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Abstract
Let �f (n) be the n-th normalized Fourier coe�cient of the Fourier series associated
with a holomorphic cusp form f for the full modular group of even weight k and
let Af (x) :=

X
nx

�f (n). During the ELAZ 2014 conference in Hildesheim, Germany,

K.-L. Kong (University of Hong Kong) presented his result, proved in his Master
thesis, that Z X

2
�2(t)�(↵t)dt = C(↵)X7/4 + O"

⇣
X7/4��

⌘
,

for some explicit � > 0, C(↵), where ↵ > 0 is fixed and �(x) is the error term in
the Dirichlet divisor problem. A problem posed by Professor Ivić at this conference
was to obtain a formula analogous to the above formula for the sum Af (x) and
especially to discuss the sign of C(↵) in the new setting. In this paper, we will solve
Ivić’s problem and prove that for any " > 0, we haveZ X

2
A2

f (t)Af (↵t)dt = Cf (↵)X7/4 + O↵,"

⇣
X

41
24+"

⌘
,

for some constant Cf (↵) depending on only f, ↵ and defined by

Cf (↵) =
↵1/4

28⇡3

X
(i0,i1)2{0,1}2

+1X
n,m,l=1p

n+(�1)i0
p

m+(�1)i1
p

↵l=0

�f (n)�f (m)�f (l)
(nml)3/4

,

where ↵ > 0 is a fixed constant. Our result is new and throws light on the behavior
of the classical function Af (x).

1. Introduction

Let k � 2 be an even integer and H⇤
k be the set of all primitive cusp forms of weight

k for the full modular group SL2(Z). If f 2 H⇤
k , then it has the following Fourier

expansion at the cusp 1 :

f(z) =
+1X
n=1

�f (n)n(k�1)/2e2⇡inz (=(z) > 0).
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By the theory of Hecke operators, �f (n) is real and satisfies the multiplicative
property:

�f (n)�f (m) =
X

d|(n,m)

�f

⇣mn

d2

⌘
(1)

for all integers m � 1 and n � 1. Besides, it is also known that �f (n) satisfies the
deep inequality:

|�f (n)|  d(n) (2)

for all n � 1, where d(n) denotes the number of positive divisors of n (this is the
Ramanujan-Petersson conjecture proved by Deligne (see [1], [2])).

The sum of normalized Fourier coe�cients over natural numbers occurs in the study
of many important problems in number theory, such as the number of Hecke eigen-
values of same signs (see [5]).

The sequence (�f (n)) is of great arithmetic interest. The generating series

L(f, s) =
+1X
n=1

�f (n)
ns

has many analytic properties which o↵er tools to help achieve this goal. Moreover,
Hecke (see [3], [4]) proved that L(f, s) is an entire function that satisfies the following
functional equation, which is a special case of the Langlands functoriality:

L(f, 1� s) = (�1)k/2�(s)L(f, s) if <(s) > 1, (3)

where

�(s) = ⇡(1�2s)
2Y

j=1

�
✓

s + j

2

◆
�
✓

1� s + j

2

◆�1

and the parameters in the product are 1 = k�1
2 and 2 = k+1

2 .

One of the basic goals of number theory is the foundation of asymptotic formula, as
accurate as possible, for the sum Af (x). Rankin (see [7]) showed that for any " > 0
and x � 2,

Af (x)⌧f x
1
3 (log x)��+",

where � = 0.0652. Wu (see [8, Thereom 2.]) got a better bound for Af (x), that is

Af (x)⌧f x
1
3 (log x)��,

where � = 0.1185.

In this paper, we shall evaluate the integral
RX
2 A2

f (x)Af (↵x)dx basing on the trun-
cated Voronoi formula for the sum Af (x) and we will investigate the sign of the
constant Cf (↵). The main result of this paper is the following.
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Theorem 1. Let f 2 H⇤
k and 0 < ↵ 2 Q[

p
N ], where N > 1 is a square-free natural

number. If there exist integers t, r, s, a02, b
0
2, d1 and d2 such that

8>>>>>>><
>>>>>>>:

t|N, t odd
r odd, N

t s2 even, gcd(r, s) = 1
b02|
�
tr2 + N

t s2
�

a02|2rs
gcd(d1, d2) = 1
↵ = d1

a02b02d2

h�
tr2 + N

t s2
�
± 2rs

p
N
i

(4)

or 8>>>>>>><
>>>>>>>:

t|N,N odd
r, s odd, gcd(r, s) = 1
b02|12

�
tr2 + N

t s2
�

a02|rs
gcd(d1, d2) = 1
↵ = d1

a02b02d2

h
1
2

�
tr2 + N

t s2
�
± rs

p
N
i
,

(5)

then there exists a constant Cf (↵) depending on only ↵ and f and defined by

Cf (↵) =
↵1/4

28⇡3

X
(i0,i1)2{0,1}2

+1X
n,m,l=1p

n+(�1)i0
p

m+(�1)i1
p

↵l=0

�f (n)�f (m)�f (l)
(nml)3/4

(6)

such that for any " > 0, we have
Z X

2
A2

f (t)Af (↵t)dt = Cf (↵)X7/4 + O↵,"

⇣
X

41
24+"

⌘
.

Our main tool in the proof of Theorem 1 is the Voronoi summation formula. Lau
and Wu (see [5, Lemma 3.1]) established the truncated Voronoi formula for Af (x).
They obtained the following result.

Lemma 1. Let f 2 H⇤
k . Then for any A > 0 and " > 0, uniformly for 1 M  xA

and x � 1, we have

Af (x) =
x1/4

⇡
p

2

X
nM

�f (n)
n3/4

cos
⇣
4⇡
p

nx� ⇡

4

⌘
+OA,",k

✓
x"

⇢
1 +

⇣ x

M

⌘1/2
+ x�1/4

�◆
,

(7)
where the implied O-constant depends on A, " and k only.

