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Abstract
For an arbitrary homogeneous linear recurrence sequence of order d with constant
coe�cients, we derive recurrence relations for all subsequences with indices in arith-
metic progression. The coe�cients of these recurrences are given explicitly in terms
of partial Bell polynomials that depend on at most d � 1 terms of the generalized
Lucas sequence associated with the given recurrence. We also provide an elegant
formula for the partial sums of such sequences and illustrate all of our results with
examples of various orders, including common generalizations of the Fibonacci num-
bers.

1. Introduction

Let d be a positive integer and let (an) be a sequence satisfying the recurrence
relation

an = c1an�1 + · · · + cdan�d for n � d, cd 6= 0. (1)

While it is not surprising that any subsequence of the form (amn+r)n2N, for fixed
m 2 N and r 2 N0 = N [ {0}, also satisfies a linear recurrence relation of order d,
little is actually known about the structure of the coe�cients of these recurrences.
In this paper, we answer this question in full generality and give explicit formulas
in terms of partial Bell polynomials in the coe�cients c1, . . . , cd of the original
recurrence relation.
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To this end, we introduce the associated sequence

â0 = d, ân =
nX

k=1

(k � 1)!
(n� 1)!

Bn,k(1!c1, 2!c2, . . . , d!cd, 0, . . . ) for n � 1, (2)

where Bn,k = Bn,k(x1, x2, . . . ) denotes the (n, k)-th partial Bell polynomial in the
variables x1, x2, . . . , xn�k+1. These polynomials, introduced by Bell [1], provide an
e�cient tool to work with linear recurrence sequences and their convolutions. For
the definition and basic properties, see e.g. [3, Section 3.3].

It can be shown that (ân) satisfies the same recurrence relation as (an). For the
special case of the Fibonacci sequence (Fn), where d = 2 and c1 = c2 = 1, the
associated sequence (F̂n) is given by

F̂0 = 2, F̂n =
nX

k=1

(k � 1)!
(n� 1)!

Bn,k(1!, 2!, 0, . . . ) =
bn

2 cX
k=0

n

n� k

✓
n� k

k

◆
.

This is precisely the Lucas sequence [9, A000032]. Moreover, if (an) is the general-
ized Fibonacci sequence of order d (with c1 = c2 = · · · = cd = 1), then (ân) is the
corresponding generalized Lucas sequence studied in [6]. For this reason, we call
the sequence defined by (2) the Lucas transform of (c1, . . . , cd). One of the main
features of ân is that it can be written as

ân =
dX

j=1

↵n
j for n � 0, (3)

where the ↵j ’s are such that (1 � ↵1t) · · · (1 � ↵dt) = 1 � c1t � · · · � cdtd. The
equivalence of (2) and (3) was observed by the authors in [2].

The main result of this paper (see Theorem 1) is that for an arbitrary linear
recurrence sequence with constant coe�cients c1, . . . , cd, as given in (1), and for
any fixed m 2 N and r 2 N0, the subsequence (amn+r)n2N satisfies the linear
recurrence relation

amn+r = �1 am(n�1)+r + �2 am(n�2)+r + · · · + �d am(n�d)+r for n � d,

with �k =
Pk

j=1
(�1)j+1

k! Bk,j(0!âm, 1!â2m, . . . , (k � j)!â(k�j+1)m) for k = 1, . . . , d,
where (ân) is the Lucas transform of (c1, . . . , cd).

In Section 2, we will prove this result and will illustrate our formula with examples
of recurrences of order 2 and 3. We will also consider convolved Fibonacci sequences
whose characteristic polynomials have roots of higher multiplicity. For brevity in
our exposition, the number of examples discussed in this section is rather limited.
However, all of the results presented in this paper are valid for homogeneous linear
recurrence sequences of arbitrary order with constant coe�cients over any integral
domain.
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In Section 3, we turn our attention to the partial sums of a general linear recur-
rence sequence (an) with characteristic polynomial q(t) = 1� c1t� · · ·� cdtd, and
give an elegant formula for

Pn
j=0 aj in terms of an+1, . . . , an+d, see Theorem 2. To

this end, we first consider the sequence (yn) with generating function 1/q(t) and
find a formula for its partial sums. The sequence (yn) is the invert transform
of (c1, . . . , cd), and together with the sequences with generating functions tj/q(t)
for j = 1, . . . , d � 1, they generate a basis for the space of linear recurrence se-
quences of order d with coe�cients c1, . . . , cd, cf. [2] or [10]. The formula provided
in Theorem 2 is carried out for several basic examples.

