K-LEHMER AND K-CARMICHAEL NUMBERS

Max Lewis
Dept. of Mathematics, University of Queensland, St Lucia, QLD 4072, Australia
Victor Scharaschkin
Dept. of Mathematics, University of Queensland, St Lucia, QLD 4072, Australia
v.scharaschkin@gmail.com

Received: 10/13/15, Accepted: 11/13/16, Published: 11/22/16

Abstract

Grau and Oller-Marcén have defined k-Lehmer and k-Carmichael numbers as generalizations of Lehmer and Carmichael numbers, respectively. We partially resolve some of their conjectures by proving that for infinitely many k there are Carmichael numbers that are k-Lehmer but not $(k-1)$-Lehmer. We also prove an analogous result for k-Carmichael numbers.

1. Introduction

Let φ denote Euler's totient function. If n is prime then $\varphi(n)=n-1$. A Lehmer number [11] is a composite integer n such that $\varphi(n) \mid(n-1)$. It is an open question whether any such n exist [9, B37]. Clearly, if n is a Lehmer number then

$$
\begin{equation*}
\text { for all } a \in \mathbb{N}, \text { if } \operatorname{gcd}(a, n)=1 \text { then } a^{\varphi(n)} \equiv 1 \quad(\bmod n) \tag{1}
\end{equation*}
$$

Let \mathcal{C} be the set of composite numbers satisfying (1). Elements of \mathcal{C} are called Carmichael numbers [19, A002997]. In contrast to Lehmer numbers, it was shown in Alford, Granville and Pomerance's seminal paper [1] that \mathcal{C} is infinite.

Generalizing Lehmer's definition, Grau and Oller-Marcén [7] define sets $\mathcal{L}_{1} \subseteq$ $\mathcal{L}_{2} \subseteq \cdots \subseteq \mathcal{L}_{\infty}$ by

$$
\mathcal{L}_{k}=\left\{n \in \mathbb{N}: \varphi(n) \mid(n-1)^{k}\right\}, \quad \quad \mathcal{L}_{\infty}=\bigcup_{k=1}^{\infty} \mathcal{L}_{k}
$$

and show that $\mathcal{C} \subset \mathcal{L}_{\infty}$. (The containment is strict. For example $15 \in \mathcal{L}_{3} \backslash \mathcal{C}$.)
For $k \leq \infty$ let \mathcal{L}_{k}^{\prime} be the subset of \mathcal{L}_{k} consisting of composite numbers, so \mathcal{L}_{1}^{\prime} is the (possibly empty) set of Lehmer numbers. An element of \mathcal{L}_{k}^{\prime} is called a k Lehmer number [19, A238574]. McNew has shown [13, Theorem 4] that for $k \geq 2$ $\left|\mathcal{L}_{k}^{\prime} \cap[1, x]\right|<_{k} x^{1-\frac{1}{4 k-1}}$.

Note that we have $\mathcal{L}_{1}^{\prime} \subseteq \mathcal{C} \subseteq \mathcal{L}_{\infty}^{\prime}$. In this notation Lehmer's original problem is whether the "lower bound" \mathcal{L}_{1}^{\prime} for \mathcal{C} is non-empty. More generally we can ask how \mathcal{C} is distributed among the \mathcal{L}_{k}.

If $n \in \mathcal{L}_{\infty}$, we define the level of $n, \ell(n)$, to be the smallest k such that $n \in \mathcal{L}_{k}$. McNew and Wright [14] have recently shown that for every $k \geq 3$ there are infinitely many integers of level k, but none of the numbers they construct are Carmichael. Grau and Oller-Marcén conjecture that for every $k \geq 2$ there are infinitely many Carmichael numbers of level k. Thus, conjecturally, the set $\ell(\mathcal{C})$ contains every integer greater than one. In $\S 2$ we prove a weaker result by showing that $\ell(\mathcal{C})$ is infinite.

Theorem 1. For infinitely many $k \in \mathbb{N}$ there exists a Carmichael number of level k. That is, $\mathcal{C} \cap\left(\mathcal{L}_{k}^{\prime} \backslash \mathcal{L}_{k-1}^{\prime}\right)$ is non-empty infinitely often.

Lehmer's condition $\varphi(n) \mid(n-1)$ for composite n is so stringent that it may be impossible to satisfy. Another weakening of this condition is to replace the order $\varphi(n)$ of the multiplicative group $(\mathbb{Z} / n \mathbb{Z})^{\times}$by the exponent of this group, $\lambda(n)$. As Carmichael showed [4], the resulting analogue of Lehmer's condition is satisfied precisely by the Carmichael numbers: for n composite, $\lambda(n) \mid(n-1)$ if and only if $n \in \mathcal{C}$.

In another paper, Grau and Oller-Marcén [8] weaken this condition further. Given $k \in \mathbb{N}$, they define a composite number n to be a k-Carmichael number if $\lambda(n) \mid k(n-1)$. Thus a 1-Carmichael number is precisely a Carmichael number in the usual sense.

In analogy to ℓ, we define $\mathrm{k}(n)$ to be the smallest integer k such that n is a k-Carmichael number. We believe it is natural to ask which integers occur in the image of k. If k were surjective it would mean that there are natural numbers, n, that are arbitrarily far away from being Carmichael in the sense that $\lambda(n)$ only divides $k(n-1)$ for large k. In $\S 4$ we prove the following:

Theorem 2. For every finite non-empty set S of primes, there exists n such that the prime factors of $\mathrm{k}(n)$ are exactly the primes in S. That is, the function $\mathrm{rad} \circ \mathrm{k}: \mathbb{N} \rightarrow$ $\{n \in \mathbb{N}: n$ is square-free $\}$ is surjective.

