UPPER BOUNDS FOR $\boldsymbol{B}_{\boldsymbol{H}}[G]$-SETS WITH SMALL \boldsymbol{H}

Craig Timmons ${ }^{1}$
Department of Mathematics and Statistics, California State University
Sacramento, Sacramento, California
craig.timmons@csus.edu

Received: 4/6/16, Accepted: 11/19/16, Published: 11/23/16

Abstract

For $g \geq 2$ and $h \geq 3$, we give small improvements on the maximum size of a $B_{h}[g]$ set contained in the interval $\{1,2, \ldots, N\}$. In particular, we show that a $B_{3}[g]$-set in $\{1,2, \ldots, N\}$ has at most $(14.3 g N)^{1 / 3}$ elements. The previously best known bound was $(16 g N)^{1 / 3}$ proved by Cilleruelo, Ruzsa, and Trujillo. We also introduce a related optimization problem that may be of independent interest.

1. Introduction

Let $A \subseteq[N]:=\{1,2, \ldots, N\}$ and let h and g be positive integers. We say that A is a $B_{h}[g]$-set if for any integer n, there are at most g distinct multi-sets $\left\{a_{1}, a_{2}, \ldots, a_{h}\right\} \subseteq A$ such that

$$
a_{1}+a_{2}+\cdots+a_{h}=n
$$

Determining the maximum size of a $B_{h}[g]$-set in $A \subseteq[N]$ is a well-studied problem in number theory. Initial bounds on $B_{h}[g]$-sets were obtained combinatorially. Indeed, if A is a $B_{h}[g]$-set, then consider the $(\underset{h}{|A|+h-1})$ multi-sets of size h in A. The sum of the elements in each of the multi-sets represents each integer in $\{1,2, \ldots, h N\}$ at most g times. Therefore,

$$
\begin{equation*}
\binom{|A|+h-1}{h} \leq g h N \tag{1}
\end{equation*}
$$

which implies $|A| \leq(h!g h N)^{1 / h}$. The breakthrough papers of Cilleruelo, Ruzsa, Trujillo [3], Cilleruelo, Jiménez-Urroz [2], and Green [4] introduced methods from analysis and probability to obtain significant improvements on (1). Several of the results in these papers have yet to be improved upon. For more on $B_{h}[g]$-sets, we recommend the survey papers of O'Bryant [5] and Plagne [6]. We will be concerned

[^0]with $B_{h}[g]$-sets where $g \geq 2$ and $h \geq 3$. For $3 \leq h \leq 6$ and $g \geq 2$, the best known upper bound on the size of a $B_{h}[g]$-set $A \subseteq[N]$ is
\[

$$
\begin{equation*}
|A| \leq\left(\frac{h!h g N}{1+\cos ^{h}(\pi / h)}\right)^{1 / h} \tag{2}
\end{equation*}
$$

\]

due to Cilleruelo, Ruzsa, and Trujillo [3]. For $h \geq 7$, the best known bound is

$$
\begin{equation*}
|A| \leq(\sqrt{3 h} h!g N)^{1 / h} \tag{3}
\end{equation*}
$$

which was proved by Cilleruelo and Jiménez-Urroz [2] using an idea of Alon. For $g=1$, the best bounds can be found in [4] and [1]. In the case that $h=2$ and $g \geq 2, \mathrm{Yu}[7]$ was able to make some improvements to the results of Green [4]. In this note we improve (2) and make a small improvement upon (3).

Theorem 1. (i) Let $g \geq 2$ and $h \geq 4$ be integers. If $A \subseteq[N]$ is a $B_{h}[g]$-set, then

$$
|A| \leq\left(1+o_{N}(1)\right)\left(\frac{x_{h} h!h g N}{\pi}\right)^{1 / h}
$$

where x_{h} is the unique real number in $(0, \pi)$ that satisfies $\frac{\sin x_{h}}{x_{h}}=\left(\frac{4}{3-\cos (\pi / h)}-1\right)^{h}$. (ii) If $A \subseteq[N]$ is a $B_{3}[g]$-set, then for large enough N,

$$
|A| \leq(14.295 g N)^{1 / 3}
$$

Our improvements for small h are contained in the following table.

h	upper bound of [3], [2]	new upper bound
3	$(16 g N)^{1 / 3}$	$(14.295 g N)^{1 / 3}$
4	$(76.8 g N)^{1 / 4}$	$(71.49 g N)^{1 / 4}$
5	$(445.577 g N)^{1 / 5}$	$(413.07 g N)^{1 / 5}$
6	$(3054.7 g N)^{1 / 6}$	$(2774.16 g N)^{1 / 6}$
7	$(23096.19 g N)^{1 / 7}$	$(21294.74 g N)^{1 / 7}$