Because of the explicit nature of our two theorems, they can be easily combined
to find formulas for sums of the form

Pn
j=0 amj+r. This is discussed at the end of

Section 3 for recurrence sequences of order 2 and 3. For illustration purposes, we
finish the paper with a few examples concerning the Tribonacci sequence.

2. Indices in Arithmetic Progression

Let (an) be a sequence satisfying the recurrence relation (1), and let (ân) be the
Lucas transform of the coe�cients (c1, . . . , cd), as defined in (2). We start this
section by showing that ân admits the representation (3). Let ↵1, . . . ,↵d be defined
by (1� ↵1t) · · · (1� ↵dt) = 1� c1t� · · ·� cdtd, and let sn =

Pd
j=1 ↵n

j for n � 0.
In [2, Proposition 7], the authors showed that for n � 1,

sn =
nX

k=1

(�1)n+k (k � 1)!
(n� 1)!

Bn,k(1!e1, 2!e2, . . . , d!ed, 0, . . . ),

where e1, . . . , ed are the elementary symmetric functions in ↵1, . . . ,↵d. Since ej =
(�1)j+1cj for every j = 1, . . . , d, the homogeneity properties of the partial Bell
polynomials give

Bn,k(1!e1, 2!e2, . . . , d!ed, 0, . . . ) = (�1)n+kBn,k(1!c1, 2!c2, . . . , d!cd, 0, . . . ),

which implies

sn =
nX

k=1

(k � 1)!
(n� 1)!

Bn,k(1!c1, 2!c2, . . . , d!cd, 0, . . . ) = ân for n � 1.

Since s0 = â0, we conclude that sn = ân for all n, as stated in the introduction.
Using the representation (3), it is clear that (ân) satisfies the same recurrence
relation as (an).

Theorem 1. Let (an) be a linear recurrence sequence of order d � 1, satisfying
the relation an = c1an�1 + · · · + cdan�d for n � d, cd 6= 0. Let (ân) be the
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Lucas transform of (c1, . . . , cd). For any fixed m 2 N and r 2 N0, the subsequence
(amn+r)n2N satisfies the linear recurrence relation

amn+r = �1 am(n�1)+r + �2 am(n�2)+r + · · · + �d am(n�d)+r for n � d,

where each �k is given by

�k =
kX

j=1

(�1)j+1

k!
Bk,j(0!âm, 1!â2m, . . . , (k � j)!â(k�j+1)m).

Proof. Since the sequences (amn+r)n2N and (âmn)n2N satisfy the same recurrence
relation, it su�ces to consider the latter. Using the representation (3), for m 2 N,
we get

âmn =
dX

j=1

↵mn
j =

dX
j=1

(↵m
j )n,

thus for n � d, (âmn)n2N satisfies the recurrence relation

âmn = e(m)
1 âm(n�1) � e(m)

2 âm(n�2) + · · · + (�1)d+1e(m)
d âm(n�d),

where e(m)
1 , . . . , e(m)

d , are the elementary symmetric functions in ↵m
1 , . . . ,↵m

d .
For every k = 1, . . . , d, let �k = (�1)k+1e(m)

k . Once again, by [2, Proposition 7],
we have

âmn =
nX

k=1

(�1)n+k (k � 1)!
(n� 1)!

Bn,k(1!e(m)
1 , 2!e(m)

2 , . . . , d!e(m)
d , 0, . . . )

=
nX

k=1

(k � 1)!
(n� 1)!

Bn,k(1!�1, 2!�2, . . . , d!�d, 0, . . . ),

and therefore

(n� 1)!âmn =
nX

k=1

(k � 1)!Bn,k(1!�1, 2!�2, . . . , d!�d, 0, . . . ).

Finally, Lagrange inversion gives

�k =
kX

j=1

(�1)j+1

k!
Bk,j(0!âm, 1!â2m, . . . , (k � j)!â(k�j+1)m).