We will use (7) and write

Af (x) = BM (x) + OA,",k(x") + OA,",k

⇣
x1/2+"M�1/2

⌘
, (8)
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where

BM (x) =
x1/4

⇡
p

2

X
nM

�f (n)
n3/4

cos
⇣
4⇡
p

nx� ⇡

4

⌘
.

Now, we will study the sign of the coe�cient Cf (↵) in the following theorem.

Theorem 2. Let k � 2 be an even integer and let f 2 H⇤
k . Set

A± := {a 2 N⇤; �f (a) ? 0} ,

S+ :=
+1X
l00=1

Nr2s2l002A+

 
�f

�
Nr2s2l00

�
�f (l00)2

l009/4

!
, and

S� := �
+1X
l00=1

Nr2s2l002A�

 
�f

�
Nr2s2l00

�
�f (l00)2

l009/4

!
,

so that both S+ and S� are positive.

1. Suppose that ↵ satisfies (4). If d1 = a02b
0
2d2 = 1, then

8<
:

Cf (↵) > 0 if S+ > S�
Cf (↵) < 0 if S+ < S�
Cf (↵) = 0 if S+ = S�

9=
; .

2. Suppose that ↵ satisfies (5). If d1 = 2 and a02b
0
2d2 = 1, then

8<
:

Cf (↵) > 0 if S+ > S�
Cf (↵) < 0 if S+ < S�
Cf (↵) = 0 if S+ = S�

9=
; .

In particular, examples when Cf (↵) = 0 are given in the following assertion.
3. If ↵ 2 Q⇤+ or ↵ 2

p
NQ⇤+, then Cf (↵) = 0.

2. Some Lemmas

The proof of Theorem 1 is based on the following lemmas.

Lemma 2. Let ↵ be a positive number in Q[
p

N ], where N is a square-free positive
integer and let i0, i1 2 {0, 1}. We put

↵1 := ↵1(i0, i1) :=
p

n + (�1)i0
p

m + (�1)i1
p

↵l, (9)
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c1(↵, y) :=
X

(i0,i1)2{0,1}2

X
ny,my

ly
↵1=0

�f (n)�f (m)�f (l)
(nml)3/4

(10)

and

c1(↵) :=
X

(i0,i1)2{0,1}2

+1X
n,m,l=1

↵1=0

�f (n)�f (m)�f (l)
(nml)3/4

. (11)

Then, we have the following assertions.
(a) The equation ↵1 = 0 is solvable for n, m, l 2 N⇤ if and only if there exist
integers t, r, s, d1, d2, a02 and b02 such that

8>>>>>>><
>>>>>>>:

t|N, t odd
r odd, N

t s2 even, gcd(r, s) = 1
b02|
�
tr2 + N

t s2
�

a02|2rs
gcd(d1, d2) = 1
↵ = d1

d2a02b02

h�
tr2 + N

t s2
�
± 2rs

p
N
i

or 8>>>>>>><
>>>>>>>:

t|N,N odd
r, s odd, gcd(r, s) = 1
b02|12

�
tr2 + N

t s2
�

a02|rs
gcd(d1, d2) = 1
↵ = d1

d2a02b02

h
1
2

�
tr2 + N

t s2
�
± rs

p
N
i
.

(b) On the hypotheses of (4) and (5), the series c1(↵) converges.
(c) |c1(↵, y)� c1(↵)|⌧↵," y�5/4+".

Proof. (a) Let ↵ = a1
a2

+ b1
b2

p
N, where a1, b1 2 Z, a2, b2 2 N⇤ and gcd(a1, a2) =

gcd(b1, b2) = 1 and let di = gcd(ai, bi). So, we have ai = dia0i and bi = dib0i,
i 2 {1, 2}. Note that at most one of the equations ↵1(0, 1) = 0 and ↵1(1, 1) = 0 is
solvable in n, m and l 2 N⇤.

If the equation ↵1(0, 1) = 0 is solvable for n, m, l 2 N⇤, then by squaring both
sides, we obtain

a2b2(n + m)� b2a1l = a2b1l
p

N � 2a2b2
p

nm. (12)

By using the same procedure, we get

4a2
2b1b2l

p
Nnm = (a2b1l)2N + (2a2b2)2nm� (a2b2(n + m)� b2a1l)

2 .
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This shows that
p

Nnm is necessarily an integer. Also, it is easy to show that
p

mn
N

is an integer. Hence, Formula (12) leads to

a2b2(n + m)� b2a1l =
p

N

✓
a2b1l � 2a2b2

r
mn

N

◆
.

Since N is a square-free integer and
p

mn
N is an integer, then we have

p
N is an

irrational and
p

N
�
a2b1l � 2a2b2

p
mn
N

�
is an irrational or zero. So, we get

a2(n + m) = a1l and b1l = 2b2

r
mn

N
. (13)

This implies that a1 > 0 and b1 > 0. Moreover, we know that a2 divides a1l and b2

divides b1l. Since gcd(a1, a2) = gcd(b1, b2) = 1, it follows that a2 and b2 divide l.

Therefore, there exists a positive integer l0 such that l = a2l0 and b2 divides a2l0.
Then l0 = b2

d2
l”, where l00 = l

a02b2
2 N. Thus

l = a2l
0 =

a2b2

d2
l00 = a02b

0
2d2l

00. (14)

By considering (13) and (14), we get

(n + m) = a1b
0
2l
00 = a01d1b

0
2l
00 and

r
mn

N
=

b1a02l
00

2
=

a02b
0
1d1l00

2
,

which is equivalent to

(n + m) = a1b
0
2l
00 = a01d1b

0
2l
00 and mn = N

(b01d1a02l
00)2

4
.