Table 1: Upper bounds on $B_{h}[g]$-sets in $\{1,2, \ldots, N\}$ for sufficiently large N.
By looking at Table 1, it is clear that Theorem 1 improves (2) for $3 \leq h \leq 6$. The inequality

$$
\frac{\sin (\pi \sqrt{3 / h})}{\pi \sqrt{3 / h}}<\left(\frac{4}{3-\cos (\pi / h)}-1\right)^{h}
$$

holds for all $h \geq 3$; a fact that can be verified using Taylor series. Since $\frac{\sin x}{x}$ is decreasing on $[0, \pi]$, we must have $x_{h}<\pi \sqrt{3 / h}$ for all $h \geq 3$ which shows that Theorem 1 improves (3). The improvement, however, is $\left(1-o_{h}(1)\right)$ since $\frac{x_{h} \sqrt{h}}{\pi \sqrt{3}} \rightarrow 1$ as $h \rightarrow \infty$.

In the next section we prove Theorem 1. Our arguments rely heavily on [3] and [4]. In Section 3 we introduce an optimization problem that is motivated by our work in Section 2.

2. Proof of Theorem 1.1

First we show how to improve (2) using the arguments of [3] and [4]. Let $A \subseteq[N]$ be a $B_{h}[g]$-set where $h \geq 2$. Define $f(t)=\sum_{a \in A} e^{i a t}, t_{h}=\frac{2 \pi}{h N}$, and

$$
r_{h}(n)=\left|\left\{\left(a_{1}, \ldots, a_{h}\right) \in A^{h}: a_{1}+\cdots+a_{h}=n\right\}\right| .
$$

The first lemma is a variation of inequality (40) from [4].
Lemma 1 (Green [4]). For any $j \in\{1,2, \ldots, h N-1\}$,

$$
\left|f\left(t_{h} j\right)\right| \leq\left(1+o_{N}(1)\right)|A|\left(\frac{\sin \left(\pi Q_{h}\right)}{\pi Q_{h}}\right)^{1 / h}
$$

where $Q_{h}=\frac{|A|^{h}}{h!h g N}$.
Proof. Let $j \in\{1,2, \ldots, h N-1\}$. Define $g:[h N] \rightarrow\{0,1, \ldots\}$ by $g(n)=h!g-$ $r_{h}(n)$. Following [3], we observe that

$$
\begin{equation*}
f\left(t_{h} j\right)^{h}=\sum_{n=1}^{h N} r_{h}(n) e^{\frac{2 \pi i n j}{h N}}=-\sum_{n=1}^{h N}\left(h!g-r_{h}(n)\right) e^{\frac{2 \pi i n j}{h N}} . \tag{4}
\end{equation*}
$$

Let \hat{g} be the Fourier transform of g so $\hat{g}(j)=\sum_{n=1}^{h N} g(n) e^{\frac{2 \pi i n j}{h N}}$ for $j \in[h N]$. From (4) and the definition of g,

$$
\begin{equation*}
\left|f\left(t_{h} j\right)\right|^{h}=|\hat{g}(j)| \tag{5}
\end{equation*}
$$

Since A is a $B_{h}[g]$-set, the inequality $0 \leq g(n) \leq h!g$ holds for all n. Furthermore, $\sum_{n=1}^{h N} g(n)=h!g h N-|A|^{h}$. Lemma 26 of [4] gives

$$
\begin{equation*}
|\hat{g}(j)| \leq h!g\left|\frac{\sin \left(\frac{\pi}{h N}\left(\frac{h!h g N-|A|^{h}}{h!g}+1\right)\right)}{\sin \left(\frac{\pi}{h N}\right)}\right|=h!g\left|\frac{\sin \left(\pi Q_{h}-\frac{\pi}{h N}\right)}{\sin \left(\frac{\pi}{h N}\right)}\right| . \tag{6}
\end{equation*}
$$

By (2), the value Q_{h} satisfies $0 \leq Q_{h} \leq 1$ for all N. Therefore,

$$
|\hat{g}(j)| \leq h!g\left(1+o_{N}(1)\right) \frac{\sin \left(\pi Q_{h}\right)}{\pi / h N}=\left(1+o_{N}(1)\right)|A|^{h} \frac{\sin \left(\pi Q_{h}\right)}{\pi Q_{h}}
$$

Combining this inequality with (5), we get

$$
\left|f\left(t_{h} j\right)\right| \leq\left(1+o_{N}(1)\right)|A|\left(\frac{\sin \left(\pi Q_{h}\right)}{\pi Q_{h}}\right)^{1 / h}
$$

which completes the proof of the lemma.

