APPROXIMATING THE FIBONACCI SEQUENCE

Tom Edgar
Department of Mathematics, Pacific Lutheran University, Tacoma, Washington
edgartj@plu.edu
Hailey Olafson
Department of Mathematics, Pacific Lutheran University, Tacoma, Washington olafsohr@plu.edu
James Van Alstine
Department of Mathematics, Pacific Lutheran University, Tacoma, Washington olafsohr@plu.edu

Received: 10/22/15, Revised: 5/31/16, Accepted: 8/2/16, Published: 8/26/16

Abstract

We describe a new identity involving sums of powers of Fibonacci numbers and use this identity to prove that a certain family of combinatorial sequences converges, pointwise, to the Fibonacci sequence.

1. Introduction

We let F represent the Fibonacci sequence where $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$, and $F_{-n}=(-1)^{n} F_{n}$ for $n \in \mathbb{N}$. We then have $F_{n}=F_{n-1}+F_{n-2}$ for all $n \in \mathbb{Z}$. Our first main result is the following identity.

Theorem 1. For all $m \in \mathbb{Z}$ and $k \in \mathbb{N}$,

$$
\sum_{i=1}^{k+1}\left(F_{m-1}+(-1)^{k+1-i} \cdot F_{m-k+i-3}\right) \cdot\left(\frac{F_{m+1}}{F_{m}}\right)^{i}=F_{m+1} \cdot\left(F_{k+3}-1\right)
$$

If we clear denominators, the identity becomes

$$
\sum_{i=1}^{k+1}\left(F_{m-1}+(-1)^{k+1-i} \cdot F_{m-k+i-3}\right) \cdot\left(F_{m+1}^{i} F_{m}^{k+1-i}\right)=F_{m}^{k+1} F_{m+1} \cdot\left(F_{k+3}-1\right)
$$

We could not find a similar or related identity in the literature, so this appears to be new. The closest identity we could find is the amazing four-parameter identity

$$
F_{m}^{k} F_{n}=(-1)^{k r} \sum_{h=0}^{k}\binom{k}{h}(-1)^{h} F_{r}^{h} F_{r+m}^{k-h} F_{n+k r+h m}
$$

which can be used to produce many interesting known identities (see [5]).
We discovered the identity in Theorem 1 while studying rational base representations of natural numbers (see [1], [8], [3], [4], [6] or [2] for instance), which explains why the identity involves powers of $\frac{F_{m+1}}{F_{m}}$. While these representations are quite complex from a language point of view, there is an elementary construction of an edge-labeled, infinite, rooted tree whose edge labels give the rational base representation of the integer associated to each vertex (see [1], [7] or [2]). It turns out that when using the rational base $\frac{F_{m+1}}{F_{m}}$, the number of nodes lying distance n from the root in the associated tree is given by the sequence A^{m} with $A_{1}^{m}=1$ and

$$
\begin{equation*}
A_{n+1}^{m}=\left\lceil\frac{F_{m+1}-F_{m}}{F_{m}} \cdot \sum_{i=1}^{n} A_{i}^{m}\right\rceil=\left\lceil\frac{F_{m-1}}{F_{m}} \cdot \sum_{i=1}^{n} A_{i}^{m}\right\rceil \tag{1}
\end{equation*}
$$

where $\lceil x\rceil$ represents the least integer larger than x (see [1] or [2]).
Interestingly, as m gets larger, the family of sequences $\left\{A^{m}\right\}$ converges pointwise to the Fibonacci sequence F. More precisely, we have the following theorem.

Theorem 2. Let $\left\{A^{m} \mid m \geq 1\right\}$ be the family of sequences defined in (1). For every $n \in \mathbb{N}$ with $n \geq 1$, there exists $M \in \mathbb{N}$ such that $A_{n}^{m}=F_{n}$ for all $m \geq M$.

Thus, we have produced a family of sequences (with combinatorial interest) that can match the Fibonacci sequence for as many terms as we wish. Figure 1 shows the first 15 terms of the sequences A^{m} where $m \in\{1, \ldots, 10\}$. The numbers in blue represent coincidence with F. Note that A^{10} matches the Fibonacci sequence up to $n=15$ (in fact $n=19$ is the first index with $A_{n}^{10} \neq F_{n}$).