We record some results and notation for future reference. If m is a positive integer, let $\omega(m)$ be the number of distinct prime factors of m. If G is a finite group, let $\lambda(G)$ denote its exponent. In the special case $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$, write $\lambda(n)$ for $\lambda(G)$, and call λ the Carmichael λ function. As $n \rightarrow \infty$ we have $\lambda(n) \rightarrow \infty$. Indeed, from Erdős, Pomerance and Schmutz [6, Theorem 1], for sufficiently large n

$$
\begin{equation*}
\lambda(n)>\log (n)^{\log \log \log n} \tag{2}
\end{equation*}
$$

It is easy to see that any Carmichael number n must be odd and square-free. Korselt's criterion [10] states that a square-free integer $n>1$ is Carmichael if and
only if for each prime p with $p \mid n$ it follows that $(p-1) \mid(n-1)$. Finally we have a simple lemma.

Lemma 1. Let a and b be positive integers, and let c be the least positive integer such that $a \mid b c$. Then $c=a / \operatorname{gcd}(a, b)=\operatorname{lcm}(a, b) / b$.

2. Carmichael Numbers of Level k

Lemma 2. Let $n \in \mathcal{C}, n=\prod_{j=1}^{k} p_{j}$. Then

$$
\begin{equation*}
\ell(n)=\max _{q \mid(n-1)}\left\{\left\lceil\sum_{j=1}^{k} \frac{\operatorname{ord}_{q}\left(p_{j}-1\right)}{\operatorname{ord}_{q}(n-1)}\right\rceil\right\} \tag{3}
\end{equation*}
$$

Each fraction in the sum lies in the interval $[0,1]$.
Proof. By Korselt's criterion $\left(p_{j}-1\right) \mid(n-1)$ for each $j=1, \ldots, k$, so $\operatorname{ord}_{q}\left(p_{j}-1\right) \leq$ $\operatorname{ord}_{q}(n-1)$ and each fraction is in $[0,1]$.

By definition, $\ell=\ell(n)$ is the smallest positive integer such that $\varphi(n)=\prod_{j=1}^{k}\left(p_{j}-\right.$ 1) | $n-1)^{\ell}$. Equivalently, ℓ is minimal such that for all primes $q \mid(n-1)$ we have $\operatorname{ord}_{q} \prod_{j=1}^{k}\left(p_{j}-1\right) \leq \operatorname{ord}_{q}(n-1)^{\ell}$. That is, $\sum_{j=1}^{k} \operatorname{ord}_{q}\left(p_{j}-1\right) \leq \ell \operatorname{ord}_{q}(n-1)$. So ℓ is the smallest integer greater than or equal to $\sum_{j=1}^{k} \frac{\operatorname{ord}_{q}\left(p_{j}-1\right)}{\operatorname{ord}_{q}(n-1)}$ for every q, as claimed.

Example. The smallest Carmichael number is $n=3 \cdot 11 \cdot 17=561$ with $n-1=$ $2^{4} \cdot 5 \cdot 7$, and

$$
\begin{aligned}
\ell(n) & =\max _{q \in\{2,5,7\}}\left\{\left\lceil\frac{\operatorname{ord}_{q}(2)+\operatorname{ord}_{q}(10)+\operatorname{ord}_{q}(16)}{\operatorname{ord}_{q}\left(2^{4} \cdot 5 \cdot 7\right)}\right\rceil\right\} \\
& =\max \left\{\left\lceil\frac{1+1+4}{4}\right\rceil,\left\lceil\frac{0+1+0}{1}\right\rceil,\left\lceil\frac{0+0+0}{1}\right\rceil\right\} \\
& =2
\end{aligned}
$$

Indeed $\varphi(n)=2^{6} \cdot 5$, so $\varphi(n) \mid(n-1)^{2}$ but $\varphi(n) \nmid(n-1)$, and so $\ell(n)=2$.
Since each fraction in (3) is bounded above by 1 we have a simple bound for $\ell(n)$. Recall that $\omega(n)$ is the number of distinct prime factors of n.

Corollary 1. If $n \in \mathcal{C}$ then $\ell(n) \leq \omega(n)$.
This inequality is not tight in general, as the example $n=561=3 \cdot 11 \cdot 17$ shows. However, under some additional hypotheses the inequality is actually an equality.
Corollary 2. Let q be any prime. Suppose $n \in \mathcal{C}, n=\prod_{j=1}^{k} p_{j}$ and $n \not \equiv 1\left(\bmod q^{2}\right)$ is such that $p_{j} \equiv 1(\bmod q)$ but $p_{j} \not \equiv 1\left(\bmod q^{2}\right)$ for $j=1,2, \cdots, k$. Then $\ell(n)=k$.

Proof. By Korselt's criterion $q\left|\left(p_{j}-1\right)\right|(n-1)$, so q is one of the primes indexing the set in (3). The hypotheses of the corollary imply that each of the k fractions in the corresponding sum is equal to 1 , so the sum is k, which is the maximum possible (so no other $q^{\prime} \mid(n-1)$ can produce a larger value).

This result takes a particularly simple form if $q=2$, since the condition $p_{j} \equiv 1$ $(\bmod 2)$ is automatically satisfied.