This proves the claimed recurrence relation for the sequence (âmn)n2N, and therefore
for any sequence of the form (amn+r)n2N.

Remark. Clearly, �1 = âm, and �d = (�1)(d+1)(m+1)cm
d since �d = (�1)d+1e(m)

d .
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Here is a basic example:

Example 1 (k-Fibonacci). For k 2 N let (Fk,n)n2N be the sequence defined by

Fk,0 = 0, Fk,1 = 1, and Fk,n+1 = kFk,n + Fk,n�1 for n � 1.

In this case, ( bFk,n)n2N is the k-Lucas sequence denoted by (Lk,n)n2N in the existing
literature (see e.g. [5]). By means of Theorem 1, we then get

Fk,mn+r = Lk,m Fk,m(n�1)+r + (�1)m+1Fk,m(n�2)+r for n � 2. (4)

Moreover, the representation (2) gives the identity

Lk,m =
mX

j=1

(j � 1)!
(m� 1)!

Bm,j(1!k, 2!, 0, . . . ) =
m�1X
j=0

m

m� j

✓
m� j

j

◆
km�2j .

The recurrence relation (4) coincides with the one given in [5, Lemma 3]. It is easy
to check that Lk,m = Fk,m�1 + Fk,m+1.

Remark. An interesting consequence of Theorem 1 is that the structure of the
recurrence relation satisfied by any arithmetic subsequence of a given linear recur-
rence sequence with constant coe�cients only depends on the order of the given
recurrence. For example, for any linear recurrence sequence (an) of order 2 with
coe�cients c1, c2, we always have

amn+r = âm am(n�1)+r + (�1)m+1cm
2 am(n�2)+r for n � 2,

and for a linear recurrence of order 3 with coe�cients c1, c2, c3, we get

amn+r = âm am(n�1)+r + 1
2 (â2m � â 2

m) am(n�2)+r + cm
3 am(n�3)+r for n � 3,

where (ân) is the Lucas transform of the coe�cients of (an). Thus the key is to
understand the terms âm, â2m, . . . , âdm, for which the representation in terms of
partial Bell polynomials may be useful.

In order to illustrate the use of (2), we now consider two examples of linear
recurrence sequences of order three. They both use the following identity:

Bm,j(x1, x2, x3, 0, . . . ) =
jX

`=0

m!
j!

� j
j�`

�� j�`
m+`�2j

� �
x1
1!

�` �
x2
2!

�3j�m�2` �
x3
3!

�m�2j+`
.

Example 2 (Tribonacci, A000073 in [9]). Let (tn) be defined by

t0 = t1 = 0, t2 = 1,
tn = tn�1 + tn�2 + tn�3 for n � 3.
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Theorem 1 gives the recurrence relation

tmn+r = t̂m tm(n�1)+r + 1
2 (t̂2m � t̂ 2

m)tm(n�2)+r + tm(n�3)+r for n � 3, (5)

where (t̂m) is the Lucas transform of (1, 1, 1). By (2), we have

t̂m =
mX

j=1

(j � 1)!
(m� 1)!

Bm,j(1!, 2!, 3!, 0, . . . ) =
m�1X
j=0

jX
`=dj/2e

m

m� j

✓
m� j

`

◆✓
`

j � `

◆
.

This is sequence [9, A001644] and can also be described by

t̂0 = 3, t̂1 = 1, t̂2 = 3, and t̂n = t̂n�1 + t̂n�2 + t̂n�3 for n � 3.

The recurrence relation (5) is consistent with the one obtained in [7, Theorem 1].

Example 3 (Padovan, A000931 in [9]). Consider the sequence defined by

P0 = 1, P1 = P2 = 0,
Pn = Pn�2 + Pn�3 for n � 3.

Theorem 1 gives the recurrence relation

Pmn+r = bPm Pm(n�1)+r + 1
2 ( bP2m � bP 2

m)Pm(n�2)+r + Pm(n�3)+r for n � 3, (6)

where ( bPn) is the Perrin sequence [9, A001608]. It satisfies the same recurrence
relation as (Pn) but with initial values bP0 = 3, bP1 = 0, and bP2 = 2. Moreover, by
(2), we have

bPm =
mX

j=1

(j � 1)!
(m� 1)!