Again following [3], we need to choose a function $F(x)=\sum_{j=1}^{h N} b_{j} \cos (j x)$ such that

$$
\sum_{a \in A} F\left(\left(a-\frac{N+1}{2}\right) t_{h}\right)
$$

is large and $\sum_{j=1}^{h N}\left|b_{j}\right|$ is small. For $h \geq 3$, the function $F(x)=\frac{1}{\cos (\pi / h)} \cos x$ gives

$$
\sum_{a \in A} F\left(\left(a-\frac{N+1}{2}\right) t_{h}\right) \geq|A|
$$

and $\sum_{j=1}^{h N}\left|b_{j}\right|=\frac{1}{\cos (\pi / h)}$. This is the function that is used in [3]. We will choose a different function G that does better than F and still has a simple form. Let

$$
\begin{equation*}
G(x)=\left(\frac{2}{3-\cos (\pi / h)}\right) \frac{1}{\cos (\pi / h)} \cos (x)-\left(1-\frac{2}{3-\cos (\pi / h)}\right) \frac{1}{\cos (\pi / h)} \cos (h x) \tag{7}
\end{equation*}
$$

The minimum value of $G(x)$ on the interval $\left[-\frac{\pi}{h}, \frac{\pi}{h}\right]$ is $\frac{1}{\cos (\pi / h)}\left(\frac{4}{3-\cos (\pi / h)}-1\right)$ and so

$$
\begin{equation*}
\sum_{a \in A} G\left(\left(a-\frac{N+1}{2}\right) t_{h}\right) \geq \frac{1}{\cos (\pi / h)}\left(\frac{4}{3-\cos (\pi / h)}-1\right)|A| \tag{8}
\end{equation*}
$$

Here we are using the fact that $\left|(a-(N+1) / 2) t_{h}\right|<\frac{\pi}{h}$ for any $a \in A$. If the constants c_{j} are defined by $c_{h N}=0$ and $G(x)=\sum_{j=1}^{h N} c_{j} \cos (j x)$, then $\sum_{j=1}^{h N}\left|c_{j}\right|=\frac{1}{\cos (\pi / h)}$. Using (8), we have

$$
\begin{aligned}
\frac{1}{\cos (\pi / h)}\left(\frac{4}{3-\cos (\pi / h)}-1\right)|A| & \leq \sum_{a \in A} G\left(\left(a-\frac{N+1}{2}\right) t_{h}\right) \\
& =\operatorname{Re}\left(\sum_{j=1}^{h N} c_{j} \sum_{a \in A} e^{(a-(N+1) / 2) \frac{2 \pi i j}{h N}}\right) \\
& \leq \sum_{j=1}^{h N}\left|c_{j}\right|\left|f\left(t_{h} j\right)\right| \\
& \leq \frac{1}{\cos (\pi / h)}\left(1+o_{N}(1)\right)|A|\left(\frac{\sin \left(\pi Q_{h}\right)}{\pi Q_{h}}\right)^{1 / h}
\end{aligned}
$$

where in the last line we have used Lemma 1 and $\sum_{j=1}^{h N}\left|c_{j}\right|=\frac{1}{\cos (\pi / h)}$. Some rearranging gives

$$
\begin{equation*}
\left(\frac{4}{3-\cos (\pi / h)}-1\right)^{h} \leq\left(1+o_{N}(1)\right) \frac{\sin \left(\pi Q_{h}\right)}{\pi Q_{h}} \tag{9}
\end{equation*}
$$

We remark that $\frac{4}{3-\cos (\pi / h)}-1>\cos (\pi / h)$ is equivalent to $(1-\cos (\pi / h))^{2}>0$. The point of this is that using G defined by (7) instead of $F(x)=\frac{1}{\cos (\pi / h)} \cos x$ (which
would give the value 1 on the left hand side of (9)) does lead to a better upper bound.

Recalling that $0 \leq Q_{h} \leq 1$, lower bounds on $\frac{\sin \left(\pi Q_{h}\right)}{\pi Q_{h}}$ translate to upper bounds on πQ_{h}. Let x_{h} be the unique real number in the interval $(0, \pi)$ that satisfies

$$
\left(\frac{4}{3-\cos (\pi / h)}-1\right)^{h}=\frac{\sin \left(x_{h}\right)}{x_{h}}
$$

Then by $(9), \pi Q_{h} \leq\left(1+o_{N}(1)\right) x_{h}$ since the function $\frac{\sin x}{x}$ is decreasing on $[0, \pi]$. We can rewrite $\pi Q_{h} \leq\left(1+o_{N}(1)\right) x_{h}$ as

$$
\begin{equation*}
|A| \leq\left(1+o_{N}(1)\right)\left(\frac{x_{h} h!h g N}{\pi}\right)^{1 / h} \tag{10}
\end{equation*}
$$

The upper bounds obtained from (10) for $h \in\{4,5,6,7\}$ are given in Table 1. We have chosen to round the values so that all of the bounds in Table 1 hold for sufficiently large N. In particular, (10) implies that a $B_{3}[g]$-set $A \subseteq[N]$ has at most $(14.65 g N)^{1 / 3}$ elements. We can improve this bound by considering the distribution of A in the interval $[N]$.

