discuss the success of the method. The method succeeds
if for some d 2 Z+, the finite set Aq(k, d) of admissible vectors is covered by the
finite set Oq(k, d) of matrices: i.e., if every ~v 2 Aq(k, d) is reduced by at least one
A 2 Oq(k, d). We show here that the method necessarily succeeds locally in the
following sense: given any ~v 2 Aq(k, d0), there is a lift ~̃v of ~v to Aq(k, dd0) such that
~̃v is reduced by some Ã 2 Aq(k, dd0).

Although the above statement in terms of congruence classes is a natural one when
analyzing the method of proof of Theorem 3, we will actually prove a stronger result
concerning integer vectors. In turn, by clearing denominators, this integral result
follows quickly from a result about rational quadratic forms. The result for rational
forms uses one of the key facts in the basic theory of algebraic quadratic forms:
the isometry group of a nondegenerate quadratic form acts transitively on the set
of vectors on which the quadratic form takes any fixed nonzero value. To make a
short, clean proof of a slightly more general result, we have decided to make use of
a basic property of Pfister forms (see [13] for details).

Theorem 4. Let K be a field of characteristic di↵erent from 2, and let q/K be a
nondegenerate n-ary Pfister form of square discriminant. For k, p 2 K⇥, suppose
q represents p and kp. Then for all ~v, ~w 2 Kn with q(~v) = p and q(~w) = kp, there
is M 2 GLn(K) with M ~w = k~v and q(Mx) = kq(x).

Proof. Putting
Oq(k) = {M 2 GLn(K) | q(Mx) = kq(x)},
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we must show that there is M 2 Oq(k) such that M ~w = k~v. Since q is a Pfister
form, by [13, Thm. X.1.8] q is a round form: if we define

D(q)• := {q(x) | x 2 Kn} \ {0}

and
G(q) := {c 2 K⇥ | cq ⇠= q},

then D(q)• = G(q). Thus D(q)• is a subgroup of K⇥, so if p, kp 2 D(q)• then
k 2 D(q)• = G(q): there is M1 2 GLn(K) such that q(M1x) = kq(x) for all x.
Taking x = ~v, we get

q(M1~v) = kq(~v) = kp = q(~w).

By [13, Prop. I.4.7], there is M2 2 O(q) = Oq(1) with M2M1~v = ~w. Put M =
M2M1. Then

M~v = ~w

and
q(Mx) = q(M2M1x) = q(M1x) = kq(x),

so M 2 Ok(q).

Corollary 1. Let qZ be a positive quaternary quadratic form with square discrim-
inant.
a) For k, p 2 Z \ {0}, suppose q integrally represents 1, p, kp. Then for all ~v, ~w 2 Z4

with q(~v) = p and q(~w) = kp, there is M 2 M4(Q) such that M ~w = k~v and
q(M~x) = kq(~x).
b) If q is positive universal, reduction always succeeds locally: for all k, p 2 Z \ {0}
and ~w 2 Z4 with q(~w) = kp, there is d 2 Z+ and A 2 Oq(k, d) with A~w 2 (kdZ)4.
(Thus if ~v = ~w

kd , then ~v 2 Z4 and q(~v) = p.)

Proof. a) A nondegenerate quaternary quadratic form over a field of characteris-
tic di↵erent from 2 is a Pfister form if and only if it has a diagonal representation
h1, a, b, abi if and only if it represents 1 and has square discriminant. Thus Theorem
4 applies to q/Q: there is M 2 M4(Q) such that M ~w = k~v.

b) Since q is positive universal, there is ~v 2 Z4 with q(~v) = p. Applying part
a), we get M 2 M4(Q) with q(Mx) = kq(x) and M ~w = k~v. Let d be the greatest
common denominator of the entries of M , and put

A = dM, ~u =
A~w

kd
.

Then A 2 M4(Z) and

q(Ax) = q(dMx) = d2q(Mx) = kd2q(x),

so A 2 Oq(k, d), and finally

A~w = dM ~w = kd~v 2 (kdZ)4.
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Appendix

The 112 universal positive definite integral quaternary quadratic forms referenced
in the introduction are separated into three tables below: Table I consists of the
classically integral forms for which GoN proofs of universality now exist (note that
this table includes all forms from [6]); Table II consists of not-classically integral
forms for which GoN proofs of universality now exist; Table III consists of the seven
forms for which our proof of universality algorithm has not terminated.

