

ON THE NUMBER OF SOLUTIONS OF A DIOPHANTINE EQUATION OVER A FINITE FIELD

Norichika Matsuki 3-9-34, Fujisaki, Narashino-shi, Chiba, Japan n-matsuki@lime.plala.or.jp

Received: 4/1/15, Revised: 6/4/16, Accepted: 11/20/16, Published: 11/23/16

Abstract

We show that the number of distinct solutions of a Diophantine equation over a finite field is represented by the order and rank of a certain matrix derived from the coefficients.

1. Introduction

Let p be a prime, r be a positive integer, and \mathbb{F}_q be a finite field with $q = p^r$ elements. For $f(x) = a_0 x^{p-2} + a_1 x^{p-3} + \cdots + a_{p-2} \in \mathbb{F}_p[x]$, define

	(a_0	a_1		a_{p-2}	
A =		a_1	a_2	• • •	a_0	
						1.
		a_{p-2}	a_0		a_{p-3}	

Kronecker (cf. [3, Chapter VIII, page 226]) showed that the number of nonzero solutions to f(x) = 0 equals p - 1 – rank A. In this paper we extend Kronecker's result to Diophantine equations in several variables over \mathbb{F}_q .

First we give some notation and definitions. We denote by I_n the ideal $(x_1^q - x_1, \ldots, x_n^q - x_n)$ of $\mathbb{F}_q[x_1, \ldots, x_n]$. For $f \in \mathbb{F}_q[x_1, \ldots, x_n]$, we define \overline{f} as the right-hand side of the congruence

$$f \equiv \sum_{0 \le r_1, \dots, r_n \le q-1} a_{r_1 \cdots r_n} x_1^{r_1} \cdots x_n^{r_n} \pmod{I_n}.$$

Then it holds that $f(b_1, \ldots, b_n) = \overline{f}(b_1, \ldots, b_n)$ for any $b_1, \ldots, b_n \in \mathbb{F}_q$. Here we denote by $m_i = m_i(x_1, \ldots, x_n)$ the *i*-th monomial in the following chain of monomials, ordered in the graded lexicographic order

$$1 \prec x_1 \prec \cdots \prec x_n \prec x_1 x_2 \prec x_1 x_3 \prec \cdots \prec x_{n-1} x_n \prec \cdots \prec x_1^{q-1} \cdots x_n^{q-1}$$

#A84

and $c_i(\overline{f})$ by the coefficient of the monomial m_i in \overline{f} . Note that $c_i(\overline{f}) = 0$ if \overline{f} does not contain the monomial m_i . Then we define $K(\overline{f}) = (K(\overline{f})_{ij})$ as the $q^n \times q^n$ matrix whose (i, j) entry is $c_j(\overline{m_i f})$, namely,

$$K(\overline{f})_{ij} = c_j(\overline{m_i f}) = \sum_{\substack{t \in \{1, \dots, q^n\} \\ \text{s.t. } m_i m_t \equiv m_j \pmod{I_n}}} c_t(\overline{f}).$$

2. The Result

We shall introduce the basis to diagonalize $K(\overline{f})$ and show the spectrum of $K(\overline{f})$ coincides with the value set of f in the similar way as [4]. For our purpose, we need the following three lemmas. Although the first lemma is well-known, we give a proof for the sake of completeness.

Lemma 1. The following statements are equivalent:

- (i) $f(b_1,...,b_n) = 0$ for all $(b_1,...,b_n) \in \mathbb{F}_q^n$.
- (ii) $\overline{f} = 0$.

Proof. (ii) \Rightarrow (i) is obvious. For (i) \Rightarrow (ii), the proof given here is an adaptation of the proof of Lemma 2.1 in [1]. We use induction on n. It is obvious for n = 1.

Suppose that it is true for n = k and that $f(b_1, \ldots, b_{k+1}) = 0$ for all $(b_1, \ldots, b_{k+1}) \in \mathbb{F}_q^{k+1}$. Write

$$\overline{f}(x_{k+1}) = \overline{a_{q-1}}x_{k+1}^{q-1} + \dots + \overline{a_1}x_{k+1} + \overline{a_0},$$

where $a_0, \ldots, a_{q-1} \in \mathbb{F}_q[x_1, \ldots, x_k]$. For each fixed $(b_1, \ldots, b_k) \in \mathbb{F}_q^k$, it holds that $\overline{f}(b_{k+1}) = 0$ for all $b_{k+1} \in \mathbb{F}_q$. Hence $\overline{a_0}(b_1, \ldots, b_k) = \cdots = \overline{a_{q-1}}(b_1, \ldots, b_k) = 0$ for all $(b_1, \ldots, b_k) \in \mathbb{F}_q^k$. By the assumption, we have $\overline{a_0} = \cdots = \overline{a_{q-1}} = 0$. Thus it is also true for n = k + 1.