We also note that since $\frac{F_{m-1}}{F_{m}} \rightarrow \frac{1}{\phi}$ as $m \rightarrow \infty$ (where ϕ represents the golden

$A^{m} \backslash n$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A^{1}	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A^{2}	1	1	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192
A^{3}	1	1	1	2	3	4	6	9	14	21	31	47	70	105	158
A^{4}	1	1	2	3	5	8	14	23	38	64	106	177	295	492	820
A^{5}	1	1	2	3	5	8	12	20	32	51	81	130	208	333	533
A^{6}	1	1	2	3	5	8	13	21	34	55	90	146	237	385	626
A^{7}	1	1	2	3	5	8	13	21	34	55	88	143	231	373	602
A^{8}	1	1	2	3	5	8	13	21	34	55	89	144	233	377	611
A^{9}	1	1	2	3	5	8	13	21	34	55	89	144	233	377	609
A^{10}	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610

Figure 1: The first 15 terms of the sequences A^{m} for $m \in\{1, \ldots, 10\}$. For instance, see A000007, A011782, and A073941 in [9].
ratio, $\phi=\frac{1+\sqrt{5}}{2}$), Theorem 2 implies that

$$
\begin{equation*}
F_{n+1}=\left\lceil\frac{1}{\phi} \cdot \sum_{i=1}^{n} F_{i}\right\rceil \tag{2}
\end{equation*}
$$

with $F_{0}=0$ and $F_{1}=1$. While we could not find a citation for this formula, it must be known as it follows from well known facts. We know that $F_{n+2}=\operatorname{round}\left(\phi \cdot F_{n+1}\right)$ so that $\frac{1}{\phi} F_{n+2}-\frac{1}{2 \phi}<F_{n+1}<\frac{1}{\phi} F_{n+2}+\frac{1}{2 \phi}$, which implies $\frac{1}{\phi} F_{n+2}<F_{n+1}+\frac{1}{2 \phi}$ and $F_{n+1}-\frac{1}{2 \phi}<\frac{1}{\phi} F_{n+2}$. Thus

$$
F_{n+1}-1<F_{n+1}-\frac{3}{2 \phi}<\frac{1}{\phi} F_{n+2}-\frac{1}{\phi}<F_{n+1}-\frac{1}{2 \phi}<F_{n+1}
$$

so that

$$
\left\lceil\frac{1}{\phi} \cdot \sum_{i=1}^{n} F_{i}\right\rceil=\left\lceil\frac{1}{\phi} \cdot\left(F_{n+2}-1\right)\right\rceil=F_{n+1}
$$

where the first equality is the well known formula for the sum of the first n Fibonacci numbers.

This note is organized as follows. In Section 2, we prove Theorem 1 using elementary techniques. In Section 3, we introduce the terminology of $\frac{p}{q}$-representations of natural numbers and state results from [1] in order to prove Theorem 2.

2. Proof of Theorem 1

To prove Theorem 1 , we let $m \in \mathbb{Z}$ and use induction on k. For ease of notation, we define $\mathbf{y}_{m}:=\frac{F_{m+1}}{F_{m}}$. We can check that the identity holds for $k=0$ and $k=1$. Indeed, we have (since $F_{3}-1=2-1=1$):

$$
\begin{aligned}
\sum_{i=1}^{1}\left(F_{m-1}+(-1)^{1-i} \cdot F_{m+i-3}\right) \cdot \mathbf{y}_{m}^{i} & =\left(F_{m-1}+F_{m-2}\right) \mathbf{y}_{m}=F_{m+1} \cdot\left(F_{3}-1\right), \text { and } \\
\sum_{i=1}^{2}\left(F_{m-1}+(-1)^{2-i} \cdot F_{m+i-4}\right) \cdot \mathbf{y}_{m}^{i} & =\left(F_{m-1}-F_{m-3}\right) \mathbf{y}_{m}+\left(F_{m-1}+F_{m-2}\right) \mathbf{y}_{m}^{2} \\
& =F_{m-2} \cdot \mathbf{y}_{m}+F_{m} \cdot \mathbf{y}_{m}^{2} \\
& =\frac{F_{m+1}\left(F_{m-2}+F_{m+1}\right)}{F_{m}} \\
& =\frac{F_{m+1}\left(F_{m}-F_{m-1}+F_{m}+F_{m-1}\right)}{F_{m}} \\
& =F_{m+1} \cdot 2=F_{m+1} \cdot\left(F_{4}-1\right)
\end{aligned}
$$

Now, let $k \in \mathbb{N}$ with $k \geq 1$ and assume that the identity holds for $j \in\{k-1, k\}$.