The coe�cients for a particular quadratic form appear in the first column of each
table; for a particular form q(x) =

P
1ij4 aijxixj this entry will read

ha11, a12, a13, a14, a22, a23, a24, a33, a34, a44i.

Reading across, the tables then provide the class number h(q) (see [15]), and D(q)
(the discriminant of the unique quaternion algebra over Q with norm q). The next
three columns relate to the Small Multiples Theorem, and have the heading k-value.
As all forms considered had k-values bounded by 5, the entries mark the denomi-
nators needed for reduction. The remaining five columns have the heading prime
values; these five rows correspond to the primes for which multiplication matrices
must be produced (i.e., those dividing 2�(q)), and the smallest denominator for
each multiplication matrix. As p = 2 is a required check on all forms, the denomi-
nator is placed in the 2-column; for any other necessary primes (of which there are
at most two), di is the denominator associated to multiplication by pi.

As a concrete example, consider the form q(~x) = x2
1+x1x2+2x2

2+3x2
3+3x3x4+6x2

4

highlighted earlier in this document. Because this form is not classically integral, it
appears in Table II. As noted above, h(q) = 3. The Small Multiple Theorem gave
k  3. For k = 2, the smallest denominator needed to reduce was 2; for k = 3,
the smallest denominator needed to reduce was 1; k = 5 was unnecessary to check.
Moreover, as the discriminant was 32 · 72/24 the primes for which multiplication
matrices must be produced are 2, p1 = 3, p2 = 7; in each case an integral (i.e.,
denominator 1) multiplication matrix existed. Therefore, the corresponding row in
Table II will read:
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k value prime values
q h(q) D(q) 2 3 5 2 p1 d1 p2 d2

h1, 1, 0, 0, 2, 0, 0, 3, 3, 6i 3 3 2 1 ⇤ 1 3 1 7 1

A final note: an ⇤ indicates a computation that was unnecessary to compute (as
in the case above where reducing by k = 5 was unnecessary). In Table III, an X
indicates a necessary step that has not yet terminated.

Table I: Classically Integral Forms

k value prime values
q h(q) D(q) 2 3 5 2 p1 d1 p2 d2

h1, 0, 0, 0, 1, 0, 0, 1, 0, 1i 1 2 * * * 1 * * * *
h1, 0, 0, 0, 1, 0, 0, 1, 0, 4i 1 2 2 * * 2 * * * *
h1, 0, 0, 0, 1, 0, 0, 2, 0, 2i 1 2 2 * * 1 * * * *
h1, 0, 0, 0, 2, 0, 2, 2, 2, 2i 1 2 2 * * 2 * * * *
h1, 0, 0, 0, 1, 0, 0, 2, 2, 5i 1 2 3 3 * 3 3 3 * *
h1, 0, 0, 0, 1, 0, 0, 3, 0, 3i 1 3 2 1 * 1 3 1 * *
h1, 0, 0, 0, 2, 2, 0, 2, 0, 3i 1 2 1 1 * 1 3 1 * *
h1, 0, 0, 0, 1, 0, 0, 2, 0, 8i 2 2 4 4 * 4 * * * *
h1, 0, 0, 0, 2, 0, 0, 2, 0, 4i 1 2 2 1 * 1 * * * *
h1, 0, 0, 0, 2, 0, 0, 3, 2, 3i 1 2 4 4 * 4 * * * *
h1, 0, 0, 0, 1, 0, 0, 2, 2, 13i 3 2 5 5 * 5 5 5 * *
h1, 0, 0, 0, 2, 0, 2, 3, 2, 5i 3 2 5 5 * 5 5 5 * *
h1, 0, 0, 0, 2, 2, 0, 3, 0, 5i 1 5 2 1 * 1 5 1 * *
h1, 0, 0, 0, 2, 0, 0, 3, 0, 6i 2 2 2 2 * 1 3 1 * *
h1, 0, 0, 0, 2, 0, 2, 4, 0, 5i 2 2 6 6 * 6 3 6 * *
h1, 0, 0, 0, 2, 0, 2, 4, 4, 6i 2 2 6 6 * 6 3 6 * *
h1, 0, 0, 0, 2, 0, 2, 3, 2, 9i 5 2 7 7 * 7 7 7 * *
h1, 0, 0, 0, 2, 2, 0, 4, 0, 7i 3 7 2 3 * 1 7 1 * *
h1, 0, 0, 0, 2, 0, 0, 4, 0, 8i 2 2 4 4 4 1 * * * *
h1, 0, 0, 0, 2, 0, 0, 5, 0, 10i 2 5 8 8 1 1 5 1 * *
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Table II: Not-Classically Integral Forms