Assume now that A is a $B_{3}[g]$-set. Let δ be a real number with $0<\delta<\frac{1}{4}$ and set $l=\left\lfloor\frac{1}{2 \delta}\right\rfloor$. For $1 \leq k \leq l$, let

$$
C_{k}=(A \cap((k-1) \delta N, k \delta N]) \cup(A \cap[(1-k \delta) N,(1-(k-1) \delta) N))
$$

The definition of l ensures that the sets C_{1}, \ldots, C_{l} together with $A \cap(l \delta N,(1-l \delta) N)$ form a partition of A. Using the same counting argument that is used to obtain (1), we show that if some C_{k} contains a large proportion of A, then $|A| \leq(14.295 \mathrm{gN})^{1 / 3}$. To this end, define real numbers $\alpha_{1}(\delta), \ldots, \alpha_{l}(\delta)$ by

$$
\begin{equation*}
\alpha_{k}(\delta)|A|=\left|C_{k}\right| \tag{11}
\end{equation*}
$$

for $1 \leq k \leq l$. The value $\alpha_{k}(\delta)$ represents the proportion of A that is contained in the union $((k-1) \delta N, k \delta N] \cup[(1-k \delta) N,(1-(k-1) \delta) N)$.
Lemma 2. If $0<\delta<\frac{1}{4}, l=\left\lfloor\frac{1}{2 \delta}\right\rfloor$, and $\alpha_{1}(\delta), \ldots, \alpha_{l}(\delta)$ are defined by (11), then for any $N>\frac{2}{\delta}$ and $1 \leq k \leq l$,

$$
|A| \leq\left(\frac{72 g \delta N}{\alpha_{k}(\delta)^{3}}\right)^{1 / 3}
$$

Proof. Let $1 \leq k \leq l$ and consider C_{k}. Since C_{k} is a $B_{3}[g]$-set,

$$
\begin{equation*}
\binom{\left|C_{k}\right|+3-1}{3} \leq g\left|C_{k}+C_{k}+C_{k}\right| \tag{12}
\end{equation*}
$$

where $C_{k}+C_{k}+C_{k}=\left\{a+b+c: a, b, c \in C_{k}\right\}$. The set $C_{k}+C_{k}+C_{k}$ is contained in the union of the intervals

$$
\begin{gathered}
{[3(k-1) \delta N, 3 k \delta N],[(1+(k-2) \delta) N,(1+(k+1) \delta) N]} \\
{[(2-(k+1) \delta) N,(2-(k-2) \delta) N], \text { and }[(3-3 k \delta) N,(3-3(k-1) \delta) N] .}
\end{gathered}
$$

Each of these four intervals has length $3 \delta N$ so $\left|C_{k}+C_{k}+C_{k}\right| \leq 12 \delta N$. Combining this inequality with (12) we have $\binom{\left|C_{k}\right|+2}{3} \leq 12 g \delta N$ which implies $\alpha_{k}(\delta)|A|=\left|C_{k}\right| \leq$ $(3!12 g \delta N)^{1 / 3}$.

Now we consider two cases.
Case 1: For some $0<\delta<\frac{1}{4}$ and $1 \leq k \leq l=\left\lfloor\frac{1}{2 \delta}\right\rfloor$, we have

$$
\left(\frac{72 \delta}{14.295}\right)^{1 / 3}<\alpha_{k}(\delta)
$$

In this case, we apply Lemma 2 to get $|A| \leq(14.295 g N)^{1 / 3}$ and we are done.
Case 2: For all $0<\delta<\frac{1}{4}$ and $1 \leq k \leq l=\left\lfloor\frac{1}{2 \delta}\right\rfloor$, we have

$$
\begin{equation*}
\alpha_{k}(\delta) \leq\left(\frac{72 \delta}{14.295}\right)^{1 / 3} \tag{13}
\end{equation*}
$$