Bm,j(0, 2!, 3!, 0, . . . ) =
m�1X

j=dm/2e

m

m� j

✓
m� j

2j �m

◆
.

Example 4 (Narayana’s cows sequence, A000930 in [9]). Let (Nn) be defined
by

N0 = N1 = N2 = 1,
Nn = Nn�1 + Nn�3 for n � 3.

Once again, by Theorem 1, we get the recurrence relation

Nmn+r = bNm Nm(n�1)+r + 1
2 ( bN2m � bN 2

m)Nm(n�2)+r + Nm(n�3)+r for n � 3, (7)

where

bNm =
mX

j=1

(j � 1)!
(m� 1)!

Bm,j(1!, 0, 3!, 0, . . . ) =
b(m�1)/2cX

j=0

m

m� 2j

✓
m� 2j

j

◆
.
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While (Nn) counts the number of compositions of n into parts 1 and 3, it can be
shown that (N3n�1) counts the number of

�n+1
2

�
-color compositions of n. SincebN3 = 4 and bN6 = 10, this subsequence satisfies the relation

N2 = 1, N5 = 4, N8 = 13,
N3n+2 = 4N3(n�1)+2 � 3N3(n�2)+2 + N3(n�3)+2 for n � 3.

We finish this section with a linear recurrence sequence of order 4 whose gener-
ating function has roots of multiplicity 2.

Example 5 (Convolved Fibonacci, A001629 in [9]). Let (an) be the sequence
obtained by convolving the Fibonacci sequence with itself. This sequence can be
described by

a0 = a1 = 0, a2 = 1, a3 = 2,
an = 2an�1 + an�2 � 2an�3 � an�4 for n � 4.

In this case, the Lucas transform ân of (2, 1,�2,�1) satisfies ân = 2Ln, where (Ln)
is the Lucas sequence [9, A000032]. By Theorem 1, for n � 4 we then get

amn = �1am(n�1) + �2am(n�2) + �3am(n�3) + �4am(n�4)

with

�1 = âm = 2Lm, �4 = �1,
�2 = 1

2 (â2m � â2
m) = L2m � 2L2

m = 2(�1)m+1 � L2
m,

�3 = 1
6 (2â3m � 3âmâ2m + â3

m) = 2
3 (L3m � 3LmL2m + 2L3

m) = (�1)m2Lm.

Here we have used the known identities L2m = L2
m � 2(�1)m and L3m = L3

m �
3(�1)mLm. In conclusion, for n � 4 we have

amn = 2Lm am(n�1)�
�
2(�1)m +L2

m

�
am(n�2) +(�1)m2Lmam(n�3)�am(n�4). (8)

For the special cases m = 2, 3, 4, 5, we have L2 = 3, L3 = 4, L4 = 7, L5 = 11, and
so

a2n = 6a2(n�1) � 11a2(n�2) + 6a2(n�3) � a2(n�4),

a3n = 8a3(n�1) � 14a3(n�2) � 8a3(n�3) � a3(n�4),

a4n = 14a4(n�1) � 51a4(n�2) + 14a4(n�3) � a4(n�4),

a5n = 22a5(n�1) � 119a5(n�2) � 22a5(n�3) � a5(n�4).
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3. Sums of Linear Recurrence Sequences

For fixed c1, . . . , cd with cd 6= 0, let

q(t) = 1� c1t� c2t
2 � · · ·� cdt

d, (9)

and let (yn) be the sequence with generating function Y (t) = 1/q(t). Denoting
c0 = �1, we then have

1 = q(t)Y (t) =
✓
�

dX
n=0

cntn
◆✓ 1X

n=0

yntn
◆

,

which implies
Pn

i=0 ciyn�i = 0 for every n � 1. Therefore,

�1 = c0 +
dX

n=1

✓ nX
i=0

ciyn�i

◆
=

dX
n=0

nX
i=0

ciyn�i =
dX

j=0

✓ jX
i=0

ci

◆
yd�j

and so

q(1)y0 = �
✓ dX

i=0

ci

◆
y0 = 1 +

d�1X
j=0

✓ jX
i=0

ci

◆
yd�j = 1 +

d�1X
j=0

✓ d�1�jX
i=0

ci

◆
yj+1. (10)

This is the base case for the following statement.

