A REMARK ON $A+B$ AND $A-A$ FOR COMPACT SETS IN \mathbb{R}^{n}

Tomasz Schoen ${ }^{1}$
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
schoen@amu.edu.pl
Ilya D. Shkredov
Steklov Mathematical Institute, Moscow, Russia, and IITP RAS, Moscow, Russia ilya.shkredov@gmail.com

Received: 2/8/16, Revised: 3/27/16, Accepted: 7/29/16, Published: 8/26/16

Abstract

We prove in particular that if $A \subset \mathbb{R}^{n}$ is a compact convex set, and $B \subset \mathbb{R}^{n}$ is an arbitrary compact set, then $\mu(A-A) \ll \frac{\mu(A+B)^{2}}{\sqrt{n} \mu(A)}$, provided that $\mu(B) \geq \mu(A)$.

1. Introduction

A well-known Ruzsa triangle inequality states that for any finite subsets of an abelian group we have

$$
|A-B| \leq \frac{|A+C||C+B|}{|C|}
$$

in particular, if $B=A$ and $C=B$, then

$$
|A-A| \leq \frac{|A+B|^{2}}{|B|}
$$

The aim of this note is to prove a sharp, up to a dimension-independent constant, form of the above inequality for a compact convex set $A \subset \mathbb{R}^{n}$, and an arbitrary compact set $B \subset \mathbb{R}^{n}$, provided that $\mu(A) \geq \mu(B)$.

2. Result

For a set $A \subset \mathbb{R}^{n}$ and $x \in A-A$ let $A_{x}=A \cap(A-x)$. Our main tool is the following lemma proved in [4, Lemma 5]. We recall its proof as it is very simple.

[^0]Lemma 1. Let $A, B \subset \mathbb{R}^{n}$ be compact sets. Then

$$
\begin{equation*}
\int_{A-A} \mu\left(A_{x}+B\right) d x \leq \mu(A+B)^{2} \tag{1}
\end{equation*}
$$

Proof. We apply the Koester-Katz transform: if $x \in A-A$ then

$$
A_{x}+B \subseteq(A+B)_{x}
$$

Therefore, we have

$$
\int_{A-A} \mu\left(A_{x}+B\right) d x \leq \int_{A+B-A-B} \mu\left((A+B)_{x}\right) d x=\mu(A+B)^{2}
$$

and the assertion follows.
We also need a lower bound for the size of A_{x} for a convex set A, see $[5$, Section $3]$. We also give the proof for the sake of completeness.

Lemma 2. Let $A \subset \mathbb{R}^{n}$ be a compact convex set and $r \in[0,1]$ be any real number. Then for all $x \in r(A-A)$ the following holds:

$$
\begin{equation*}
\mu\left(A_{x}\right) \geq(1-r)^{n} \mu(A) \tag{2}
\end{equation*}
$$

Proof. Write $x=r a_{1}-r a_{2}$, where $a_{1}, a_{2} \in A$ and let $a \in A$ be any element. By convexity, $(1-r) a+r a_{1} \in A$ and $(1-r) a+r a_{1}=(1-r) a+r a_{2}+x \in A+x$. Thus $(1-r) A+r a_{1} \subseteq A \cap(A+x)$ and the result follows.

Finally, we recall the Brunn-Minkowski inequality, see [5, Section 3].
Theorem 1. Let $A, B \subset \mathbb{R}^{n}$ be non-empty compact sets. Then

$$
\mu(A+B)^{1 / n} \geq \mu(A)^{1 / n}+\mu(B)^{1 / n}
$$

Now we can formulate our main result.
Theorem 2. Let $A \subset \mathbb{R}^{n}$ be a compact convex set, and let $B \subset \mathbb{R}^{n}$ be an arbitrary compact set. Then

$$
\begin{equation*}
\left(1+\omega+\cdots+\omega^{[\sqrt{n}]}\right) \mu(B)^{1-1 / n} \mu(A)^{1 / n} \mu(A-A) \ll \mu(A+B)^{2} \tag{3}
\end{equation*}
$$

where $\omega=(\mu(A) / \mu(B))^{1 / n}$. In particular, if $\mu(A) \geq \mu(B)$ then

$$
\begin{equation*}
\mu(A-A) \ll \frac{\mu(A+B)^{2}}{\sqrt{n} \mu(A)^{1 / n} \mu(B)^{1-1 / n}} \tag{4}
\end{equation*}
$$

and if $\mu(B) \geq \mu(A)$ then

$$
\begin{equation*}
\mu(A-A) \ll \frac{\mu(A+B)^{2}}{\sqrt{n} \mu(A)} \tag{5}
\end{equation*}
$$

Proof. Let $\alpha=\mu(B) / \mu(A)$. Applying (1) and the Brunn-Minkowski inequality, we get

$$
\begin{aligned}
\mu^{2}(A+B) & \geq \int_{A-A} \mu\left(B+A_{x}\right) d x \geq \int_{A-A}\left(\mu(B)^{1 / n}+\mu\left(A_{x}\right)^{1 / n}\right)^{n} d x \\
& =\alpha \sum_{k=0}^{n}\binom{n}{k} \int_{A-A} \alpha^{-k / n} \mu(A)^{(n-k) / n} \mu\left(A_{x}\right)^{k / n} d x
\end{aligned}
$$