Corollary 3. If $n \in \mathcal{C}$ and $n \equiv 3(\bmod 4)$, then $\ell(n)=\omega(n)$. Moreover, in this situation $\ell(n)$ must be odd.

Proof. Let $n=\prod_{j=1}^{k} p_{j}$. If some $p_{j} \equiv 1(\bmod 4)$ then $4\left|\left(p_{j}-1\right)\right|(n-1)$ by Korselt's criterion, but this is impossible since $n-1 \equiv 2(\bmod 4)$. So $\operatorname{ord}_{2}\left(p_{j}-1\right)=$ 1 for each j. Putting $q=2$ in Corollary 2 shows $\ell(n)=k$. Furthermore, each $p_{j} \equiv-1(\bmod 4)$ so $n \equiv(-1)^{k}(\bmod 4)$ and so k must be odd.

In a recent advance, Wright [20] proved "Dirichlet's theorem for Carmichael numbers." That is, for all positive integers a and m with $\operatorname{gcd}(a, m)=1$ there exist infinitely many Carmichael numbers n with $n \equiv a(\bmod m)$. It is implicit in Wright's proof that n may be chosen with many prime factors. For clarity, we make this explicit.

Theorem 3 ([20]). Let $a, m \in \mathbb{N}$ with $\operatorname{gcd}(a, m)=1$ and let $k \in \mathbb{N}$. Then there exist infinitely many Carmichael numbers n with $n \equiv a(\bmod m)$ and $\omega(n) \geq k$.

Proof. This is implicit in Wright, but requires close reading. It is difficult to summarize the arguments without reproducing much of the exposition there.

Fix a and m. (In the notation of [20], also fix θ.) It suffices to show the existence of one such n, since if $n_{1} \in \mathcal{C}, n_{1} \equiv a(\bmod m)$ and $\omega\left(n_{1}\right)=k_{1}>k$, then there exists $n_{2} \in \mathcal{C}$ with $n_{2} \equiv a(\bmod m)$ and $\omega\left(n_{2}\right)=k_{2} \geq k_{1}+1$. In particular, $n_{2} \neq n_{1}$ and the result follows by repeating this argument.

We sketch Wright's proof. Let y be an integer parameter that we ultimately let become very large. Construct an integer $L=L(y)$ with many divisors d such that $d k_{0}+1$ is prime for some k_{0}. Collect a certain subset of these primes into a set \mathcal{P} whose cardinality may be estimated. From [20, Lemma 4.3] the construction yields

$$
\begin{equation*}
\log L \gg y \tag{4}
\end{equation*}
$$

The desired n is obtained from the following:
Theorem 4. Let G be a finite multiplicative abelian group of exponent $\lambda(G)$, and let \mathcal{P} be a length p sequence of elements of $G \backslash\left\{1_{G}\right\}$. Then there exist integers $n(G)$ and $s(G) \gg \lambda(G)^{2}$ and a subgroup $\left\{1_{G}\right\} \neq H \subseteq G$ such that each of the following hold.

1. If $p \geq s(G)$ then $\mathcal{P} \cap H$ is non-empty.
2. If $p \geq s(G)$ and $h \in H$ then there exists a subsequence of \mathcal{P} whose product is h.
3. Let t be an integer with $s(G)<t<p-n(G)$ and let

$$
N_{t}=\binom{p-n(G)}{t-n(G)} \cdot\binom{p}{n(G)}^{-1}
$$

Then for each $h \in H$ there are at least N_{t} subsequences of \mathcal{P} of length at least $t-n(G)$ whose product is h.

Proof. Parts (1) and (2) follow from Baker and Schmidt [3, Proposition 1] (see discussion after (1.14) in that paper), and part (3) follows from Matomäki [12, Lemma 6]. Explicit bounds for $s(G)$ and $n(G)$ are given in these references but we shall not need them in this sketch.

Now apply Theorem 4 in (at least) two different ways. Let $G=(\mathbb{Z} / m L \mathbb{Z})^{\times}$, so $\lambda(G)=\lambda(m L)$. One shows $p>s(G)$, so by Theorem 4(1) H exists with $\mathcal{P} \cap H \neq \emptyset$. Let $p_{H} \in \mathcal{P} \cap H$. It is not difficult to find r such that $h:=p_{H}^{r}$ satisfies $h \equiv 1$ $(\bmod L)$ and $h \equiv a(\bmod m)$. Then Theorem $4(2)$ implies there exists a product, n, of primes from \mathcal{P} whose image in G satisfies $n=h$. Finally this n is shown to be Carmichael using Korselt's criterion.

Furthermore, Wright gives an explicit positive integer $t=t(M, L)$ to use in Theorem 4(3), such that:

$$
s(G)<t<p-n(G), \quad t-n(G) \geq \frac{2}{3} t, \quad \quad \log N_{t} \gg t y
$$

Thus, for y large enough, $N_{t} \geq 1$ certainly holds and hence there exists $n \in \mathcal{C}$ with $n \equiv a(\bmod m)$ and $\omega(n) \geq 2 t / 3$. In particular, as $y \rightarrow \infty, L \rightarrow \infty$ by (4), and hence $\lambda(m L) \rightarrow \infty$ by (2). Since $\omega(n) \geq \frac{2}{3} t>\frac{2}{3} s(G) \gg \lambda(m L)^{2}$ it follows that if y is chosen large enough then $\omega(n) \geq k$.