k value prime values
q h(q) D(q) 2 3 5 2 p1 d1 p2 d2

h1, 0, 0, 1, 1, 0, 1, 1, 1, 1i 1 2 * * * 1 * * * *
h1, 1, 0, 0, 1, 0, 0, 1, 1, 1i 1 3 * * * 1 3 1 * *
h1, 1, 1, 0, 1, 1, 0, 1, 0, 2i 1 2 * * * 2 * * * *
h1, 1, 1, 0, 1, 1, 1, 2, 2, 2i 1 5 1 * * 1 5 1 * *
h1, 0, 0, 1, 1, 0, 1, 1, 1, 3i 1 2 3 * * 3 3 3 * *
h1, 1, 0, 0, 1, 0, 0, 1, 0, 3i 1 3 2 * * 2 3 1 * *
h1, 1, 1, 0, 1, 1, 1, 1, 1, 5i 1 2 3 * * 3 3 3 * *
h1, 0, 1, 1, 1, 1, 1, 2, 1, 2i 1 3 1 * * 1 3 1 * *
h1, 1, 0, 0, 1, 0, 0, 2, 2, 2i 1 2 1 * * 1 3 1 * *
h1, 0, 1, 0, 1, 0, 1, 2, 0, 2i 1 7 1 * * 1 7 1 * *
h1, 1, 1, 0, 1, 1, 0, 1, 0, 8i 2 2 4 * * 4 * * * *
h1, 0, 0, 1, 1, 0, 1, 2, 2, 3i 2 2 4 * * 4 * * * *
h1, 1, 0, 0, 1, 0, 1, 2, 0, 3i 1 2 4 * * 4 * * * *
h1, 0, 0, 1, 1, 0, 1, 1, 1, 7i 2 2 5 * * 5 5 5 * *
h1, 1, 1, 0, 1, 1, 1, 1, 1, 13i 2 2 5 * * 5 5 5 * *
h1.1, 1, 0, 2, 2,�1, 2, 1, 3i 1 5 1 * * 1 5 1 * *
h1, 0, 0, 1, 2, 2, 0, 2, 2, 3i 2 2 5 * * 5 5 5 * *
h1, 1, 0, 0, 1, 0, 1, 2, 2, 5i 2 2 5 * * 5 5 5 * *
h1, 0, 0, 0, 2, 1,�1, 2, 1, 2i 2 5 2 * * 2 5 2 * *
h1, 0, 1, 1, 1, 1, 1, 3, 1, 3i 1 2 1 * * 1 5 1 * *
h1, 1, 1, 0, 1, 1, 0, 2, 0, 5i 2 5 2 * * 2 5 2 * *
h1, 0, 1, 0, 1, 0, 1, 3, 0, 3i 3 11 2 * * 1 11 1 * *
h1, 1, 0, 0, 1, 0, 0, 2, 0, 6i 2 2 2 2 * 2 3 1 * *
h1, 0, 0, 0, 1, 0, 1, 3, 3, 4i 2 3 4 4 * 4 3 4 * *
h1, 0, 1, 1, 2, 2, 2, 3, 0, 3i 2 2 2 6 * 2 3 1 * *
h1, 0, 1, 0, 1, 1, 0, 3, 2, 4i 2 2 6 3 * 6 3 3 * *
h1, 0, 0, 1, 2, 0, 0, 2, 2, 3i 2 2 6 4 * 6 3 3 * *
h1, 1, 1, 0, 2, 1, 0, 2, 0, 3i 2 3 4 1 * 4 3 4 * *
h1, 1, 1, 0, 2, 1, 2, 2, 2, 4i 1 3 2 1 * 1 3 1 * *
h1, 1, 0, 1, 2, 1, 1, 2, 2, 4i 1 13 1 1 * 1 13 1 * *
h1, 1, 0, 0, 1, 0, 1, 2, 2, 9i 3 2 7 7 * 7 7 7 * *
h1, 0, 1, 1, 2, 0, 2, 3, 0, 3i 3 2 1 7 * 1 7 7 * *
h1, 0, 1, 1, 2, 1,�1, 3, 2, 3i 2 7 2 2 * 2 7 1 * *
h1, 0, 1, 0, 1, 0, 0, 2, 0, 7i 2 7 4 4 * 2 7 1 * *
h1, 0, 1, 0, 1, 1, 0, 3, 1, 5i 3 2 1 7 * 1 7 7 * *
h1, 1, 0, 0, 2, 0, 0, 2, 2, 4i 3 7 2 2 * 1 7 1 * *
h1, 0, 0, 1, 2, 2, 0, 2, 2, 5i 3 2 7 7 * 7 7 7 * *
h1, 0, 0, 1, 2, 1, 0, 2, 0, 4i 3 5 2 2 * 1 3 1 5 1
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h1, 1, 1, 1, 2, 1, 0, 2, 0, 5i 3 3 5 5 * 5 3 5 5 5
h1, 1, 0, 0, 2, 1, 1, 3, 1, 3i 2 5 3 3 * 3 3 3 5 3
h1, 1, 1, 1, 2, 2, 0, 2, 1, 6i 2 5 3 3 * 3 3 3 5 3
h1, 1, 0, 0, 2, 0, 2, 3, 3, 4i 3 3 5 5 * 5 3 5 5 5
h1, 1, 1, 0, 2, 2,�1, 3, 2, 5i 3 17 2 2 * 1 17 1 * *