By solving the last two equations for n, we obtain

n = d1l
00

⇣
a01b

0
2 ±

p
(a01b02)2 �N(a02b01)2

⌘
2

.

Since gcd(a01, a02) = gcd(b01, b02) = 1, we get gcd(a01b02, a02b01) = 1.

Notice that n is well-defined i.e the equationq
(a01b02)2 �N(a02b01)2 = e 2 N

has solutions in N3 provided we have the following cases:
If N is odd, there exist integers t, r and s such that8>><

>>:
t|N, t odd
r odd, s even, gcd(r, s) = 1
a01b

0
2 = tr2 + N

t s2

a02b
0
1 = 2rs

(15)
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or 8>><
>>:

t|N, t odd
r, s odd gcd(r, s) = 1
a01b

0
2 = 1

2

�
tr2 + N

t s2
�

a02b
0
1 = rs.

(16)

However, if N is even, then
8<
:

t|N, r odd gcd(r, s) = 1
a01b

0
2 = tr2 + N

t s2

a02b
0
1 = 2rs.

(17)

Now, if (15) is valid, then

n = d1l
00
�
tr2 + N

t s2 ± (tr2 � N
t s2)

�
2

.

So, we have n = d1l00tr2 and m = d1l00
N
t s2, or n = d1l00

N
t s2 and m = d1l00tr2.

Therefore b1 = d1b01 = d1
2rs
a02

and a1 = d1a01 = d1
(tr2+ N

t s2)
b02

. It follows that

↵ =
d1

(tr2+ N
t s2)

b02

d2a02
+

d1
2rs
a02

d2b02

p
N =

d1

d2a02b
0
2


tr2 +

N

t
s2 + 2rs

p
N

�
.

If (16) is valid, then

n = d1l
00

1
2

�
tr2 + N

t s2
�
± 1

2

�
tr2 � N

t s2
�

2
.

Assuming that l00 and d1 are not both odd, then this implies that n = d1l00tr2

2

and that m = d1l00 N
t s2

2 , or n = d1l00 N
t s2

2 and m = d1l00tr2

2 . Thus b1 = d1
rs
a02

and

a1 = d1(tr2+ N
t s2)

2b02
. This leads to

↵ =
d1

�
tr2 + N

t s2
�

2b02d2a02
+

d1
rs
a02

d2b02

p
N =

d1

d2a02b
0
2


1
2

✓
tr2 +

N

t
s2

◆
+ rs

p
N

�
.

If (17) is true, we will obtain the same values of n and m as in (15), and therefore

↵ =
d1

d2a02b
0
2


tr2 +

N

t
s2 + 2rs

p
N

�
.

Subsequently, the numbers n, m and l are well-defined so that the equation ↵1(0, 1) =
0 is solvable for n, m and l 2 N⇤.
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Now, if the equation ↵1(1, 1) = 0 is solvable then, by following the aforementioned
steps, we get

a2(n + m) = a1l and 2b2

r
mn

N
= �b1l.

Let b̃1 = �b1 > 0. We replace b̃1 by b1 and we will obtain

↵ =
d1

d2a02b
0
2


tr2 +

N

t
s2 � 2rs

p
N

�

or
↵ =

d1

d2a02b
0
2


1
2

✓
tr2 +

N

t
s2

◆
� rs

p
N

�
.

(b) Now, assume that ↵ satisfies (4); then
8<
:

n = d1l00tr2

m = d1l00
N
t s2

l = a02b
0
2d2l00

or

8<
:

n = d1l00
N
t s2

m = d1l00tr2

l = a02b
0
2d2l00.

(18)

This is valid provided that

↵ =
d1

d2a02b
0
2


tr2 +

N

t
s2 + 2rs

p
N

�

or
↵ =

d1

d2a02b
0
2


tr2 +

N

t
s2 � 2rs

p
N

�
.

Formula (18) implies that

c1(↵) ⌧
+1X
l00=1

|�f (d1l00
N
t s2)||�f (d1l00tr2)||�f (a02b02d2l00)|
(d2

1Ns2r2a02b
0
2d2l003)3/4

⌧
|�f (d1

N
t s2)||�f (d1tr2)||�f (a02b02d2)|
(d2

1Ns2r2a02b
0
2d2)3/4

+1X
l00=1

|�f (l00)|3
l009/4

.

From (2), we get |�f (l00)| ⌧" l00" for any " > 0. Thus, we have c1(↵) ⌧" 1 and
therefore, the series c1(↵) converges.

If ↵ satisfies (5), then
8<
:

n = 1
2 (d1tr2)l00

m = 1
2 (d1

N
t s2)l00

l = a02b
0
2d2l00

or

8<
:

n = 1
2 (d1

N
t s2)l00

m = 1
2 (d1tr2)l00

l = a02b
0
2d2l00,

(19)
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this is valid provided that

↵ =
d1

d2a02b
0
2


1
2

✓
tr2 +

N

t
s2

◆
+ rs

p
N

�

or
↵ =

d1

d2a02b
0
2


1
2

✓
tr2 +

N

t
s2

◆
� rs

p
N

�
.

Formula (19) implies that

c1(↵) ⌧
+1X
l00=1

���f

�
1
2 (d1tr2)l00

��� ���f

�
1
2 (d1

N
t s2)l00

��� |�f (a02b02d2l00)|
(d2

1Ns2r2a02b
0
2d2l003)3/4

⌧
+1X
l00=1

���f

�
d1tr2l00

��� ���f

�
d1

N
t s2l00

��� |�f (a02b02d2(2l00))|
(d2

1Ns2r2a02b
0
2d2(2l)”3)3/4

⌧
|�f (d1

N
t s2)||�f (d1tr2)||�f (2a02b02d2)|

(d2
1Ns2r2a02b

0
2d2)3/429/4

+1X
l00=1

|�f (l00)|3
l009/4

⌧" 1.