Combining Wright's result with Corollary 3 we can now prove Theorem 1.
Theorem 5. For infinitely many odd integers k there is a Carmichael number of level k.

Proof. Let $m \in \mathbb{N}$. By Theorem 3 there exists a Carmichael number $n \equiv 3(\bmod 4)$ with $\omega(n) \geq m$. By Lemma $3 \ell(n)=\omega(n) \geq m$, and $\ell(n)$ is odd. So for every m there exists odd $k \geq m$ and a Carmichael number of level k. The result follows.

The limitation that k is odd comes from using $q=2$ in Corollary 2. Below we construct many Carmichael numbers of large known level, both even and odd.

3. Examples of Carmichael Numbers of Level \boldsymbol{k}

Alford, Grantham, Hayman and Shallue [2] give a probabilistic algorithm for producing Carmichael numbers with a large number of prime factors. They find examples with almost 20 million factors. By implementing a modified version of their algorithm we were able to find Carmichael numbers of known level exceeding 10^{5}, including examples of even level. We give details in Table 1. Calculations were carried out in Pari [15].

The algorithm uses the following variant of Corollary 2.
Lemma 3. Let q be prime and M be any positive integer not divisible by q. Let

$$
\mathcal{P}=\{p=q d+1: d \mid M, \quad p \nmid M, \text { and } p \text { is prime }\} .
$$

Suppose there exist distinct elements $p_{1}, \ldots, p_{k} \in \mathcal{P}$ with $k \geq 3$ such that the product $n=p_{1} \cdots p_{k}$ satisfies $n \equiv 1(\bmod q M)$ and $n \not \equiv 1\left(\bmod q^{2}\right)$. Then n is a Carmichael number of level k.

Proof. Observe that $(p-1)=q d|q M|(n-1)$ for all $p \in \mathcal{P}$, and thus n satisfies Korselt's criterion, so $n \in \mathcal{C}$. We have $p=q d+1 \equiv 1(\bmod q)$ for all $p \in \mathcal{P}$, and each $d \mid M$, so $q \nmid d$ and thus $p \not \equiv 1\left(\bmod q^{2}\right)$. So n satisfies the conditions of Corollary 2 and hence has level k.

Let $L=q M$. The algorithm works by choosing M with many small prime factors, generating the set \mathcal{P}, and then searching for long products n that are 1 modulo L but not $1\left(\bmod q^{2}\right)$. In the case $q=2$ this is equivalent to choosing a product of odd length.

$$
\begin{aligned}
& \begin{array}{l}
q=2 \\
M_{2}
\end{array}=3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47 \\
& \quad=84131794904721984023979375 \\
& k=101015,|\mathcal{P}|=101208 \\
& n=4459278357 \ldots 1375428751 \equiv 3(\bmod 4) \\
& \hline q=3 \\
& M_{3}=2^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47 \\
& \quad=6565383171958185615040000 \\
& k=109544,|\mathcal{P}|=109691 \\
& n=
\end{aligned}
$$

Table 1: Carmichael numbers with level $k>10^{5}$
Although this works well in practice, we cannot prove that such products n must exist. Let $\delta(n)$ denote the number of divisors of n of the form $p-1$ where p is prime, and, for a specific example, let M_{2} be as in Table 1 and consider $L=2 M_{2}$.

For this L one finds that $\delta(L)=101217$. It is shown in [1, Theorem 2] that there exists a product that is congruent to 1 modulo L, provided

$$
\begin{equation*}
\delta(L) \geq \lambda(L)\left(1+\log \frac{\varphi(L)}{\lambda(L)}\right) \tag{5}
\end{equation*}
$$

But $\lambda(L)\left(1+\log \frac{\varphi(L)}{\lambda(L)}\right) \approx 3.4 \times 10^{12}$ is much larger than $\delta(L)$, and yet we still easily found many subsequences with product 1 . It appears that inequality (5) is stronger than what is really needed to guarantee such subsequences exist. Similarly, Prachar's lower bound for $\delta(n)$ in [16] seems much smaller than our computed value of $\delta(L)$. An improvement of these bounds might lead to a proof that there are Carmichael numbers of every possible level.

We note here a method of producing natural numbers that are the product of only two primes (and hence not Carmichael) that have large known level. It follows from Grau and Oller-Marcén [7, Proposition 5] that the product of any two primes of the form $p=2^{a} d+1, q=2^{b} d+1$ for some odd d and $a<b$, is of level $k=\left\lceil\frac{b}{a}\right\rceil+1$. Primes of the form $p=2^{n} d+1$ for odd k and $2^{n}>k$ are called Proth primes [19, A080076]. If we take $p=2^{1} \cdot 3+1$ and let q be the large Proth prime $q=2^{b} \cdot 3+1$ where $b=10829346$, then $p q$ has level $b+1$, which exceeds 10^{7}.

4. k-Carmichael Numbers

Recall that a composite number n is a k-Carmichael number if $\lambda(n)$ divides $k(n-1)$, where $\lambda(n)$ is Carmichael's lambda function, which can be calculated as follows:

$$
\begin{aligned}
\lambda\left(2^{h}\right) & =\varphi\left(2^{h}\right) & & \text { for } h=0,1,2, \\
\lambda\left(2^{h}\right) & =\frac{1}{2} \varphi\left(2^{h}\right) & & \text { for } h>2, \\
\lambda\left(p^{h}\right) & =\varphi\left(p^{h}\right) & & \text { for odd primes } p, \\
\lambda\left(p_{1}^{h_{1}} p_{2}^{h_{2}} \cdots p_{s}^{h_{s}}\right) & =\operatorname{lcm}\left(\lambda\left(p_{1}^{h_{1}}\right), \lambda\left(p_{2}^{h_{2}}\right), \ldots, \lambda\left(p_{s}^{h_{s}}\right)\right) & & \text { for distinct primes } p_{j} .
\end{aligned}
$$

(This may be remembered as follows. Let $a * b$ denote $\operatorname{lcm}(a, b)$. Then except for the prime $2, \lambda$ is calculated in the semigroup $(\mathbb{N}, *)$ in the same way as φ in the semigroup (\mathbb{N}, \cdot).)