Let $H(x)=1.6 \cos x-0.3 \cos 3 x+0.1 \cos 6 x$. Partition the interval $[-\pi / 3, \pi / 3]$ into 128 subintervals I_{1}, \ldots, I_{128} of equal width so

$$
I_{j}=\left[-\frac{\pi}{3}+\frac{2 \pi(j-1)}{3 \cdot 128},-\frac{\pi}{3}+\frac{2 \pi j}{3 \cdot 128}\right]
$$

for $1 \leq j \leq 128$. Let $v_{j}=\min _{x \in I_{j}} H(x)$ for $1 \leq j \leq 128$. Since H is an even function, $v_{j}=v_{128-j+1}$ for $1 \leq j \leq 64$. The values v_{j} can be approximated numerically. They satisfy

$$
\begin{equation*}
v_{1}<v_{2}<v_{3}<v_{4}<v_{5}<v_{35} \leq v_{j} \tag{14}
\end{equation*}
$$

for all $6 \leq j \leq 64$. The sum

$$
\begin{equation*}
\sum_{a \in A} H\left(\left(a-\frac{N+1}{2}\right) t_{3}\right) \tag{15}
\end{equation*}
$$

is minimized when $J=\left\{\left(a-\frac{N+1}{2}\right) t_{3}: a \in A\right\}$ contains as many elements as possible in $I_{1} \cup I_{2} \cup \cdots \cup I_{5}$ and the remaining elements of J are contained in I_{35}. This follows from (14). Furthermore, in order to minimize (15), J must intersect I_{1} in as many elements as possible, and the remaining elements in J intersect I_{2} in as many elements as possible, and so on. By (13) with $\delta=1 / 128$,

$$
\alpha_{k}(1 / 128) \leq\left(\frac{72(1 / 128)}{14.295}\right)^{1 / 3}
$$

Thus,

$$
\left|J \cap I_{1}\right| \leq\left(\frac{72(1 / 128)}{14.295}\right)^{1 / 3}|A|
$$

Similarly, by (13) with $\delta=j / 128$ for $j \in\{2,3,4,5\}$,

$$
\alpha_{k}(j / 128) \leq\left(\frac{72(j / 128)}{14.295}\right)^{1 / 3}
$$

We conclude that

$$
\left|J \cap\left(I_{1} \cup I_{2} \cup \cdots \cup I_{j}\right)\right| \leq\left(\frac{72(j / 128)}{14.295}\right)^{1 / 3}|A|
$$

for $1 \leq j \leq 5$. From this inequality and (14), we deduce that

$$
\begin{aligned}
\sum_{a \in A} H\left(\left(a-\frac{N+1}{2}\right) t_{3}\right) & \geq \sum_{j=1}^{5} v_{j}\left(\left(\frac{72\left(\frac{j}{128}\right)}{14.295}\right)^{1 / 3}-\left(\frac{72\left(\frac{j-1}{128}\right)}{14.295}\right)^{1 / 3}\right)|A| \\
& +v_{35}\left(1-\left(\frac{72(5 / 128)}{14.295}\right)^{1 / 3}\right)|A|>1.2455|A|
\end{aligned}
$$

Using 1.2455 in the derivation of (9) instead of $\frac{1}{\cos (\pi / 3)}\left(\frac{4}{3-\cos (\pi / 3)}-1\right)$ gives

$$
1.2455|A| \leq \frac{1}{\cos (\pi / 3)}\left(1+o_{N}(1)\right)|A|\left(\frac{\sin \left(\pi Q_{3}\right)}{\pi Q_{3}}\right)^{1 / 3}
$$

This inequality can be rewritten as

$$
\left(\frac{1.2455}{2}\right)^{3} \leq\left(1+o_{N}(1)\right)\left(\frac{\sin \left(\pi Q_{3}\right)}{\pi Q_{3}}\right)
$$

Recalling that $Q_{3}=\frac{|A|^{3}}{3!3 g N}$, this inequality leads to the bound $|A|<(14.295 \mathrm{gN})^{1 / 3}$ for large enough N.

3. An Optimization Problem

In this section we introduce an optimization problem that is motivated by (8) from the previous section.

Given integers K and $h \geq 2$, define

$$
\mathcal{F}_{K, h}=\left\{\sum_{j=1}^{K} b_{j} \cos (j x): \sum_{j=1}^{K}\left|b_{j}\right|=\frac{1}{\cos (\pi / h)}\right\} .
$$

For $A \subseteq[N]$ and $F \in \mathcal{F}_{K, h}$, define

$$
w_{F}(A)=\sum_{a \in A} F\left(\left(a-\frac{N+1}{2}\right) \frac{2 \pi}{h N}\right)
$$

and

$$
\psi(N, K, h)=\min _{A \subseteq[N], A \neq \emptyset} \sup \left\{\frac{w_{F}(A)}{|A|}: F \in \mathcal{F}_{K, h}\right\}
$$

Our interest in $\psi(N, K, h)$ is due to the following proposition.
Proposition 1. If $A \subseteq[N]$ is a $B_{h}[g]$-set and $K \leq h N$, then

$$
|A| \leq\left(1+o_{N}(1)\right)\left(\frac{y_{h} h!h g N}{\pi}\right)^{1 / h}
$$

where y_{h} is the unique real number in $[0, \pi]$ with $\frac{\sin y_{h}}{y_{h}}=(\cos (\pi / h) \psi(N, K, h))^{h}$.
The function G defined by (7) shows that

$$
\psi(N, h, h) \geq \frac{1}{\cos (\pi / h)}\left(\frac{4}{3-\cos (\pi / h)}-1\right)
$$

When $h=3$, this gives $\psi(N, 3,3) \geq 1.2$ which implies $\psi(N, 6,3) \geq 1.2$. This is because the collection of functions $\mathcal{F}_{3,3}$ is a subset of $\mathcal{F}_{6,3}$. By considering more than one function, we can improve the bound $\psi(N, 6,3) \geq 1.2$. The method by which we achieve this can be stated just as easily for general K and h so we do so.