Notice that

$$
F_{m+1}\left(F_{k+4}-1\right)=F_{m+1}+\underbrace{F_{m+1}\left(F_{k+3}-1\right)}_{A}+\underbrace{F_{m+1}\left(F_{k+2}-1\right)}_{B} .
$$

Applying the inductive hypothesis to the quantities A and B in the previous equality yields

$$
\begin{aligned}
A & =\sum_{i=1}^{k+1}\left(F_{m-1}+(-1)^{k+1-i} F_{m-k+i-3}\right) \mathbf{y}_{m}^{i} \\
B & =\sum_{i=1}^{k}\left(F_{m-1}+(-1)^{k-i} F_{m-k+i-2}\right) \mathbf{y}_{m}^{i}
\end{aligned}
$$

so that
$A+B=\left(F_{m-1}+F_{m-2}\right) \cdot \mathbf{y}_{m}^{k+1}+\sum_{i=1}^{k}\left(2 F_{m-1}+(-1)^{k-i}\left(F_{m-k+i-2}-F_{m-k+i-3}\right)\right) \mathbf{y}_{m}^{i}$.
Rearranging sums and applying the Fibonacci identity leaves us with

$$
A+B=F_{m-2} \mathbf{y}_{m}^{k+1}+\underbrace{F_{m-1} \mathbf{y}_{m}^{k+1}+\sum_{i=1}^{k} F_{m-1} \mathbf{y}_{m}^{i}}_{C}+\underbrace{\sum_{i=1}^{k}\left(F_{m-1}+(-1)^{k-i} F_{m-k+i-4}\right) \mathbf{y}_{m}^{i}}_{D} .
$$

In the expression above, since $F_{m+1}-F_{m}=F_{m-1}$, we know that

$$
\begin{aligned}
C=F_{m-1} \sum_{i=1}^{k+1} \mathbf{y}_{m}^{i}=F_{m-1} \cdot\left(\frac{\mathbf{y}_{m}^{k+2}-1}{\mathbf{y}_{m}-1}-1\right) & =F_{m-1} \cdot\left(\frac{F_{m} \mathbf{y}_{m}^{k+2}-F_{m}}{F_{m+1}-F_{m}}-1\right) \\
& =F_{m} \mathbf{y}_{m}^{k+2}-F_{m}-F_{m-1}
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
F_{m+1}\left(F_{k+4}-1\right) & =F_{m+1}+F_{m-2} \mathbf{y}_{m}^{k+1}+F_{m} \mathbf{y}_{m}^{k+2}-F_{m}-F_{m-1}+D \\
& =F_{m-2} \mathbf{y}_{m}^{k+1}+F_{m} \mathbf{y}_{m}^{k+2}+D
\end{aligned}
$$

since $F_{m+1}-F_{m}-F_{m-1}=0$. Next, $F_{m-2}=F_{m-1}-F_{m-3}$ and $F_{m}=F_{m-1}+F_{m-2}$, so that

$$
\begin{aligned}
F_{m+1}\left(F_{k+4}-1\right) & =\left(F_{m-1}-F_{m-3}\right) \mathbf{y}_{m}^{k+1}+\left(F_{m-1}+F_{m-2}\right) \mathbf{y}_{m}^{k+2}+D \\
& =\sum_{i=1}^{k+2}\left(F_{m-1}+(-1)^{k-i} F_{m-k+i-4}\right) \mathbf{y}_{m}^{i} \\
& =\sum_{i=1}^{k+2}\left(F_{m-1}+(-1)^{k+2-i} F_{m-(k+1)+i-3}\right) \mathbf{y}_{m}^{i}
\end{aligned}
$$

as required.