Hence, by Formula (2), the series c1(↵) converges.

(c) Recall that (see (10))

c1(↵, y) =
X

(i0,i1)2{0,1}2

X
ny,my

ly
↵1=0

�f (n)�f (m)�f (l)
(nml)3/4

.

Note that if ↵ does not satisfy (4) and (5), then, based on the findings of (a), the
equation ↵1 = 0 is not solvable in n, m and l 2 N⇤. Thus, we obtain

X
(i0,i1)2{0,1}2

+1X
n,m,l=1

↵1=0

�f (n)�f (m)�f (l)
(nml)3/4

=
X

(i0,i1)2{0,1}2

X
ny,my

ly
↵1=0

�f (n)�f (m)�f (l)
(nml)3/4

= 0,

which is equivalent to c1(↵) = c1(↵, y) = 0. Suppose now that ↵ satisfies (4) or (5).
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For instance, if ↵ satisfies (4); then we have

|c1(↵)� c1(↵, y)| =

������������

X
(i0,i1)2{0,1}2

+1X
n>y

or m>y
or l>y
↵1=0

�f (n)�f (m)�f (l)
(nml)3/4

������������
⌧

X
(i0,i1)2{0,1}2

+1X
n>y

or m>y
or l>y
↵1=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

=
X

d1l00tr2>y
or d1l00 N

t s2>y
or a02b02d2l00>y

|�f (d1l00tr2)||�f (d1l00
N
t s2)||�f (a02b02d2l00)|

(d2
1r

2Ns2a02b
0
2d2l003)3/4

⌧
|�f (d1tr2)||�f (d1

N
t s2)||�f (a02b02d2)|

(d2
1r

2Ns2a02b
0
2d2)3/4

X
d1l00tr2>y

or d1l00 N
t s2>y

or a02b02d2l00>y

|�f (l00)|3
l009/4

.

By using (2) and since we have d1l00tr2 > y or d1l00
N
t s2 > y or a02b

0
2d2l00 > y, then

the last formula implies that

|c1(↵)� c1(↵, y)|⌧↵," y�5/4+".

The other case is similar.

Lemma 3. Let ↵ be a positive number in Q[
p

N ], where N > 1 is a square-free
integer. Let Ui and Vi for i = 1, 2, 3, be positive real numbers such that Ui < Vi ⌧ T b

and at least two of the Ui’s are � T a for some positive real numbers a and b with
a  b. Then we have

(a)

X
U1<nV1,U2<mV2,

U3<lV3,↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

�����
Z 2T

T
t3/4 cos

⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

�����

⌧↵," T 5/4+b/4+" + T 7/4�a/4+"

and
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(b)

X
nV1,mV2,lV3

↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

�����
Z 2T

T
t3/4 cos

⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

�����

⌧↵," T 5/4+11b/4+",

where ↵1 is defined by (9).

Proof. (a) Note that ↵1(0, 0) � (↵nml)�1/6. Also, by using the fact that for any
t 2 [T, 2T ], we have t3/4 ⌧ T 3/4 and that |

⇥
cos
�
4⇡↵1

p
t� ⇡

4

�⇤0 |� 4⇡|↵1|p
T

, we get

�����
Z 2T

T
t3/4 cos

⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

�����⌧
T 5/4

|↵1|
. (20)

Thus,

X
U1<nV1,U2<mV2,

U3<lV3,↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

�����
Z 2T

T
t3/4 cos

⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

�����

⌧↵," T 5/4
X

U1<nV1,U2<mV2,U3<lV3
↵1 6=0

|�f (n)||�f (m)||�f (l)|
|↵1|(nml)3/4

⌧↵," T 5/4
X

U1<nV1,U2<mV2,U3<lV3
↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)11/12

.

Now, since Ui < Vi ⌧ T b for all i = 1, 2, 3, it follows that n, m and l are ⌧ T b

and hence, by Formula (2), we obtain: |�f (n)|, |�f (m)| and |�f (l)| are ⌧" T b+".
Therefore,

T 5/4
X

U1<nV1,U2<mV2,U3<lV3
↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)11/12

⌧ T 5/4+b/4+".

Suppose now that (i0, i1) = (0, 1) as the other case is similar. There exist integers N,
N 0, M, M 0, L and L0 such that U1 < N < n  N 0  min(V1, 2N), U2 < M < m 
M 0  min(V2, 2M) and U3 < L < l  L0  min(V3, 2L). Let D = max(N,M,L)
and d = min(N,M,L). For � ⌧

p
D, we have

|{(n,m, l) : n ⇠ N, m ⇠M, l ⇠ L, 0 < |↵1| < �}|
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⌧↵," D�1/2�NML +
✓

L

d

◆1/4

D"
p

NML. (21)

So, we obtain

X
U1<nV1,U2<mV2,U3<lV3

↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

�����
Z 2T

T
t3/4 cos

⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

�����

⌧
X

N<nN 0,M<mM 0,
L<lL0,↵1 6=0

T "|�f (n)||�f (m)||�f (l)|
(nml)3/4

�����
Z 2T

T
t3/4 cos

⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

�����

⌧

0
BBB@

X
N<nN 0,M<mM 0,

L<lL0,|↵1|� 1
10

+
X

N<nN 0,M<mM 0,
L<lL0,T�1/2|↵1|< 1

10

+
X

N<nN 0,M<mM 0,
L<lL0,0<|↵1|<T�1/2

1
CCCA

T "|�f (n)||�f (m)||�f (l)|
(nml)3/4

�����
Z 2T

T
t3/4 cos

⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

�����
⌧ C1 + C2 + C3.

Since ↵1(0, 1) < 2
p

↵D and by using Formulas (20) and (21) with 1
10  � < 2

p
↵D,

we get
C1 ⌧↵," T 5/4+b/4+".