To estimate $\psi(N, K, h)$, we will consider finite subsets of $\mathcal{F}_{K, h}$. Given a subset $\mathcal{F}_{K, h}^{\prime} \subseteq \mathcal{F}_{k, h}$, we obviously have

$$
\begin{equation*}
\sup \left\{\frac{w_{F}(A)}{|A|}: F \in \mathcal{F}_{K, h}^{\prime}\right\} \leq \sup \left\{\frac{w_{F}(A)}{|A|}: F \in \mathcal{F}_{K, h}\right\} \tag{16}
\end{equation*}
$$

for every $A \subseteq[N]$ with $A \neq \emptyset$. When $\mathcal{F}_{K, h}^{\prime}$ is finite, then the supremum on the left hand side of (16) can be replaced with the minimum. Let m be a positive integer and partition the interval $[-\pi / h, \pi / h]$ into m subintervals $I_{1}^{m}, \ldots, I_{m}^{m}$ where

$$
I_{j}^{m}=\left[-\frac{\pi}{h}+\frac{2 \pi(j-1)}{h m},-\frac{\pi}{h}+\frac{2 \pi j}{h m}\right]
$$

for $1 \leq j \leq m$. Any $F \in \mathcal{F}_{K, h}$ is continuous and thus obtains its minimum value on I_{j}^{m}. Given $F \in \mathcal{F}_{K, h}$, define

$$
v_{m, j}(F)=\min _{x \in I_{j}^{m}} F(x)
$$

Given $A \subseteq[N]$, define

$$
\alpha_{m, j}(A)=\frac{1}{|A|}\left|\left\{\left(a-\frac{N+1}{2}\right) \frac{2 \pi}{h N}: a \in A\right\} \cap I_{j}^{m}\right| .
$$

With this notation, we have that for any $A \subseteq[N]$ and $F \in \mathcal{F}_{K, h}$,

$$
w_{F}(A) \geq \sum_{j=1}^{m} \alpha_{m, j}(A)|A| v_{m, j}(F)
$$

Therefore, given a finite set $\left\{F_{1}, \ldots, F_{n}\right\} \subseteq \mathcal{F}_{K, h}$,

$$
\psi(N, K, h) \geq \min _{A \subseteq[N], A \neq \emptyset} \max \left\{\sum_{j=1}^{m} \alpha_{m, j}(A) v_{m, j}\left(F_{k}\right): 1 \leq k \leq n\right\}
$$

We now put the above discussion to use by proving the following result.
Theorem 2. For sufficiently large N, the function $\psi(N, 6,3)$ satisfies the estimate

$$
\psi(N, 6,3) \geq 1.2228
$$

Proof. Let

$$
\begin{aligned}
& F_{1}(x)=1.7 \cos x-0.3 \cos 3 x, F_{2}(x)=1.6 \cos x-0.3 \cos 3 x+0.1 \cos 6 x \\
& F_{3}(x)=1.5 \cos x-0.4 \cos 3 x+0.1 \cos 6 x, F_{4}(x)=1.2 \cos x-0.6 \cos 3 x+0.2 \cos 6 x \\
& F_{5}(x)=-2 \cos 3 x
\end{aligned}
$$

and $\mathcal{F}=\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}\right\}$. Observe that $\mathcal{F} \subseteq \mathcal{F}_{6,3}$. We take $m=12$ and we must compute the numbers $v_{12, j}\left(F_{k}\right)$ for $1 \leq j \leq 12$ and $1 \leq k \leq 5$. Since each F_{k} is an even function, $v_{12, j}\left(F_{k}\right)=v_{12,12-j+1}\left(F_{k}\right)$ for $1 \leq j \leq 6$. To prove Theorem 2, we will only need to estimate these values from below.

Let $A \subseteq[N]$ with $A \neq \emptyset$. We assume that no element of the form $\left(a-\frac{N+1}{2}\right) \frac{2 \pi}{3 N}$ is contained in two of the intervals $I_{1}^{12}, \ldots, I_{12}^{12}$. For large A, this will not affect $|A|$, at least in an asymptotic sense. Under this assumption, the non-negative real numbers $\alpha_{12,1}(A), \ldots, \alpha_{12,12}(A)$ satisfy

$$
\alpha_{12,1}(A)+\cdots+\alpha_{12,12}(A)=1
$$

We will consider several cases which depend on the distribution of A. For notational convenience, we write α_{j} for $\alpha_{12, j}(A)$.