h1, 0, 1, 0, 2, 0, 2, 3, 3, 5i 4 2 9 9 * 9 3 9 * *
h1, 0, 1, 1, 2, 2, 0, 3, 2, 5i 4 2 9 9 * 9 3 9 * *
h1, 0, 1, 0, 2, 2, 2, 3, 1, 5i 1 2 1 3 * 1 3 1 * *
h1, 1, 1, 0, 2, 1, 2, 3, 3, 6i 3 19 2 2 * 1 19 1 * *
h1, 0, 0, 1, 2, 0, 0, 2, 2, 7i 6 2 10 10 * 10 5 5 * *
h1, 0, 1, 1, 2, 0, 0, 4, 3, 4i 3 5 8 8 * 2 5 4 * *
h1, 0, 0, 0, 2, 1,�1, 2, 1, 7i 4 5 4 4 * 4 5 4 * *
h1, 1, 1, 0, 2, 2, 0, 2, 0, 10i 3 5 8 8 * 2 5 4 * *
h1, 0, 1, 1, 2, 0, 0, 3, 2, 5i 6 2 10 10 * 10 5 10 * *
h1, 1, 0, 0, 2, 1, 0, 3, 0, 5i 4 5 4 4 * 4 5 4 * *
h1, 0, 1, 0, 2, 2, 0, 3, 2, 6i 6 2 10 10 * 10 5 5 * *
h1, 1, 0, 0, 2, 0, 0, 3, 3, 6i 3 3 2 1 * 1 3 1 7 1
h1, 0, 1, 0, 1, 0, 0, 3, 0, 11i 5 11 8 8 * 4 11 1 * *
h1, 0, 1, 0, 2, 0, 2, 3, 0, 6i 1 2 1 1 * 1 11 1 * *
h1, 0, 1, 1, 2, 2, 0, 3, 0, 7i 6 2 11 11 * 11 11 11 * *
h1, 0, 0, 1, 2, 2, 0, 5, 5, 5i 6 2 11 11 * 11 11 11 * *
h1, 0, 0, 1, 2, 1, 0, 3, 0, 6i 6 23 4 4 * 1 23 1 * *
h1, 0, 1, 1, 2, 0, 0, 3, 2, 7i 3 2 12 12 * 12 3 12 * *
h1, 0, 1, 0, 2, 2, 0, 3, 0, 8i 6 2 12 12 * 12 3 12 * *
h1, 0, 1, 1, 2, 2, 2, 5, 1, 5i 6 2 36 36 * 12 3 12 * *
h1, 1, 0, 0, 2, 1, 0, 2, 0, 13i 4 13 12 12 * 12 13 12 * *
h1, 0, 1, 0, 2, 0, 2, 3, 3, 9i 8 2 39 13 * 39 13 13 * *
h1, 0, 1, 0, 2, 2, 2, 5, 4, 6i 8 2 39 13 * 39 13 13 * *
h1, 0, 1, 0, 2, 2, 2, 3, 0, 10i 8 2 13 13 * 13 13 13 * *
h1, 0, 0, 1, 2, 2, 0, 5, 1, 5i 8 2 13 13 * 13 13 13 * *
h1, 0, 0, 0, 2, 1,�1, 5, 3, 5i 4 13 12 12 * 12 13 12 * *
h1, 0, 1, 0, 2, 0, 0, 5, 4, 6i 12 2 14 14 * 14 7 7 * *
h1, 0, 1, 0, 2, 2, 0, 5, 2, 6i 12 2 42 14 * 14 7 7 * *
h1, 0, 1, 1, 2, 1, 2, 4, 1, 8i 6 29 6 6 * 1 29 1 * *
h1, 0, 1, 0, 2, 2, 2, 3, 1, 13i 6 2 15 15 * 15 3 15 5 15
h1, 0, 1, 1, 2, 2, 0, 3, 2, 13i 5 2 5 15 * 5 3 5 5 5
h1, 0, 1, 1, 2, 0, 2, 5, 3, 7i 6 2 15 15 * 15 3 15 5 15
h1, 0, 0, 1, 2, 2, 2, 5, 1, 7i 6 2 15 15 * 15 3 15 5 15
h1, 0, 0, 1, 2, 2, 0, 5, 3, 7i 5 2 5 15 * 5 3 5 5 5
h1, 0, 1, 1, 2, 2, 0, 5, 2, 7i 6 2 15 15 * 15 3 15 5 15
h1, 0, 0, 1, 2, 1, 0, 4, 0, 8i 6 31 12 6 10 1 31 1 * *
h1, 0, 1, 1, 2, 0, 2, 5, 4, 9i 14 2 1 17 17 1 17 17 * *
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h1, 0, 1, 0, 2, 2, 2, 5, 1, 9i 3 2 1 3 3 1 17 1 * *
h1, 0, 1, 1, 2, 1, 2, 5, 1, 10i 4 37 18 20 20 1 37 1 * *
h1, 0, 1, 0, 2, 0, 2, 5, 0, 10i 4 2 1 3 3 1 19 1 * *
h1, 0, 0, 0, 2, 1, 0, 3, 0, 23i 14 23 24 24 24 8 23 1 * *
h1, 0, 0, 0, 2, 1, 0, 4, 0, 31i 19 31 72 60 60 48 31 1 * *