Of course $\lambda(n)$ always divides $k(n-1)$ for some k (such as $k=\lambda(n)$), so we are led to the following definition.

Definition 1. Let $\mathrm{k}(1)=1$, let $\mathrm{k}(p)=1$ for any prime p and for composite n define $\mathrm{k}(n)$ to be the smallest integer k such that n is a k-Carmichael number.

Thus for n composite, $\mathrm{k}(n)=1$ if and only if n is Carmichael in the usual sense.

Putting $a=\lambda(n)$ and $b=(n-1)$ in Lemma 1 gives a formula found in [8, page 7]:

$$
\begin{equation*}
\mathrm{k}(n)=\frac{\lambda(n)}{\operatorname{gcd}(\lambda(n), n-1)}=\frac{\operatorname{lcm}(\lambda(n), n-1)}{n-1} \tag{6}
\end{equation*}
$$

(This also holds for n prime, but not for $n=1$.) For example, if p is an odd prime then $\mathrm{k}(2 p)=p-1$ and so $\lim \sup \mathrm{k}(n)=\infty$, while $\liminf \mathrm{k}(n)=1$. In analogy with ℓ, we make the following conjecture.

Conjecture 1. The function k is surjective.
Since $\lambda\left(p^{m+1}\right)$ or $\lambda\left(p^{m+2}\right)=p^{m}$, it is clear that the image of k contains every prime power. Unfortunately, k is not multiplicative: $k(15)=2, k(28)=2$, but $k(15 \cdot 28)=12$.

Lemma 4. Let p be an odd prime and $k \geq 2$ an integer. If $q=k(p-1)+1$ is prime then $\mathrm{k}(p q)=k$.

Proof. Applying (6)

$$
\begin{align*}
\mathrm{k}(p q) & =\frac{\operatorname{lcm}(p-1, q-1)}{\operatorname{gcd}(\operatorname{lcm}(p-1, q-1), p q-1)} \tag{7}\\
& =\frac{k(p-1)}{\operatorname{gcd}(k(p-1),(k p+1)(p-1))} \tag{8}\\
& =\frac{k(p-1)}{p-1}=k
\end{align*}
$$

In practice this result gives us an easy way of finding an $n \in \mathbb{N}$ such that $\mathrm{k}(n)=k$ for a given $k \in \mathbb{N}$. We have used it to show that there exists an $n \in \mathbb{N}$ such that $\mathrm{k}(n)=k$ for every $k \leq 10^{6}$. For example, taking $k=10^{6}$, we find that $q=10^{6} \cdot(23-1)+1=22000001$ is prime and so $\mathrm{k}(23 \cdot 22000001)=10^{6}$.

Unfortunately Lemma 4 does not lead to a proof that k is surjective. Let $f_{k}(x)=$ $k(x-1)+1$, and let $g(x)=x$. If there exists an integer x such that $f_{k}(x)$ and $g(x)$ are simultaneously prime then $\mathrm{k}\left(x f_{k}(x)\right)=k$ so k is in the image of k . The existence of an integer x where r linear polynomials simultaneously take prime values is Dickson's prime r-tuple conjecture [5]. It is well known (see [17, p. 372]) that if there exists such an x and Dickson's conjecture is true, then there must be infinitely many such x. Hence:

Corollary 4. If Dickson's prime r-tuple conjecture holds then k is surjective, and indeed for each positive integer k there exist infinitely many n with $\mathrm{k}(n)=k$.

Dickson's conjecture with $r=1$ is Dirichlet's theorem on primes in arithmetic progressions, and is open for all cases when $r>1$. Its difficulty is clear since it also implies the existence of infinitely many twin primes, infinitely many Sophie

Germain primes and so on. Dickson's conjecture is itself a special case of Schinzel's Hypothesis H [18] concerning prime values of arbitrary polynomials.

If k is also prime then the converse of Lemma 4 holds.
Lemma 5. If $p<q$ are odd primes and $\mathrm{k}(p q)=k$ where k is prime, then $q=$ $k(p-1)+1$.

Proof. Let $L=\operatorname{lcm}(p-1, q-1), g=\operatorname{gcd}(p-1, q-1),(p-1)=g a$ and $(q-1)=g b$ where $\operatorname{gcd}(a, b)=1$ and $a<b$. Assume $\mathrm{k}(p q)=k$. From (7) $L=k \cdot \operatorname{gcd}(L, p q-1)$, so $L \mid k(p q-1)=k[(a g+1)(b g+1)-1]=k g(a b g+a+b)$. Multiplying through by g, $a b g^{2}=(p-1)(q-1)=L g \mid k g^{2}(a b g+a+b)$. Hence $a b \mid k(a+b)$. So $a \mid k b$, and since $\operatorname{gcd}(a, b)=1$ we have $a \mid k$ and similarly $b \mid k$. Since $a<b$ and k is prime, $a=1$ and $b=k$ is the only possibility. Hence $g=p-1$ and $q=b g+1=k(p-1)+1$.