3. $\frac{p}{q}$-representations

For this section, we fix $p, q \in \mathbb{N}$ such that $p>q \geq 1$ and $\operatorname{gcd}(p, q)=1$. For any $n \in \mathbb{N}$, we say $\left(n_{0}, n_{1}, \ldots, n_{k}\right) \frac{p}{q}$ is a $\frac{p}{q}$-representation for n if $0 \leq n_{i}<p$ for all i and $n=\sum_{i=0}^{k} n_{i}\left(\frac{p}{q}\right)^{i}$; in this case we write $n=\left(n_{0}, n_{1}, \ldots, n_{k}\right)_{\frac{p}{q}}$. We note that, unlike base-b representations (with $b>1$ an integer), not every string of digits, $\left(d_{0}, d_{1}, \ldots, d_{k}\right)_{\frac{p}{q}}$, yields a natural number. However, it is known from [1] (and earlier, see A024629 in [9] for instance) that every natural number n has a unique $\frac{p}{q}$-representation. Hence we can define $\operatorname{len}_{\frac{p}{q}}(n)=k+1$ when $n=\left(n_{0}, n_{1}, \ldots, n_{k}\right) \frac{p}{q}$. If the length of $n+1$ is larger than the length of n, i.e., $n \in \mathbb{N}$ satisfies len $\frac{p}{q}(n+$ $1)-\operatorname{len}_{\frac{p}{q}}(n)=1$, we say $n+1$ is new-length element (or nl-element for short).

Many properties of $\frac{p}{q}$-representations (and related representations) are studied in [1] and [3], where the authors define an infinite, rooted tree, called $I_{p / q}$ that describes the $\frac{p}{q}$-representations. A combinatorial construction of this tree is also given in [2] or [7]. In that tree, the nl-elements correspond to the nodes with the least label of any fixed distance from the root; these lie on the left branch of the tree when drawn as in [1].

To prove Theorem 2, we need the following results about $\frac{p}{q}$-representations. We omit the proofs as these may be found in, or are straightforward consequences of, Proposition 21 and Corollary 23 in [1], though our terminology differs.

Lemma 1. Let n be a natural number with $n=\left(n_{0}, n_{1}, \ldots, n_{k}\right) \frac{p}{q}$. Then n is an nl-element if and only if $n=1$ or $n_{0}=0,0 \leq n_{i}<q$ for $1 \leq i \leq k^{q}-1$ and $n_{k}=q$.

Next, let $g: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $g(n)=p\left\lceil\frac{n}{q}\right\rceil$.
Proposition 1. The sequence $\left(\mathcal{K}_{1}, \mathcal{K}_{2}, \ldots\right)$ of nl-elements is given by $\mathcal{K}_{1}=1$ and $\mathcal{K}_{i}=g\left(\mathcal{K}_{i-1}\right)$ for all $i>1$.

Corollary 1. For $k>1$, the number of natural numbers with $\frac{p}{q}$-representations of length k is given by $\mathcal{K}_{k+1}-\mathcal{K}_{k}$. There are $\mathcal{K}_{2}=p$ such representations of length 1 (this includes the natural number 0).

Corollary 2. Let $\left(\mathcal{K}_{1}, \mathcal{K}_{2}, \ldots\right)$ be the sequence of nl-elements. Then for $k \geq 2$, $\mathcal{K}_{k+1}-\mathcal{K}_{k}=p a_{k}$ where $a_{1}=1$ and

$$
a_{n+1}=\left\lceil\frac{(p-q)}{q} \cdot \sum_{i=1}^{n} a_{i}\right\rceil .
$$

3.1. Rational Fibonacci Representations

Fix $m>1$. By definition, we have $F_{m+1}>F_{m}$, and it is well known that $\operatorname{gcd}\left(F_{m+1}, F_{m}\right)=1$. Consequently, we can consider $\frac{p}{q}$-representations where $p=$
F_{m+1} and $q=F_{m}$. For the remainder of this section, we let $p=F_{m+1}$ and $q=F_{m}$ and call the associated $\frac{p}{q}$-representations simply $F_{\mathbf{m}}$-representations. The following lemma allows us to prove Theorem 2.