Moreover, we have L ⇣ max(N,M) ⇣ D and d ⇣ min(N,M), in case ↵1(0, 1)
is between T

�1
2 and 1/10. By using the same equations with T�1/2  � < 1

10 in
Formula (21), we obtain

C2 ⌧↵," T 5/4+b/4+" + T 7/4�a/4+".

Now, by trivial estimation and by Formula (21), we have

C3 ⌧↵," T 5/4+b/4+" + T 7/4�a/4+".

Consequently, we get

X
U1<nV1,U2<mV2,U3<lV3

↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

�����
Z 2T

T
t3/4 cos

⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

�����
⌧↵," T 5/4+b/4+" + T 7/4�a/4+".
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(b) We use the same arguments as above for (i0, i1) = (0, 0), and we get

X
nV1,mV2,lV3

↵1(0,0)6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

�����
Z 2T

T
t3/4 cos

⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

�����⌧↵," T
5
4+ b

4+".

For (i0, i1) = (0, 1), we have

X
nV1,mV2,lV3

↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

�����
Z 2T

T
t3/4 cos

⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

�����

⌧

0
BBB@

X
N<nN 0,M<mM 0,L<lL0

|↵1|� 1
10

+
X

N<nN 0,M<mM 0,L<lL0

|↵1|< 1
10

1
CCCA

T "|�f (n)||�f (m)||�f (l)|
(nml)3/4

�����
Z 2T

T
t3/4 cos

⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

�����
⌧ C01 + C02.

By the same token, we get C01 ⌧↵," T 5/4+b/4+". Since ↵1 �↵ D�3d�1/2 and by
using Formula (21) with D�3d�1/2  � < 1

10 , we obtain

C02 ⌧↵," T 5/4+11b/4+".

Therefore, we have

X
nV1,mV2,lV3

↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

�����
Z 2T

T
t3/4 cos

⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

����� ⌧↵," T
5
4+ 11b

4 +".

3. Proof of Theorem 1

In this section, we will use the results of the previous lemmas to prove Theorem 1.
Let M = T. From Formula (8), we have
Z 2T

T
A2

f (t)Af (↵t)dt =
Z 2T

T
(BM (t))2BM (↵t)dt + OA,",k

 
T "

Z 2T

T
|BM (t)| |Af (↵t)|dt

!

+OA,",k

 
T 2"

Z 2T

T
|Af (↵t)|dt

!
+ OA,",k

 
T "

Z 2T

T
A2

f (t)dt

!

=
Z 2T

T
(BM (t))2 BM (↵t)dt + O↵,A,",k

⇣
T 3/2+"

⌘
.
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The last identity is due to Cauchy-Schwarz’s inequality and the well-known mean-
square results (see [6, Theorem 1.1])

Z 2T

T
A2

f (t)dt ⇣ T
3
2 ,

where f(t) ⇣ g(t) means that f(t)⌧ g(t) and g(t)⌧ f(t). This can be established
also by using (8). Let

BM,y(t) =
t1/4

⇡
p

2

X
M<ny

�f (n)
n3/4

cos
⇣
4⇡
p

nx� ⇡

4

⌘

and let M0 = T 1/6. We have

BM (t) = BM0(t) + BM0,M (t).

Thus, we get
Z 2T

T
(BM (t))2 BM (↵t)dt =

Z 2T

T
(BM0(t))

2 BM0(↵t)dt +
Z 2T

T
(BM0(t))

2 BM0,M (↵t)dt

+2
Z 2T

T
BM0(t)BM0,M (t)BM0(↵t)dt

+2
Z 2T

T
BM0(t)BM0,M (t)BM0,M (↵t)dt

+
Z 2T

T
(BM0,M (t))2 BM0(↵t)dt

+
Z 2T

T
(BM0,M (t))2 BM0,M (↵t)dt

= S1 + S2 + S3 + S4 + S5 + S6.

The formula cos(a) cos(b) cos(c) = 1
4 [cos(a + b + c) + cos(a + b� c) + cos(a� b + c)

+ cos(a� b� c)] implies that

cos
⇣
4⇡
p

nt� ⇡

4

⌘
cos
⇣
4⇡
p

mt� ⇡

4

⌘
cos
⇣
4⇡
p

↵lt� ⇡

4

⌘

=
1
4

X
(i0,i1)2{0,1}2

cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
, (22)
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where ↵1 is defined by (9). By using Formula (22), the sum S1 is written as the
following:

S1 =
↵1/4

8⇡3
p

2

X
(i0,i1)2{0,1}2

X
nM0,mM0

lM0
↵1=0

�f (n)�f (m)�f (l)

(nml)3/4

Z 2T

T

t3/4 cos
⇣⇡

4

⌘
dt

+
↵1/4

8⇡3
p

2

X
(i0,i1)2{0,1}2

X
nM0,mM0

lM0
↵1 6=0

�f (n)�f (m)�f (l)

(nml)3/4

Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
dt.

It follows that

S1 ⌧
↵1/4

8⇡3
p

2

X
(i0,i1)2{0,1}2

X
nM0,mM0

lM0
↵1=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

����
Z 2T

T

t3/4 cos
⇣⇡

4

⌘
dt

����

+
↵1/4

8⇡3
p

2

X
(i0,i1)2{0,1}2

X
nM0
mM0
lM0
↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

����
Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘���� dt.

By using Lemma 3, we get
X

(i0,i1)2{0,1}2

X
nM0
mM0
lM0
↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

����
Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

����⌧↵," T 41/24+".