For products of more than two primes, analogous formulas exist but are more involved. (One reason for this is that the analogue of the formula $\operatorname{gcd}\left(a_{1}, a_{2}\right) \operatorname{lcm}\left(a_{1}, a_{2}\right)=$ $a_{1} a_{2}$ becomes more complicated.) For example, we have a sort of "Chernick formula" in the case $n=p q r$.

Lemma 6. Let p be a prime and m a positive integer satisfying $m \mid(k p+1)$ for some integer $k \geq 2$. If $q=k m(p-1)+1$ and $r=k(p q-1)+1$ are both prime then $\mathrm{k}(p q r)=k$.

Proof. Suppose $p, q=k m(p-1)+1$ and $r=k(p q-1)+1$ are prime, where the integer $k \geq 2$ and $m \mid(k p+1)$. Then

$$
\begin{aligned}
\lambda(p q r) & =\operatorname{lcm}(p-1, k m(p-1), k(k m p+1)(p-1)) \\
& =k m(p-1)(k m p+1)
\end{aligned}
$$

So

$$
\begin{aligned}
\mathrm{k}(p q r) & =\frac{\lambda(p q r)}{\operatorname{gcd}(\lambda(p q r), p q r-1)} \\
& =\frac{k m(p-1)(k m p+1)}{\operatorname{gcd}\left(k m(p-1)(k m p+1),(p-1)(k m p+1)\left(k^{2} m p(p-1)+k p+1\right)\right)} \\
& =\frac{k m(p-1)(k m p+1)}{m(p-1)(k m p+1)}=k,
\end{aligned}
$$

since $m \mid\left(k^{2} m p(p-1)+k p+1\right)$ but $k \nmid\left(k^{2} m p(p-1)+k p+1\right)$.
It seems difficult to make further progress in this direction. Instead we observe that if $\mathcal{S}=\left\{p_{1}, \ldots, p_{s}\right\}$ is a set of odd primes and $M=\prod_{j=1}^{s} p_{j}^{m_{j}}$, we may have

$$
\begin{equation*}
\mathrm{k}(M)=\mathrm{k}\left(p_{1}^{m_{1}} \cdots p_{s}^{m_{s}}\right) \stackrel{?}{=} p_{1}^{m_{1}-1} \cdots p_{s}^{m_{s}-1}=\frac{M}{\operatorname{rad}(M)} \tag{9}
\end{equation*}
$$

(This equation should be slightly modified if one of the primes is 2.) Obviously if (9) always held then k would be surjective. Unfortunately, an extra factor, $F(M)$, may also occur on the right hand side. For example, $\mathrm{k}\left(3^{4} \cdot 5^{3}\right)=3^{3} \cdot 5^{2}$, but $\mathrm{k}\left(3^{3} \cdot 5^{3}\right)=2 \cdot 3^{2} \cdot 5^{2}$. Nonetheless, for any M with $\{p: p \mid M\}=\mathcal{S}$ we can show that only finitely many different $F(M)$ occur, and that their occurrence is periodic in the m_{j}. This gives a more precise version of Theorem 2 .

We need some notation. Let $\mathcal{S}=\left\{p_{1}, \ldots, p_{s}\right\}$ be a non-empty set of (distinct) primes. Let $L=L_{\mathcal{S}}=\operatorname{lcm}\left\{p_{j}-1 \mid 1 \leq j \leq s\right\}$. Let $N=N_{\mathcal{S}}$ be a positive integer such that for every prime q with $\operatorname{ord}_{q}(L)=v>0$:

1. If $q \notin \mathcal{S}$ then $\lambda\left(q^{v}\right) \mid N$, and
2. If $q \in \mathcal{S}$ then $N \geq v+2$.

Suppose M is an integer with $\{p: p \mid M\}=\mathcal{S}$. Say $M=\prod_{j} p_{j}^{m_{j}}$ where all the $m_{j}>0$. Define
$F(M):=\frac{\mathrm{k}(M)}{M^{\prime}} \quad$ where $\quad M^{\prime}= \begin{cases}\frac{M}{2 \operatorname{rad}(M)} & \text { if } M \neq 4 \text { and } \operatorname{ord}_{2}(M) \geq \operatorname{ord}_{2}(4 L), \\ \frac{M}{\operatorname{rad}(M)} & \text { otherwise. }\end{cases}$
We now show (condition (2) below) that $F(M)$ depends only on the $m_{j}\left(\bmod N_{\mathcal{S}}\right)$.
Theorem 6. With $M=\prod_{j} p_{j}^{m_{j}}$ and notation as above:

1. If each $m_{j} \equiv 0\left(\bmod N_{\mathcal{S}}\right)$ then $F(M)=1$.
2. Suppose for $1 \leq j \leq s$ there exists an integer $t_{j} \geq 0$ such that $m_{j}=r_{j}+t_{j} N_{\mathcal{S}}$ with $r_{j} \geq N_{\mathcal{S}}$. Let $R=\prod_{j} p_{j}^{r_{j}}$. Then $F(M)=F(R)$.