Lemma 2. Let $m, k \in \mathbb{N}$ with $k<m-2$. The $F_{\mathbf{m}}$-representation of $F_{m+1}\left(F_{k+3}-1\right)$ is given by $\left(n_{0}, n_{1}, \ldots, n_{k+1}\right) \frac{p}{q}$ where $n_{0}=0$, and

$$
n_{i}:=F_{m-1}+(-1)^{k+1-i} F_{m-k+i-3}
$$

for each $1 \leq i \leq k+1$. Furthermore $\mathcal{K}_{k+2}=F_{m+1}\left(F_{k+3}-1\right)$.
Proof. Let $n=\left(n_{0}, n_{1}, \ldots, n_{k+1}\right) \frac{p}{q}$. First, we note that $n_{0}=0$ and we check that $n_{k+1}=F_{m-1}+F_{m-2}=F_{m}$. Also, since $k<m-2$ and $i \leq k+1$ we have $0 \leq F_{m-k+i-3} \leq F_{m-2}$. Thus, we see that

$$
0 \leq F_{m-1}-F_{m-k+i-3} \leq n_{i} \leq F_{m-1}+F_{m-k+i-3}<F_{m-1}+F_{m-2}=F_{m}
$$

for $1 \leq i \leq k$. According to Lemma $1, n=\mathcal{K}_{k+2}$, and Theorem 2 implies that $n=F_{m+1}\left(F_{k+3}-1\right)$.

Proof of Theorem 2. Let $n \in \mathbb{N}$ with $n \geq 1$. Then, choose $M=n+3$. Then for any $m \geq M$ consider the $F_{\mathbf{m}}$-representations of natural numbers and the associated sequence of nl-elements. According to Lemma 2, we have $\mathcal{K}_{k+2}=F_{m+1}\left(F_{k+3}-1\right)$ for all $1 \leq k \leq n$. In particular, we have

$$
\begin{aligned}
\mathcal{K}_{n+1}-\mathcal{K}_{n} & =F_{m+1}\left(F_{n+2}-1\right)-F_{m+1}\left(F_{n+1}-1\right) \\
& =F_{m+1}\left(F_{n+2}-F_{n+1}\right)=F_{m+1} F_{n}
\end{aligned}
$$

Furthermore, by Corollary 2, we have

$$
\mathcal{K}_{n+1}-\mathcal{K}_{n}=F_{m+1} A_{n}^{m}
$$

where A^{m} is defined in equation (1). Since $F_{m+1} \neq 0$, we have $F_{n}=A_{n}^{m}$. By definition $A_{1}^{m}=F_{1}$ and so the result holds.

Therefore, the family of sequences $\left\{A^{m}\right\}$ converges pointwise to F. Moreover, by Corollary 1 and Corollary 2, we see that A_{k}^{m} counts the number of multiples of $p=$ F_{m+1} having $F_{\mathbf{m}}$-representations of length k, giving these sequences a combinatorial interpretation. Moreover, in terms of the tree $I_{p / q}$ defined in [1], the sequence A^{m} gives the number of vertices at fixed distances from the root. Finally, it can be checked (using methods similar to those describing equation 2 in the introduction) that $A^{m} \neq F$ for all m.

Acknowledgements. We would like to thank the anonymous referee for helpful comments that clarified and shortened this note.

References

[1] S. Akiyama, C. Frougny, and J. Sakarovitch. Powers of rationals modulo 1 and rational base number systems, Israel J. Math. 168 (2008), 53-91.
[2] T. Edgar, H. Olafson, and J. Van Alstine. The combinatorics of rational base representations, preprint (2014).
[3] C. Frougny and K. Klouda, Rational base number systems for p-adic numbers. RAIRO Theor. Inform. Appl. 46 (2012), 87-106.
[4] C. Frougny and J. Sakarovitch. Number representation and finite automata. In Combinatorics, automata and number theory, volume 135 of Encyclopedia Math. Appl., pages 34-107. Cambridge Univ. Press, Cambridge, 2010.
[5] J. H. Halton. On a general Fibonacci identity, Fibonacci Quart. 3 (1965), 31-43.
[6] V. Marsault and J. Sakarovitch. On sets of numbers rationally represented in a rational base number system. In Algebraic informatics, volume 8080 of Lecture Notes in Comput. Sci., pages 89-100. Springer, Heidelberg, 2013.
[7] V. Marsault and J. Sakarovitch. Rhythmic generation of infinite trees and languages, CoRR abs/1403.5190 (2014).
[8] J. F. Morgenbesser, W. Steiner, and J M. Thuswaldner. Patterns in rational base number systems, J. Fourier Anal. Appl. 19 (2013), 225-250.
[9] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, http://oeis.org (2016).