On the forms that have not finished, a total of six months of CPU time was spent
on 19 di↵erent modern processors. These were stopped when substantial improve-
ments were made on the implementation of the algorithms. Together with some
heuristic speed-ups, the new code was parallelized to be able to run on all available
processors. All of the work done by the original run of the old algorithm was verified
by the new code over the period of a week running on 48 processors. The new code
continued to run for 5 months checking every d value sequentially up to d = 230.
After this more selective runs were done for denominators up to 350. At this point
running even a single denominator for a single k-value of a single form took several
days on 24 processors.

Table III: Remaining Universal Forms

k value prime values
q h(q) D(q) 2 3 5 2 p1 d1 p2 d2

h1, 0, 1, 1, 2, 2, 2, 3, 0, 9i 4 2 X * * X * * * *
h1, 0, 0, 0, 2, 2, 2, 5, 4, 5i 2 2 X X * 2 3 2 * *
h1, 0, 1, 0, 2, 0, 0, 3, 1, 9i 11 2 X X * X 7 14 * *
h1, 0, 1, 0, 2, 2, 0, 3, 1, 11i 11 2 X X * X 7 7 * *
h1, 0, 0, 0, 2, 2, 2, 5, 0, 6i 5 2 X X * 1 7 7 * *
h1, 0, 0, 0, 2, 0, 2, 4, 0, 13i 6 2 X X * 10 5 5 * *
h1, 0, 0, 0, 2, 0, 2, 4, 4, 14i 6 2 X X * 10 5 5 * *