Proof. We drop the subscript \mathcal{S}. If all the p_{j} are odd, a small calculation shows $\lambda(M)=\operatorname{lcm}\left\{L, M^{\prime}\right\}$. The definition of M^{\prime} is made to ensure this holds in the case $p_{j}=2$ also. Thus from (6) we obtain

$$
F(M)=\frac{\mathrm{k}(M)}{M^{\prime}}=\frac{L}{\operatorname{gcd}\left(L,(M-1) M^{\prime}\right)}
$$

Let q be any prime dividing L. Let

$$
\operatorname{ord}_{q}(L)=v, \quad \operatorname{ord}_{q}\left(R^{\prime}(R-1)\right)=r, \quad \operatorname{ord}_{q}\left(M^{\prime}(M-1)\right)=m
$$

If $q \notin \mathcal{S}$ then for $1 \leq j \leq s$ we have $p_{j} \neq q$, so p_{j} is invertible modulo q^{v} and $p_{j}^{\lambda\left(q^{v}\right)} \equiv 1\left(\bmod q^{v}\right)$. Then $\lambda\left(q^{v}\right) \mid N$ by definition of N, so $p_{j}^{N} \equiv 1\left(\bmod q^{v}\right)$ for all j, and so

$$
\begin{equation*}
\text { if } q \notin \mathcal{S} \text { then } \prod p_{j}^{N} \equiv 1 \quad\left(\bmod q^{v}\right) \tag{10}
\end{equation*}
$$

We now prove statement (1) of the theorem. Suppose that $m_{j} \equiv 0(\bmod N)$ for

then $M \equiv 1\left(\bmod q^{v}\right)$ from (10) so $m \geq \operatorname{ord}_{q}(M-1) \geq v$. Thus, in all cases $\operatorname{ord}_{q}(L) \leq \operatorname{ord}_{q}\left(M^{\prime}(M-1)\right)$. Thus $L \mid M^{\prime}(M-1)$, so $F(M)=1$.

To prove statement (2), we shall show

$$
\begin{equation*}
\min \{v, m\}=\min \{v, r\} \tag{11}
\end{equation*}
$$

Thus $\operatorname{ord}_{q}(F(M))=v-\min \{v, m\}=v-\min \{v, r\}=\operatorname{ord}_{q}(F(R))$ for every $q \mid L$, and since $F(m)$ and $F(R)$ are positive integers dividing L, it follows that $F(M)=$ $F(R)$.

Finally, we prove that equation (11) holds. Suppose $q \in \mathcal{S}$. Thus $q=p_{i}$ for some i. By definition of N we have $m_{i}, r_{i} \geq N \geq 2+v>v$, so both sides in (11) are equal to v.

Now suppose $q \notin \mathcal{S}$. If $m, r \geq v$ we are done, so we assume $v>r$ or $v>m$. We show that $m=r$, so both sides in (11) are equal to $m(=r)$. Since $q \notin \mathcal{S}$ we have $m=\operatorname{ord}_{q}(M-1)$ and $r=\operatorname{ord}_{q}(R-1)$. Thus it suffices to show that $M \equiv R\left(\bmod q^{v}\right)$, since then $M-1 \equiv R-1\left(\bmod q^{v}\right)$. Then, as one of $M-1$, $R-1$ is non-zero $\bmod q^{v}$, both are, and $m=\operatorname{ord}_{q}(M-1)=\operatorname{ord}_{q}(R-1)=r$. But $p_{j}^{m_{j}}=p_{j}^{r_{j}} \cdot\left(p_{j}^{N}\right)^{r_{j}} \equiv p_{j}^{r_{j}}\left(\bmod q^{v}\right)$ for each j by (10), so $M \equiv R\left(\bmod q^{v}\right)$.

Note: the definition of $N_{\mathcal{S}}$ used in the proof is not necessarily minimal. For example if $q \in \mathcal{S} \backslash\{2\}$ then we only need $N \geq v+1$.

Corollary 5. The function

$$
\operatorname{rad} \circ \mathrm{k}: \mathbb{N} \rightarrow\{n \in \mathbb{N}: n \text { is square-free }\}
$$

is surjective.
Theorem 6 implies that in principle, for each set \mathcal{S}, only finitely many cases are needed to furnish a proof that every M with $\{p: p \mid M\}=\mathcal{S}$ is in the image of k . But for each \mathcal{S} an $a d$ hoc argument is needed to deal with each of the finitely many $F(M) \neq 1$ that may occur. We give two examples.
Example. Every number of the form $k=3^{a} \cdot 5^{b}$ with $a, b \in \mathbb{N}$ is in the image of k . Indeed $\mathrm{k}(M)=k$ if

$$
M= \begin{cases}3^{a+1} \cdot 5^{b+1} & \text { if } a \equiv 1 \quad(\bmod 2) \\ 3^{a+1} \cdot 5^{b+1} \cdot 7 & \text { if } a \equiv 0 \quad(\bmod 2)\end{cases}
$$

To see this, first consider $M_{1}=3^{a+1} \cdot 5^{b+1}$. Then $M_{1}^{\prime}=k$, so if $F\left(M_{1}\right)=1$ then $\mathrm{k}\left(M_{1}\right)=k$. In this case we can take $N_{\mathcal{S}_{1}}=2$. Indeed, $\mathcal{S}_{1}=\{3,5\}$ and $L=4$, so $F\left(M_{1}\right)=4 / \operatorname{gcd}\left(4,3^{a+1} \cdot 5^{b+1}-1\right)$. But $M_{1} \equiv(-1)^{a+1}(\bmod 4)$, so $F\left(M_{1}\right)=1$ (and we are done) if and only if a is odd.