Proposition 1. Let (yn) be the linear recurrence sequence with generating function
1/q(t), where q(t) = 1� c1t� c2t2 � · · ·� cdtd with cd 6= 0, and let c0 = �1. Then
for n � 0,

q(1)
nX

j=0

yj = 1 +
d�1X
j=0

✓ d�1�jX
i=0

ci

◆
yn+j+1. (11)

Proof. We proceed by induction on n. The base case n = 0 was established in (10).
Assume that (11) holds for n� 1. Then

q(1)
nX

j=0

yj = q(1)
n�1X
j=0

yj + q(1)yn = 1 +
d�1X
j=0

✓ d�1�jX
i=0

ci

◆
yn+j + q(1)yn

= 1 +
d�1X
j=1

✓ d�1�jX
i=0

ci

◆
yn+j � cdyn = 1 +

d�2X
j=0

✓ d�2�jX
i=0

ci

◆
yn+j+1 � cdyn

= 1 +
d�2X
j=0

✓ d�1�jX
i=0

ci

◆
yn+j+1 �

d�2X
j=0

cd�1�jyn+j+1 � cdyn

= 1 +
d�2X
j=0

✓ d�1�jX
i=0

ci

◆
yn+j+1 � yn+d = 1 +

d�1X
j=0

✓ d�1�jX
i=0

ci

◆
yn+j+1.

Hence the identity (11) holds for all n � 0.
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Let q(t) be as in (9). For ` 2 {0, 1, . . . , d�1} we let
�
y(`)

n
�

be the linear recurrence
sequence with generating function Y`(t) = t`/q(t). Note that (y(0)

n ) is the sequence
(yn) introduced above, and for ` > 0 we have

y(`)
0 = · · · = y(`)

`�1 = 0 and y(`)
n = yn�` for n � `.

Clearly, the sequences (y(0)
n ), (y(1)

n ), . . . , (y(d�1)
n ) form a basis for the space of all

linear recurrence sequences of order d with coe�cients c1, . . . , cd.
More precisely, if (an) is a linear recurrence sequence satisfying an = c1an�1 +

· · · + cdan�d with initial values a0, . . . , ad�1, then

an = �0y
(0)
n + · · · + �d�1y

(d�1)
n , where

�0 = a0 and �n = an �
nX

j=1

cjan�j for n = 1, . . . , d� 1.
(12)

Theorem 2. Let (an) be a linear recurrence sequence of order d satisfying

an = c1an�1 + · · · + cdan�d for n � d,

with initial values a0, . . . , ad�1, and let c0 = �1. For n � 0, we have

q(1)
nX

j=0

aj =
d�1X
j=0

✓ d�1�jX
i=0

ci

◆�
an+j+1 � aj

�
,

where q(1) = 1� c1 � · · ·� cd.

Proof. We start by writing aj = �0y
(0)
j + · · · + �d�1y

(d�1)
j as in (12). Thus

q(1)
nX

j=0

aj = q(1)
nX

j=0

d�1X
`=0

�`y
(`)
j = q(1)

d�1X
`=0

�`

✓ nX
j=`

yj�`

◆
=

d�1X
`=0

�`

✓
q(1)

n�X̀
j=0

yj

◆
,

which by (11) becomes

q(1)
nX

j=0

aj =
d�1X
`=0

�`

✓
1 +

d�1X
j=0

✓ d�1�jX
i=0

ci

◆
yn+j+1�`

◆

=
d�1X
`=0

�` +
d�1X
`=0

�`

d�1X
j=0

✓ d�1�jX
i=0

ci

◆
yn+j+1�`

=
d�1X
`=0

�` +
d�1X
j=0

✓ d�1�jX
i=0

ci

◆ d�1X
`=0

�`yn+j+1�`

=
d�1X
`=0

�` +
d�1X
j=0

✓ d�1�jX
i=0

ci

◆
an+j+1.