Case 1: $\alpha_{1}+\alpha_{12} \leq 0.6$.
Here we will use the function $F_{1}(x)$. Lower estimates on the $v_{12, j}\left(F_{1}\right)$ are

$$
\begin{gathered}
v_{12,1}\left(F_{1}\right) \geq 1.15, \quad v_{12,2}\left(F_{1}\right) \geq 1.3525, \quad v_{12,3}\left(F_{1}\right) \geq 1.4522 \\
v_{12,4}\left(F_{1}\right) \geq 1.4474, \quad v_{12,5}\left(F_{1}\right) \geq 1.4143, \quad \text { and } \quad v_{12,6}\left(F_{1}\right) \geq 1.4
\end{gathered}
$$

In fact, these values satisfy

$$
v_{12,1}\left(F_{1}\right) \leq v_{12,2}\left(F_{1}\right) \leq v_{12,6}\left(F_{1}\right) \leq v_{12,5}\left(F_{1}\right) \leq v_{12,4}\left(F_{1}\right) \leq v_{12,3}\left(F_{1}\right)
$$

Since $\alpha_{1}+\alpha_{12} \leq 0.6$, we must have
$w_{F_{1}}(A) \geq\left(0.6 v_{12,1}\left(F_{1}\right)+0.4 v_{12,2}\left(F_{1}\right)\right)|A| \geq(0.6(1.15)+0.4(1.3525))|A|>1.23|A|$.
Case 2: $0.6 \leq \alpha_{1}+\alpha_{12} \leq 0.7$.
Here we use the function $F_{2}(x)$. A close look at Case 1 shows that if $v_{12,1}\left(F_{2}\right)$ is one of the two smallest values in the set $\left\{v_{12, j}\left(F_{2}\right): 1 \leq j \leq 6\right\}$, then essentially the same estimate applies. The two smallest values are $v_{12,1}\left(F_{2}\right) \geq 1.2$ and $v_{12,4}\left(F_{2}\right) \geq$ 1.2834. Since $0.6 \leq \alpha_{1}+\alpha_{12} \leq 0.7$,

$$
w_{F_{2}}(A) \geq(0.7(1.2)+0.3(1.2834))|A|>1.225|A|
$$

Case 3: $0.7 \leq \alpha_{1}+\alpha_{12} \leq 0.8$.
Here we use the function $F_{3}(x)$. In this range of $\alpha_{1}+\alpha_{12}$, our estimate behaves a bit differently. Lower estimates on the $v_{12, j}\left(F_{3}\right)$ are

$$
\begin{gathered}
v_{12,1}\left(F_{3}\right) \geq 1.25, \quad v_{12,2}\left(F_{3}\right) \geq 1.299, \quad v_{12,3}\left(F_{3}\right) \geq 1.199 \\
v_{12,4}\left(F_{3}\right) \geq 1.1595, \quad v_{12,5}\left(F_{3}\right) \geq 1.1595, \quad \text { and } \quad v_{12,6}\left(F_{3}\right) \geq 1.18
\end{gathered}
$$

In this case, $w_{F_{3}}(A)$ will be minimized when $\alpha_{1}+\alpha_{12}$ is as small as possible. In the previous two cases, $w_{F_{i}}(A)$ was minimized when $\alpha_{1}+\alpha_{12}$ was as large as possible. We conclude that

$$
w_{F_{3}}(A) \geq(0.7(1.25)+0.3(1.1595))|A|>1.2228|A|
$$

Case 4: $0.8 \leq \alpha_{1}+\alpha_{12} \leq 0.9$.
In this case we use the function $F_{4}(x)$. Lower estimates on the $v_{12, j}\left(F_{4}\right)$ are

$$
\begin{gathered}
v_{12,1}\left(F_{4}\right) \geq 1.3909, \quad v_{12,2}\left(F_{4}\right) \geq 1.1192, \quad v_{12,3}\left(F_{4}\right) \geq 0.8392 \\
v_{12,4}\left(F_{4}\right) \geq 0.7276, \quad v_{12,5}\left(F_{4}\right) \geq 0.7264, \quad \text { and } \quad v_{12,6}\left(F_{4}\right) \geq 0.7621
\end{gathered}
$$