Recall that based on the hypotheses of (4) and (5), the series c1(↵) converges
absolutely. Then, we obtain

↵1/4

8⇡3
p

2

X
(i0,i1)2{0,1}2

X
nM0,mM0

lM0
↵1=0

�f (n)�f (m)�f (l)
(nml)3/4

Z 2T

T
t3/4 cos

⇣⇡

4

⌘
dt

=
↵1/4

28⇡3
c1(↵,M0)

⇣
(2T )7/4 � T 7/4

⌘

=
↵1/4

28⇡3
[c1(↵) + c1(↵,M0)� c1(↵)]

⇣
(2T )7/4 � T 7/4

⌘

=
↵1/4

28⇡3
c1(↵)

⇣
(2T )7/4 � T 7/4

⌘
+ O↵,"

⇣
T 7/4 |c1(↵)� c1(↵,M0)|

⌘
.

Lemma 2 (c) leads to

|c1(↵)� c1(↵,M0)|⌧↵," M�5/4+"
0 ⌧↵," T�5/24+".

Hence, we get

↵1/4

28⇡3
c1(↵)

⇣
(2T )7/4 � T 7/4

⌘
+ O↵,"

⇣
T 7/4 |c1(↵)� c1(↵,M0)|

⌘
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=
↵1/4

28⇡3
c1(↵)

⇣
(2T )7/4 � T 7/4

⌘
+ O↵,"

⇣
T 37/24+"

⌘

and therefore,

S1 =
↵1/4

28⇡3
c1(↵)

⇣
(2T )7/4 � T 7/4

⌘
+ O↵,"

⇣
T 37/24+"

⌘
.

For the sum S2, we have

S2 =
↵1/4

(⇡
p

2)3
X

nM0

X
mM0

X
M0<lM

�f (n)�f (m)�f (l)
(nml)3/4

⇥
Z 2T

T
t3/4 cos

⇣
4⇡
p

nt� ⇡

4

⌘
cos
⇣
4⇡
p

mt� ⇡

4

⌘
cos
⇣
4⇡
p

↵lt� ⇡

4

⌘
dt.

Formula (22) implies that

S2 =
↵1/4

8⇡3
p

2

X
(i0,i1)2{0,1}2

X
nM0

X
mM0

X
M0<lM

�f (n)�f (m)�f (l)

(nml)3/4

⇥
Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

⌧ ↵1/4

8⇡3
p

2

����������
X

(i0,i1)2{0,1}2

X
nM0
mM0

M0<lM

�f (n)�f (m)�f (l)

(nml)3/4

����������

����
Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

����

⌧ ↵1/4

8⇡3
p

2

������������

X
(i0,i1)2{0,1}2

X
nM0
mM0

M0<lM
↵1=0

�f (n)�f (m)�f (l)

(nml)3/4

������������

����
Z 2T

T

t3/4 cos
⇣⇡

4

⌘
dt

����

+
↵1/4

8⇡3
p

2

������������

X
(i0,i1)2{0,1}2

X
nM0
mM0

M0<lM
↵1 6=0

�f (n)�f (m)�f (l)

(nml)3/4

������������

����
Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

���� .
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By virtue of Lemma 2 (c), we obtain
����������

X
(i0,i1)2{0,1}2

X
nM0,mM0

M0<lM
↵1=0

�f (n)�f (m)�f (l)
(nml)3/4

����������

�����
Z 2T

T
t3/4 cos

⇣⇡

4

⌘
dt

�����

⌧↵," T 7/4

��������

��������
X

(i0,i1)2{0,1}2

+1X
n,m,l=1

↵1=0

�f (n)�f (m)�f (l)
(nml)3/4

��������

�

��������
X

(i0,i1)2{0,1}2

X
nM0,mM0,lM0

↵1=0

�f (n)�f (m)�f (l)
(nml)3/4

��������

��������
⌧↵," T 7/4 ||c1(↵)|� |c1(↵,M0)||
⌧↵," T 7/4 |c1(↵)� c1(↵,M0)|
⌧↵," T 7/4M�5/4+"

0 ⌧↵," T 37/24+".

Therefore, we get
����������

X
(i0,i1)2{0,1}2

X
nM0,mM0

M0<lM
↵1=0

�f (n)�f (m)�f (l)
(nml)3/4

����������

�����
Z 2T

T
t3/4 cos

⇣⇡

4

⌘
dt

�����⌧↵," T 37/24+".

(23)

In addition, we have

↵1/4

8⇡3
p

2

X
(i0,i1)2{0,1}2

X
nM0
mM0

M0<lM
↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

����
Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

����

=
↵1/4

8⇡3
p

2

X
(i0,i1)2{0,1}2

X
nM0,mM0

M0<l(50M0/↵)
↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

����
Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

����

+
↵1/4

8⇡3
p

2

X
(i0,i1)2{0,1}2

X
nM0,mM0

(50M0/↵)<lM
↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

����
Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

���� .
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Now, by applying Lemma 3 (b), we obtain

X
(i0,i1)2{0,1}2

X
nM0,mM0

M0<l(50M0/↵)
↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

����
Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

����

⌧↵," T 41/24+".

If (50M0/↵) < l, then ↵1 �↵

p
l. Hence, by Lemma 3 (a), we get

X
(i0,i1)2{0,1}2

X
nM0,mM0

(50M0/↵)<lM
↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

����
Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

����

⌧↵," T 41/24+".

It follows that
S2 ⌧↵," T 41/24+".

By using the same arguments as above, we obtain

S3 ⌧↵," T 41/24+".

For the sum S4, we have

S4 ⌧
↵1/4

8⇡3
p

2

����������
X

(i0,i1)2{0,1}2

X
nM0,mM0

M0<lM
↵1=0

�f (n)�f (m)�f (l)

(nml)3/4

����������

����
Z 2T

T

t3/4 cos
⇣⇡

4

⌘
dt

����

+
↵1/4

8⇡3
p

2

X
(i0,i1)2{0,1}2

X
nM0
mM0

M0<lM
↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

����
Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

���� .