Lemma 2. Let β be a generator of $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$ and let

$$w_{i} = (d_{i1}, \dots, d_{iq^{n}})$$

$$= \begin{cases} (1, \dots, 1) & \text{if } i = 1, \\ (\underbrace{0, \dots, 0}_{q^{i-2}}, \underbrace{\beta, \dots, \beta}_{q^{i-2}}, \dots, \underbrace{\beta^{q-1}, \dots, \beta^{q-1}}_{q^{i-2}}, \underbrace{0, \dots, 0}_{q^{i-2}}, \underbrace{\beta, \dots, \beta}_{q^{i-2}}, \dots) \\ (\underbrace{0, \dots, 0}_{q^{n-1}}, \underbrace{\beta, \dots, \beta}_{q^{n-1}}, \dots, \underbrace{\beta^{q-1}, \dots, \beta^{q-1}}_{q^{n-1}}) & \text{if } i = n+1, \\ (\underbrace{m_{i}(d_{21}, \dots, d_{n+11}), \dots, m_{i}(d_{2q^{n}}, \dots, d_{n+1q^{n}}))}_{q^{n-1}} & \text{if } n+2 \le i \le q^{n}. \end{cases}$$

Denote by v_j the *j*-th column vector of the matrix whose rows are w_1, \ldots, w_{q^n} . Then v_1, \ldots, v_{q^n} are linearly independent over \mathbb{F}_q .

Proof. Suppose that in \mathbb{F}_q^n , we have $a_1w_1 + \cdots + a_{q^n}w_{q^n} = 0$, where $a_1, \ldots, a_{q^n} \in \mathbb{F}_q$. In other words,

$$a_1 + a_2 d_{2j} + \dots + a_{q^n} d_{q^n j} = 0$$
, for all $1 \le j \le q^n$.

By definition,

$$d_{ij} = m_i(d_{2j}, \dots, d_{n+1j}), \text{ for all } 1 \le i, j \le q^n,$$

so that the polynomial function defined by

$$g(x_1,\ldots,x_n) = \sum_{i=1}^{q^n} a_i m_i(x_1,\ldots,x_n)$$

satisfies

$$g(d_{2j}, \ldots, d_{n+1j}) = 0$$
, for all $1 \le j \le q^n$.

Since, by construction, we have $\{(d_{2j}, \ldots, d_{n+1j}) : 1 \leq j \leq q^n\} = \mathbb{F}_q^n$, it follows from Lemma 1 that $a_1 = \cdots = a_{q^n} = 0$. Hence w_1, \ldots, w_{q^n} are linearly independent over \mathbb{F}_q and so are v_1, \ldots, v_{q^n} .

Lemma 3. $K(\overline{f})v_j = f(d_{2j}, ..., d_{n+1j})v_j$.

Proof. Since

$$f(d_{2j}, \dots, d_{n+1j})d_{ij} = f(d_{2j}, \dots, d_{n+1j})m_i(d_{2j}, \dots, d_{n+1j})$$
$$= \overline{m_i f}(d_{2j}, \dots, d_{n+1j}) = \sum_{k=1}^{q^n} c_k(\overline{m_i f})d_{kj},$$

we have

$$(K(\overline{f})_{i1},\ldots,K(\overline{f})_{iq^n})v_j = (c_1(\overline{m_if}),\ldots,c_{q^n}(\overline{m_if}))v_j$$
$$= \sum_{k=1}^{q^n} c_k(\overline{m_if})d_{kj} = f(d_{2j},\ldots,d_{n+1j})d_{ij}.$$

Hence the lemma follows.

The formula for the number of solutions is derived immediately from these lemmas.

Theorem 4. Let n(f) be the number of distinct solutions of $f \in \mathbb{F}_q[x_1, \ldots, x_n]$. Then $n(f) = q^n - \operatorname{rank} K(\overline{f})$.

Proof. Let $F : \mathbb{F}_q^{q^n} \to \mathbb{F}_q^{q^n}$ be the linear map defined by $K(\overline{f})$. From Lemmas 2 and 3, we see that dim(ker F) = n(f). By the rank-nullity theorem (e.g., [2, Chapter II, page 298]), it follows that $q^n = \operatorname{rank} K(\overline{f}) + n(f)$.

Acknowledgement. The author is grateful to an anonymous referee whose suggestions improved the paper significantly.

References

- [1] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999), 7–29.
- [2] N. Bourbaki, Algebra I, Springer-Verlag, Berlin, 1989.
- [3] L. E. Dickson, History of the Theory of Numbers, Dover Publications, New York, 2005.
- [4] N. Matsuki, Counting problems and ranks of matrices, *Linear Algebra Appl.* 465 (2015), 104–106.