We have

$$
w_{F_{4}}(A) \geq(0.8(1.3909)+0.2(0.7264))|A|>1.25|A|
$$

Case 5: $0.9 \leq \alpha_{1}+\alpha_{12} \leq 1$.
Lower estimates on the $v_{12, j}\left(F_{5}\right)$ are

$$
\begin{gathered}
v_{12,1}\left(F_{5}\right) \geq 1.73, \quad v_{12,2}\left(F_{5}\right) \geq 1, \quad v_{12,3}\left(F_{5}\right) \geq-.01 \\
v_{12,4}\left(F_{5}\right) \geq-1, \quad v_{12,5}\left(F_{5}\right) \geq-1.8, \quad \text { and } \quad v_{12,6}\left(F_{5}\right) \geq-2 .
\end{gathered}
$$

As in Cases 3 and $4, w_{F_{5}}(A)$ is minimized when $\alpha_{1}+\alpha_{12}$ is as small as possible. Hence,

$$
w_{F_{5}}(A) \geq(0.9(1.73)+0.1(-2))|A|>1.35|A| .
$$

In all five cases, we can find a function $F_{i} \in \mathcal{F}$ such that $w_{F_{i}}(A)>1.2228|A|$. This completes the proof of Theorem 2.

4. Concluding Remarks

Although it is an improvement of $\psi(N, 6,3) \geq 1.2$, Theorem 2 is not enough to prove part (ii) of Theorem 1. The improvement on $B_{3}[g]$-sets uses the $B_{3}[g]$ property to increase the 1.2 to 1.2455 which exceeds the 1.2228 provided by Theorem 2. Similar arguments can be done for $B_{h}[g]$-sets with $h>3$, but the improvements in the results of Table 1 are minimal. Aside from $B_{3}[g]$-sets, the bounds in Table 1 come from lower bounds on $\psi(N, h, h)$ together with Lemma 1.

The function $\psi(N, K, h)$ is relevant to an inequality of Cilleruelo. Let A be a finite set of positive integers. For an integer $h \geq 2$, let

$$
r_{h}(n)=\left|\left\{\left(a_{1}, \ldots, a_{h}\right) \in A^{h}: a_{1}+\cdots+a_{h}=n\right\}\right| \text { and } R_{h}(m)=\sum_{n=1}^{m} r_{h}(m)
$$

Generalizing the argument of [3], Cilleruelo proved the following result.
Theorem 3 (Cilleruelo [1]). Let $A \subseteq[N], h \geq 2$ be an integer, and μ be any real number. For any positive integer $H=o(N)$,

$$
\sum_{n=h}^{h N+H}\left|R_{h}(n)-R_{h}(n-H)-\mu\right| \geq\left(L_{h}+o(1)\right) H|A|^{h}
$$

where $L_{2}=\frac{4}{(\pi+2)^{2}}$ and $L_{h}=\cos ^{h}(\pi / h)$ for $h>2$.
By slightly modifying the argument in [1] that is used to prove Theorem 3, it is easy to prove the next proposition.

Proposition 2. Let $A \subseteq[N], h \geq 2$ be an integer, and μ be a real number. For any positive integers $H=o(N)$ and $K \leq \frac{N}{H}$,

$$
\sum_{n=h}^{h N+H}\left|R_{h}(n)-R_{h}(n-H)-\mu\right| \geq\left(\psi(N, K, h)^{h} L_{h}+o(1)\right) H|A|^{h}
$$

where $L_{2}=\frac{4}{(\pi+2)^{2}}$ and $L_{h}=\cos ^{h}(\pi / h)$ for $h>2$.

For instance, Theorem 2 gives

$$
\sum_{n=3}^{3 N+H}\left|R_{3}(n)-R_{3}(n-H)-\mu\right| \geq\left(1.2228^{3} L_{3}+o(1)\right) H|A|^{3}
$$

Acknowledgment. The author would like to thank Mike Tait for helpful discussions.

References

[1] J. Cilleruelo, New upper bounds for finite B_{h} sequences, Adv. Math. 159 (2001), no. 1, 1-17.
[2] J. Cilleruelo, J. Jiménez-Urroz, $B_{h}[g]$ sequences, Mathematika 47 (2000), no. 1-2, 109-115
[3] J. Cilleruelo, I. Ruzsa, C. Trujillo, Upper and lower bounds for finite $B_{h}[g]$ sequences, J. Number Theory 97 (2002), no. 1, 26-34.
[4] B. Green, The number of squares and $B_{h}[g]$ sets, Acta Arith. 100 (2001), no. 4, 365-390.
[5] K. O'Bryant, A complete annotated bibliography of work related to Sidon sequences, Electron. J. Combin. DS 11 (2004).
[6] A. Plagne, Recent progress on finite $B_{h}[g]$ sets, Proceedings of the Thirty-second Southeastern Internationl Conference on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 2001), Congr. Numer. 153 (2001), 49-64.
[7] G. Yu, A note on $B_{2}[G]$ sets, Integers 8 (2008), A58, 5pp.

[^0]: ${ }^{1}$ This work was supported by a grant from the Simons Foundation (\#359419).