Lemma 3 (a) implies that

X
(i0,i1)2{0,1}2

X
nM0,mM0

M0<lM
↵1 6=0

|�f (n)||�f (m)||�f (l)|
(nml)3/4

����
Z 2T

T

t3/4 cos
⇣
4⇡↵1

p
t� ⇡

4

⌘
dt

����

⌧↵," T 3/2+" + T 7/4�1/24+"

⌧↵," T 41/24+".

Thus, by Formula (23) and the last bound, we get

S4 ⌧↵," T 41/24+".
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By the same arguments applied on the sums S5 and S6, we deduce that

S5 ⌧↵," T 41/24+" and S6 ⌧↵," T 41/24+".

By summing up S1 to S6 above, we obtainZ 2T

T
(BM (t))2 BM (↵t)dt =

↵1/4

28⇡3
c1(↵)

⇣
(2T )7/4 � T 7/4

⌘
+ O↵,"

⇣
T 41/24+"

⌘
.

Therefore, we get the following formulaZ 2T

T
A2

f (t)Af (↵t)dt =
↵1/4

28⇡3
c1(↵)

⇣
(2T )7/4 � T 7/4

⌘
+ O↵,"

⇣
T 41/24+"

⌘
.

Put T = X/2,X/4, .... After summing up, we find
Z X

2
A2

f (t)Af (↵t)dt =
↵1/4

28⇡3
c1(↵)X7/4 + O↵,"

⇣
X41/24+"

⌘
.

Let

Cf (↵) :=
↵1/4

28⇡3
c1(↵).

We finally get Z X

2
A2

f (t)Af (↵t)dt = Cf (↵)X7/4 + O↵,"

⇣
X41/24+"

⌘
.

Remark 1. If ↵ = 1, then we find the cubic moment for Af (x) :
Z X

2
A3

f (t)dt = O"

⇣
X41/24+"

⌘
.

We just have to prove that Cf (1) = 0 or c1(1) = 0. A simple way to get it is the
use of the assertion 3 of Theorem 2 with ↵ = 1 2 Q⇤+. Generally, if ↵ 2 Q⇤+ or
↵ 2

p
NQ⇤+, we have the same upper bound which means

Z X

2
A2

f (t)Af (↵t)dt = O↵,"

⇣
X41/24+"

⌘

and this is also a consequence of the assertion 3 of Theorem 2.

4. Sign of the Constant Cf(↵)

In this section, we are interested in the discussion of the sign of the constant Cf (↵).
Since Cf (↵) = ↵1/4

28⇡3 c1(↵), it su�ces then to discuss the sign of c1(↵). For that, we
shall prove Theorem 2.
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Proof. 1. If ↵ satisfies (4), then by using the previous steps in the proof of Lemma
2, for all positive integers n, m and l such that

p
n±pm =

p
↵l, we get

8<
:

n = d1tr2l00

m = d1
N
t s2l00

l = a02b
0
2d2l00

or

8<
:

n = d1
N
t s2l00

m = d1tr2l00

l = a02b
0
2d2l00.

In this case, we have

↵ =
d1

d2a02b
0
2

✓
tr2 +

N

t
s2

◆
± 2rs

p
N

�
.

Suppose that d1 = d2a02b
0
2 = 1. Then, ↵ becomes

↵ =
✓

tr2 +
N

t
s2

◆
± 2rs

p
N.

Therefore, we obtain

c1(↵) =
+1X
l00=1

�f (tr2l00)�f

�
N
t s2l00

�
�f (l00)

(Ns2r2l003)3/4

=
1

(Ns2r2)3/4

+1X
l00=1

�f (tr2l00)�f

�
N
t s2l00

�
�f (l00)

l009/4
.

According to (1), we have

�f (tr2l00)�f

✓
N

t
s2l00

◆
=

X
d| gcd(tr2l00, N

t s2l00)
�f

✓
Nr2s2l002

d2

◆
. (24)

But gcd(r, s) = gcd
�
t, N

t

�
= 1, since N is a square-free integer. It follows that

gcd
�
tr2, N

t s2
�

= 1 and this implies that gcd
�
tr2l00, N

t s2l00
�

= l00. Thus, Formula
(24) leads to

�f (tr2l00)�f

✓
N

t
s2l00

◆
=
X
d|l00

�f

✓
Nr2s2 l002

d2

◆
. (25)

By applying Formula (1), and since gcd
�
Nr2s2l00, l00

�
= l00, one can deduce that

X
d|l00

�f

✓
Nr2s2 l002

d2

◆
= �f

�
Nr2s2l00

�
�f (l00) .

Thus, Formula (1) joined on to (25) results in

�f (tr2l00)�f

✓
N

t
s2l00

◆
�f (l00) = �f

�
Nr2s2l00

�
�f (l00)2 . (26)
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By using Formula (26) and by the expression of c1(↵) in our case, we have

c1(↵) =
1

(Ns2r2)3/4

+1X
l00=1

 
�f

�
Nr2s2l00

�
�f (l00)2

l009/4

!

=
1

(Ns2r2)3/4

2
664

+1X
l00=1

Nr2s2l002A+

 
�f

�
Nr2s2l00

�
�f (l00)2

l009/4

!

+
+1X
l00=1

Nr2s2l002A�

 
�f

�
Nr2s2l00

�
�f (l00)2

l009/4

!3775

=
1

(Ns2r2)3/4
(S+ � S�).

It follows that, if S+ > S�, then c1(↵) > 0, and therefore, Cf (↵) > 0. Besides, if
S+ < S�, then c1(↵) < 0, and therefore, Cf (↵) < 0.

2. If ↵ satisfies (5), then we have8<
:

n = 1
2 (d1tr2l00)

m = 1
2

�
d1

N
t s2l00

�
l = a02b

0
2d2l00

or

8<
:

n = 1
2

�
d1

N
t s2l00

�
m = 1

2 (d1tr2l00)
l = a02b

0
2d2l00.