This leaves the case a even. We deal with this by putting $M_{2}=3^{a+1} \cdot 5^{b+1} \cdot z$ where z is some auxiliary factor to be chosen. This will work well if z is square-free,
$\operatorname{gcd}(z, 3 \cdot 5)=1$ and $F\left(M_{2}\right)=1$. This leads to the choice $z=7$. Then $L_{2}=12$ and M_{2}^{\prime} is still equal to k so $\left(M_{2}-1\right) M_{2}^{\prime}=3^{a} \cdot 5^{b}\left(3^{a+1} \cdot 5^{b+1} \cdot 7-1\right)$ is divisible by L_{2}. Hence $F\left(M_{2}\right)=1$, which is to say, $\mathrm{k}\left(M_{2}\right)=M_{2}^{\prime}=k$.

In the previous example if $F(M) \neq 1$ we could proceed by replacing M by $M z$ for some z. This is not always possible.

Example. Let $k=3^{a} \cdot 19^{b}$ and $M=3^{a+1} \cdot 19^{b+1}$. Then $M^{\prime}(M-1)=3^{a} \cdot 19^{b}\left(3^{a}\right.$. $19^{b}-1$) and $L=18$, so $F\left(M_{1}\right)=1$ if and only if $a \geq 2$. The difficult case is $k=3 \cdot 19^{b}$. (Instead of a congruence condition on a we have an inequality.) If $b=1$ we could try introducing a factor z as in the previous example. Thus consider $M=3^{2} \cdot 19^{2} \cdot z$ where z is square-free, and $\operatorname{gcd}(z, 3 \cdot 19)=1$. If $F(M)=1$ then $3^{2}|L| M^{\prime}(M-1)$ which implies $3^{2} \mid M^{\prime}=3 \cdot 19 \cdot z^{\prime}$, a contradiction. So in this case no such z will work.

Instead, let $M=7 \cdot 19^{b+1}$. Then $M^{\prime}=3 \cdot 19^{b}, L=18$ and $M^{\prime}(M-1)=19^{b}(7 \cdot$ $\left.19^{b+1}-1\right) \equiv 6(\bmod 18)$, so $\operatorname{gcd}\left(L, M^{\prime}(M-1)\right)=6$. Thus $\mathrm{k}(M)=3 M^{\prime}=3 \cdot 19^{b}=k$. Hence

$$
M=\left\{\begin{array}{ll}
7 \cdot 19^{b+1} & \text { if } a=1 \\
3^{a+1} \cdot 19^{b+1} & \text { if } a \geq 2
\end{array} \quad \text { implies } \quad \mathrm{k}(M)=3^{a} \cdot 19^{b}\right.
$$

Acknowledgments. The authors wish to thank the referee for his/her useful comments that have helped us to improve this paper.

References

[1] W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. 139 (1994), 703-722.
[2] W. R. Alford, J. Grantham, Hayman and A. Shallue, Constructing Carmichael numbers through improved subset-product algorithms, Math. Comp. 83 (2014), 899-915.
[3] R. C. Baker and W. M. Schmidt, Diophantine problems in variables restricted to the values 0 and 1, J. Number Theory 12 (1980), 460-486.
[4] R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math. Soc. 16 (1910), 232-238.
[5] L. E. Dickson, A new extension of Dirichlet's theorem on prime numbers, Messenger of Mathematics 33 (1904), 155-161. Available at https://oeis.org/ wiki/File:A_new_extension_of_Dirichlet\%27s_theorem_on_prime_numbers. pdf.
[6] P. Erdős, C. Pomerance and E. Schmutz, Carmichael's lambda function, Acta Arith. 58 (1991), 363-385.
[7] J. M. Grau and A. M. Oller-Marcén, On k-Lehmer numbers, Integers 12 (2012), 1081-1089.
[8] J. M. Grau and A. M. Oller-Marcén, On the congruence $\sum_{j=1}^{n-1} j^{k(n-1)} \equiv-1 \bmod n$, k strong Giuga and k-Carmichael numbers. (2013). Available at arXiv:1311.3522v1.
[9] R. Guy, Unsolved Problems in Number Theory, 2nd edition, Springer, 1994.
[10] A. R. Korselt, Problème chinois, L'Intermédiaire des Mathématiciens 6 (1899), 142-143. Available at http://gdz.sub.uni-goettingen.de/dms/load/img/ ?PID=PPN599473517_0006|LOG_0018\&physid=PHYS_0151.
[11] D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. 38 (1932), 745-751.
[12] K. Matomäki, Carmichael numbers in arithmetic progressions, J. Aust. Math. Soc. 94 (2013), 268-275.
[13] N. McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory 09 (2013), 1215-1224.
[14] N. McNew and T. Wright, Infinitude of k-Lehmer numbers which are not Carmichael, to appear in Int. J. Number Theory. Available at http://www.worldscientific.com/doi/abs/10.1142/S1793042116501153.
[15] PARI, Bordeaux, Available at http://pari.math.u-bordeaux.fr/.
[16] K. Prachar, Über die Anzahl der Teiler einer natürlichen Zahl, welche die Form $p-1$ haben, Monatsh. Math. 59 (1955) 91-97. Available at https://eudml.org/doc/176962.
[17] P. Ribenboim, The new Book of Prime Number Records, Springer, 1988.
[18] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208.
[19] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Available at http://oeis.org.
[20] T. Wright, Infinitely many Carmichael numbers in arithmetic progressions, Bull. Lond. Math. Soc. 45 (2013), 943-952.