To estimate the size of A_{x} we use Lemma 2. After integration by parts, we obtain

$$
\begin{aligned}
\mu^{2}(A+B) & \geq \mu(B) \sum_{k=0}^{n}\binom{n}{k} k \alpha^{-k / n} \int_{0}^{1}(1-r)^{k-1} \mu(r(A-A)) d r \\
& =\mu(B) \mu(A-A) \sum_{k=1}^{n}\binom{n}{k} k \alpha^{-k / n} \int_{0}^{1}(1-r)^{k-1} r^{n} d r \\
& =\mu(B) \mu(A-A) \sum_{k=1}^{n}\binom{n}{k} k \alpha^{-k / n} \mathcal{B}(k, n+1)
\end{aligned}
$$

where $\mathcal{B}(\cdot, \cdot)$ is the beta function. Thus

$$
\mu^{2}(A+B) \geq \mu(B) \mu(A-A) \sum_{k=1}^{n} \alpha^{-k / n} \frac{(n!)^{2}}{(n-k)!(n+k)!}:=\mu(B) \mu(A-A) \times \sigma
$$

One can calculate the last sum σ using the gamma function or hypergeometric series, but we use a rather crude estimate. Put $\Delta=[\sqrt{n}]+1$; then

$$
\sigma=\sum_{k=1}^{n} \alpha^{-\frac{k}{n}} \prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right) \prod_{j=1}^{k}\left(1+\frac{j}{n}\right)^{-1}=\sum_{k=1}^{n} \alpha^{-\frac{k}{n}}\left(1+\frac{k}{n}\right)^{-1} \prod_{j=1}^{k-1}\left(1-\frac{2 j}{n+j}\right) .
$$

Using inequalities $\ln (1-x) \geq-2 x$ for $0 \leq x \leq 0.5$ and $k \leq n$, we obtain

$$
\sigma \geq \frac{1}{2} \sum_{k=1}^{\Delta} \alpha^{-k / n} \exp \left(-\sum_{j=1}^{k-1} \frac{4 j}{n+j}\right) \geq \frac{1}{2} \sum_{k=1}^{\Delta} \alpha^{-k / n} \exp \left(-\frac{2 k^{2}}{n}\right) \gg \sum_{k=1}^{\Delta} \omega^{k}
$$

This gives us (3). To see (4), it is enough to observe that if $\mu(A) \geq \mu(B)$ then $\sum_{k=1}^{\Delta} \omega^{k} \geq \sqrt{n}$. To get (5), take any subset B^{\prime} of B such that $\mu\left(B^{\prime}\right)=\mu(A)$ and apply (4); then

$$
\mu(A-A) \ll \frac{\mu\left(A+B^{\prime}\right)^{2}}{\sqrt{n} \mu(A)} \leq \frac{\mu(A+B)^{2}}{\sqrt{n} \mu(A)} .
$$

This completes the proof.

Remark 1. Estimate (4) is tight; see [2] or [3] (discussion after Corollary 8.3). Indeed, consider the n-dimensional simplex

$$
A=A_{L}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{j} \geq 0, \sum_{j=1}^{n} x_{j} \leq L\right\}
$$

where L is a parameter. Then $\mu(A+A)=2^{n} \mu(A)$ and $\mu(A-A)=\binom{2 n}{n} \mu(A)$ (to obtain the last formula, one can count the number of integer points in A, say, and approximate $\mu(A-A)$ by

$$
\sum_{a+b+c=n}\binom{n}{a, b, c}\binom{L}{a}\binom{L}{b} \sim \frac{L^{n}}{n!} \sum_{m=0}^{n}\binom{n}{m}^{2}=\frac{L^{n}}{n!}\binom{2 n}{n}=\mu(A)\binom{2 n}{n} ;
$$

see [1]. Here a, b and c, are the number of possibilities for the positive, negative and zero coordinates in $A-A$, respectively). Hence

$$
\mu(A-A) \gg \frac{\mu(A+A)^{2}}{\sqrt{n} \mu(A)}
$$

References

[1] A. Granville. An introduction to additive combinatorics, CRM Proceedings and Lecture Notes 43 (2007), 1-27.
[2] C. A. Rogers, G. C. Shephard. The difference body of a convex body, Arch. Math 8 (1957), 220-233.
[3] I. Z. Ruzsa. Sumsets and structure, Combinatorial number theory and additive group theory, Adv. Courses Math. CRM Barcelona, Birkhauser Verlag, Basel (2009), 87-210.
[4] I. D. Shkredov. On a question of A. Balog, Pacific Journal of Mathematics (2015); dx.doi.org/10.2140/pjm.2015..101; arXiv:1501.07498v1 [math.CO] 29 Jan 2015.
[5] T. Tao, and V. Vu, Additive Combinatorics, Cambridge University Press, 2006.

[^0]: ${ }^{1}$ The author is supported by NCN Grant 2012/07/B/ST1/03556.