Note that n and m are well-defined if l00 and d1 are not both odd. Hence, we have

↵ =
d1

d2a02b
0
2


1
2

✓
tr2 +

N

t
s2

◆
± rs

p
N

�
.

Suppose that d1 = 2 and d2a02b
0
2 = 1. So, the expression of ↵ becomes

↵ =
✓

tr2 +
N

t
s2

◆
± 2rs

p
N

and thus,

c1(↵) =
1

(Ns2r2)3/4

+1X
l00=1

�f (tr2l00)�f

�
N
t s2l00

�
�f (l00)

l009/4
.

By following the same procedure as in the proof of 1., we get:

c1(↵) =
1

(Ns2r2)3/4
(S+ � S�).

We conclude also that, if S+ > S�, then Cf (↵) > 0, and if not, then Cf (↵)  0.
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3. If ↵ is a positive rational number and the equation
p

n + (�1)i0
p

m + (�1)i1
p

↵l = 0, (i0, i1) 2 {0, 1}2

is solvable in n, m and l 2 N⇤, then by the result of Lemma 2 (a), we have

↵ =
d1

d2a02b
0
2

✓
tr2 +

N

t
s2

◆
± 2rs

p
N

�

or
↵ =

d1

d2a02b
0
2


1
2

✓
tr2 +

N

t
s2

◆
± rs

p
N

�
.

Since ↵ = a1
a2

+ b1
b2

p
N, then ↵ = a1

a2
, with gcd(a1, a2) = 1 and b1 = 0. It follows

that gcd(b1, b2) = gcd(0, b2) = b2 = 1. Therefore, we obtain d1 = a1 > 0 and
a02 = b02 = d2 = 1. Thus, we get a2 = a02d2 = 1. Hence, we find that ↵ = a1. So, we
have ⇢ �

tr2 + N
t s2
�

= 1
rs = 0 or

⇢
1
2

�
tr2 + N

t s2
�

= 1
rs = 0.

Now, if ↵ satisfies (4), then tr2 + N
t s2 = 1. This implies that tr2 = 0 or N

t s2 = 0,
and r = 0 or s = 0. But, we have⇢

n = a1tr2l00

m = a1
N
t s2l00

or
⇢

n = a1
N
t s2l00

m = a1tr2l00.

Therefore, n = 0 or m = 0. This contradicts the fact that n,m 2 N⇤. If ↵ satisfies
(5), then 1

2

�
tr2 + N

t s2
�

= 1 and therefore, tr2 = N
t s2 = 1. This leads to

n = m =
1
2
a1l

00.

Set l00 = 2q to be even. Thus, we have n = m = a1q and l = l00. The equation
p

n + (�1)i0
p

m + (�1)i1
p

↵l = 0, (i0, i1) 2 {0, 1}2

leads to
p

a1q + (�1)i0pa1q + (�1)i1
p

2a1q = 0, (i0, i1) 2 {0, 1}2.

This is equivalent to

p
a1q

h
1 + (�1)i0 + (�1)i1

p
2
i

= 0, (i0, i1) 2 {0, 1}2.

It is clear that for all (i0, i1) 2 {0, 1}2, we have

1 + (�1)i0 + (�1)i1
p

2 6= 0.

Hence, the equation
p

n + (�1)i0
p

m + (�1)i1
p

↵l = 0, (i0, i1) 2 {0, 1}2
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is not solvable in the case of ↵ = a1 = a1
a2

, which is a positive rational number, and
therefore, c1(↵) = 0 = Cf (↵). Note that, in this case, we can also consider the fact
that rs = 0 which implies that r = 0 or s = 0, and since tr2 = N

t s2 = 1, we then
get the contradiction.

Suppose now that ↵ 2
p

NQ⇤+ and that the equation

p
n + (�1)i0

p
m + (�1)i1

p
↵l = 0, (i0, i1) 2 {0, 1}2

is solvable in n, m and l 2 N⇤. Lemma 2 (a) yields

↵ =
d1

d2a02b
0
2

✓
tr2 +

N

t
s2

◆
± 2rs

p
N

�

or
↵ =

d1

d2a02b
0
2


1
2

✓
tr2 +

N

t
s2

◆
± rs

p
N

�
.

Since ↵ = a1
a2

+ b1
b2

p
N, then ↵ = b1

b2

p
N. Thus, a1 = 0, gcd(a1, a2) = a2 = 1,

d1 = b1 > 0 and d2 = a02 = b02 = 1. Since d2 = gcd(a2, b2) = b2 = 1, then
↵ = b1

p
N. Hence, we obtain

⇢
b1

�
tr2 + N

t s2
�

= 0
2b1rs = b1

or
⇢

b1
2

�
tr2 + N

t s2
�

= 0
b1rs = b1.

In both cases, we have tr2 + N
t s2 = 0, and this is equivalent to tr2 = N

t s2 = 0.
If ↵ satisfies (4), then

⇢
n = b1tr2l00

m = b1
N
t s2l00

or
⇢

n = b1
N
t s2l00

m = b1tr2l00

and if ↵ satisfies (5), then
⇢

n = 1
2b1tr2l00

m = 1
2b1

N
t s2l00

or
⇢

n = 1
2b1

N
t s2l00

m = 1
2b1tr2l00.

Therefore, in both cases, n = m = 0. Moreover, the equation
p

n + (�1)i0
p

m + (�1)i1
p

↵l = 0, (i0, i1) 2 {0, 1}2

is solvable, which implies that n = m = l = 0. This contradicts the fact that n, m
and l 2 N⇤. Hence, we get c1(↵) = 0 = Cf (↵).

Note that we can show the contradiction when ↵ satisfies (4) by using the equality
2b1rs = b1, which is equivalent to 2rs = 1 and this can not happen for positive
integers r and s.
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