INTEGERS: 16 (2016) 10

Now, by means of (12), we have

d�1X
`=0

�` = �
d�1X
j=0

⇣ jX
i=0

ci

⌘
ad�1�j = �

d�1X
j=0

⇣ d�1�jX
i=0

ci

⌘
aj ,

and therefore,

q(1)
nX

j=0

aj =
d�1X
j=0

✓ d�1�jX
i=0

ci

◆�
an+j+1 � aj

�
,

as claimed.

Example 6 (d-step Fibonacci). Let d 2 N with d � 2. Let (f (d)
n ) be defined by

f (d)
0 = · · · = f (d)

d�2 = 0, f (d)
d�1 = 1, f (d)

n = f (d)
n�1 + · · · + f (d)

n�d for n � d.

By Theorem 2,
nX

j=0

f (d)
j = 1

1�d

d�1X
j=0

(d� 2� j)
⇣
f (d)

n+j+1 � f (d)
j

⌘
= 1

1�d

✓ d�1X
j=0

(d� 2� j)f (d)
n+j+1 + 1

◆
.

Example 7 (d-step Lucas). Let d 2 N with d � 2. Let (`(d)
n ) be the L-sequence

associated with (f (d)
n ). It satisfies the recurrence relation

`(d)
0 = d, `(d)

j = 2j � 1 for j = 1, . . . , d� 1,

`(d)
n = `(d)

n�1 + · · · + `(d)
n�d for n � d.

By Theorem 2,
nX

j=0

`(d)
j = 1

1�d

d�1X
j=0

(d� 2� j)
⇣
`(d)
n+j+1 � `(d)

j

⌘
,

which can be written as
nX

j=0

`(d)
j = 1

1�d

✓ d�1X
j=0

(d� 2� j)`(d)
n+j+1 �

d(d� 3)
2

◆
. (13)

In particular, for d = 2 and d = 3, we get
nX

j=0

`(2)j = `(2)n+2 � 1 and
nX

j=0

`(3)j = 1
2

�
`(3)n+3 � `(3)n+1

�
= 1

2

�
`(3)n+2 + `(3)n

�
,

which are sequences A001610 and A073728 in [9], and for d = 4,
nX

j=0

`(4)j = 1
3

�
`(4)n+3 � `(4)n+1 + `(4)n + 2

�
.
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3.1. Subsequences with Indices in Arithmetic Progression

As discussed in Theorem 1, given a linear recurrence sequence (an) with constant
coe�cients, any subsequence of the form (amn+r)n2N also satisfies a linear recur-
rence relation with constant coe�cients that depend on (ân), the Lucas transform
of the coe�cients of (an). Consequently, Theorem 2 may be used to derive, in a
straightforward manner, formulas for the sums

Pn
j=0 amj+r.

In order to illustrate the combined use of these theorems, we will discuss some
examples for linear recurrences of order two and three. The higher the order of (an),
the more terms of the associated sequence (ân) are required to find the coe�cients
of the recurrence relation satisfied by (amn+r)n2N. However, the number of terms
needed is one less than the order. More precisely, if the order of (an) is d, we will
only need to compute âm, â2m, . . . , â(d�1)m.

Example 8 (Linear recurrences of order 2). Let (an) be defined by

an = c1an�1 + c2an�2 for n � 2,

with initial values a0 and a1. By Theorem 1, we know

amn+r = âm am(n�1)+r + (�1)m+1cm
2 am(n�2)+r for n � 2,

where âm is given by

âm =
mX

j=1

(j � 1)!
(m� 1)!

Bm,j(1!c1, 2!c2, 0, . . . ) =
m�1X
j=0

m

m� j

✓
m� j

j

◆
cm�2j
1 cj

2.

Moreover, by Theorem 2,
nX

j=0

amj+r =
�
am(n+2)+r � am+r

�
� (âm � 1)

�
am(n+1)+r � ar

�
âm + (�1)m+1cm

2 � 1

=
am(n+1)+r � (�1)mcm

2 amn+r + (âm � 1)ar � am+r

âm � (�1)mcm
2 � 1

.

For the special case of the k-Fibonacci sequence (cf. Example 1), we get
nX

j=0

Fk,mj+r =
Fk,m(n+1)+r � (�1)mFk,mn+r + (Lk,m � 1)Fk,r � Fk,m+r

Lk,m � (�1)m � 1
,

and for the k-Lucas sequence, we have

nX
j=0

Lk,mj+r =
Lk,m(n+1)+r � (�1)mLk,mn+r + (Lk,m � 1)Lk,r � Lk,m+r

Lk,m � (�1)m � 1
.

These formulas are consistent with the ones given in [4, 5].
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Example 9 (Linear recurrences of order 3). Let (an) be defined by

an = c1an�1 + c2an�2 + c3an�3 for n � 3,

with initial values a0, a1, and a2. By Theorem 1, we have

amn+r = âm am(n�1)+r + 1
2 (â2m � â 2

m) am(n�2)+r + cm
3 am(n�3)+r for n � 3,

where âm =
Pm

j=1
(j�1)!
(m�1)!Bm,j(1!c1, 2!c2, 3!c3, 0, . . . ). Theorem 2 then gives

q̂(1)
nX

j=0

amj+r =
2X

j=0

✓ 2�jX
i=0

ĉi

◆�
am(n+j+1)+r � amj+r

�
, (14)

where ĉ0 = �1, ĉ1 = âm, ĉ2 = 1
2 (â2m� â 2

m), and q̂(1) = 1� âm� 1
2 (â2m� â 2

m)� cm
3 .

For the special case of the Tribonacci sequence (cf. Example 2)

t0 = t1 = 0, t2 = 1, tn = tn�1 + tn�2 + tn�3 for n � 3,

the above formula (14) gives

nX
j=0

tmj+r =
tm(n+1)+r +

�
1 + 1

2 (t̂2m � t̂ 2
m)

�
tmn+r + tm(n�1)+r + Im,r

t̂m + 1
2 (t̂2m � t̂ 2

m)
,

where Im,r =
�
t̂m + 1

2 (t̂2m � t̂ 2
m) � 1

�
tr + (t̂m � 1)tm+r � t2m+r. Here are a few

values of the sequences (tn) and (t̂n), taken from [9]:

(A000073) tn : 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, . . .
(A001644) t̂n : 3, 1, 3, 7, 11, 21, 39, 71, 131, 241, 443, 815, 1499, 2757, . . .

Tribonacci numbers have been extensively studied, and some special cases of the
above formula can be found in the literature, see, e.g., citeKilic08 and [7, Theo-
rem 3].

We finish this section with a short list of particular instances of the above sum:
nX

j=0

tj = 1
2

�
tn+2 + tn � 1

�
,

nX
j=0

t2j = 1
2

�
t2n+1 + t2n

�
,

nX
j=0

t2j+1 = 1
2

�
t2n+2 + t2n+1 � 1

�
,

nX
j=0

t3j = 1
2

�
t3n+2 � t3n � 1

�
,

nX
j=0

t4j = 1
4

�
t4n+2 + t4n � 1

�
,
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nX
j=0

t5j+r = 1
22

�
t5n+2+r + 8t5n+1+r + 5t5n+r + Ir

�
,

where I0 = �1, I1 = �9, I2 = 7, I3 = �3, and I4 = �5.
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References

[1] E. T. Bell, Exponential polynomials, Ann. of Math. 35 (1934), 258–277.

[2] D. Birmajer, J. B. Gil, and M. D. Weiner, Linear recurrence sequences and their convolutions
via Bell polynomials, J. Integer Seq. 18 (2015), no. 1, Article 15.1.2, 14 pp.

[3] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel
Publishing Co., Dordrecht, 1974.

[4] S. Falcon, On the k-Lucas numbers of arithmetic indexes, Appl. Math. 3 (2012), 1202–1206.

[5] S. Falcon and A. Plaza, On k-Fibonacci numbers of arithmetic indexes, Appl. Math. Comput.
208 (2009), 180–185.

[6] V. Hoggatt and M. Bicknell-Johnson, Generalized Lucas sequences, Fibonacci Quart. 15
(1977), no. 2, 131–139.

[7] N. Irmak and M. Alp, Tribonacci numbers with indices in arithmetic progression and their
sums, Miskolc Math. Notes 14 (2013), no. 1, 125–133.
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