ON THE NUMBER OF SOLUTIONS OF A DIOPHANTINE EQUATION OVER A FINITE FIELD

Norichika Matsuki
3-9-34, Fujisaki, Narashino-shi, Chiba, Japan
n-matsuki@lime.plala.or.jp

Received: 4/1/15, Revised: 6/4/16, Accepted: 11/20/16, Published: 11/23/16

Abstract

We show that the number of distinct solutions of a Diophantine equation over a finite field is represented by the order and rank of a certain matrix derived from the coefficients.

1. Introduction

Let p be a prime, r be a positive integer, and \mathbb{F}_{q} be a finite field with $q=p^{r}$ elements. For $f(x)=a_{0} x^{p-2}+a_{1} x^{p-3}+\cdots+a_{p-2} \in \mathbb{F}_{p}[x]$, define

$$
A=\left(\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{p-2} \\
a_{1} & a_{2} & \ldots & a_{0} \\
\ldots \ldots & \ldots & \ldots & \ldots \\
a_{p-2} & a_{0} & \ldots & a_{p-3}
\end{array}\right)
$$

Kronecker (cf. [3, Chapter VIII, page 226]) showed that the number of nonzero solutions to $f(x)=0$ equals $p-1-\operatorname{rank} A$. In this paper we extend Kronecker's result to Diophantine equations in several variables over \mathbb{F}_{q}.

First we give some notation and definitions. We denote by I_{n} the ideal $\left(x_{1}{ }^{q}-\right.$ $\left.x_{1}, \ldots, x_{n}{ }^{q}-x_{n}\right)$ of $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$. For $f \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$, we define \bar{f} as the right-hand side of the congruence

$$
f \equiv \sum_{0 \leq r_{1}, \ldots, r_{n} \leq q-1} a_{r_{1} \cdots r_{n}} x_{1}^{r_{1}} \cdots x_{n}^{r_{n}} \quad\left(\bmod I_{n}\right) .
$$

Then it holds that $f\left(b_{1}, \ldots, b_{n}\right)=\bar{f}\left(b_{1}, \ldots, b_{n}\right)$ for any $b_{1}, \ldots, b_{n} \in \mathbb{F}_{q}$. Here we denote by $m_{i}=m_{i}\left(x_{1}, \ldots, x_{n}\right)$ the i-th monomial in the following chain of monomials, ordered in the graded lexicographic order

$$
1 \prec x_{1} \prec \cdots \prec x_{n} \prec x_{1} x_{2} \prec x_{1} x_{3} \prec \cdots \prec x_{n-1} x_{n} \prec \cdots \prec x_{1}{ }^{q-1} \cdots x_{n}{ }^{q-1}
$$

and $c_{i}(\bar{f})$ by the coefficient of the monomial m_{i} in \bar{f}. Note that $c_{i}(\bar{f})=0$ if \bar{f} does not contain the monomial m_{i}. Then we define $K(\bar{f})=\left(K(\bar{f})_{i j}\right)$ as the $q^{n} \times q^{n}$ matrix whose (i, j) entry is $c_{j}\left(\overline{m_{i} f}\right)$, namely,

$$
K(\bar{f})_{i j}=c_{j}\left(\overline{m_{i} f}\right)=\sum_{\substack{t \in\left\{1, \ldots, q^{n}\right\} \\ \text { s.t. } m_{i} m_{t} \equiv m_{j}}} c_{t}(\bar{f}) .
$$

2. The Result

We shall introduce the basis to diagonalize $K(\bar{f})$ and show the spectrum of $K(\bar{f})$ coincides with the value set of f in the similar way as [4]. For our purpose, we need the following three lemmas. Although the first lemma is well-known, we give a proof for the sake of completeness.

Lemma 1. The following statements are equivalent:
(i) $f\left(b_{1}, \ldots, b_{n}\right)=0$ for all $\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{F}_{q}{ }^{n}$.
(ii) $\bar{f}=0$.

Proof. (ii) \Rightarrow (i) is obvious. For (i) \Rightarrow (ii), the proof given here is an adaptation of the proof of Lemma 2.1 in [1]. We use induction on n. It is obvious for $n=1$.

Suppose that it is true for $n=k$ and that $f\left(b_{1}, \ldots, b_{k+1}\right)=0$ for all $\left(b_{1}, \ldots, b_{k+1}\right) \in$ $\mathbb{F}_{q}{ }^{k+1}$. Write

$$
\bar{f}\left(x_{k+1}\right)=\overline{a_{q-1}} x_{k+1}{ }^{q-1}+\cdots+\overline{a_{1}} x_{k+1}+\overline{a_{0}},
$$

where $a_{0}, \ldots, a_{q-1} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k}\right]$. For each fixed $\left(b_{1}, \ldots, b_{k}\right) \in \mathbb{F}_{q}{ }^{k}$, it holds that $\bar{f}\left(b_{k+1}\right)=0$ for all $b_{k+1} \in \mathbb{F}_{q}$. Hence $\overline{a_{0}}\left(b_{1}, \ldots, b_{k}\right)=\cdots=\overline{a_{q-1}}\left(b_{1}, \ldots, b_{k}\right)=0$ for all $\left(b_{1}, \ldots, b_{k}\right) \in \mathbb{F}_{q}{ }^{k}$. By the assumption, we have $\overline{a_{0}}=\cdots=\overline{a_{q-1}}=0$. Thus it is also true for $n=k+1$.

Lemma 2. Let β be a generator of $\mathbb{F}_{q}{ }^{*}=\mathbb{F}_{q} \backslash\{0\}$ and let

$$
\begin{aligned}
w_{i} & =\left(d_{i 1}, \ldots, d_{i q^{n}}\right) \\
& = \begin{cases}\begin{array}{ll}
(\underbrace{1, \ldots, 1}_{q^{i-2}}) & \underbrace{0, \ldots, 0}_{q^{i-2}}, \ldots, \beta
\end{array}, \ldots, \underbrace{\beta^{q-1}, \ldots, \beta^{q-1}}_{q^{i-2}}, \underbrace{0, \ldots, 0}_{q^{i-2}}, \underbrace{\beta, \ldots, \beta}_{q^{i-2}}, \ldots) & \text { if } i \leq i \leq n \\
(\underbrace{0, \ldots, 0}_{q^{n-1}}, \underbrace{\beta, \ldots, \beta}_{q^{n-1}}, \ldots, \underbrace{\beta^{q-1}, \ldots, \beta^{q-1}}_{q^{n-1}}) & \text { if } i=n+1 \\
\left(m_{i}\left(d_{21}, \ldots, d_{n+11}\right), \ldots, m_{i}\left(d_{2 q^{n}}, \ldots, d_{n+1 q^{n}}\right)\right) & \text { if } n+2 \leq i \leq q^{n}\end{cases}
\end{aligned}
$$

Denote by v_{j} the j-th column vector of the matrix whose rows are $w_{1}, \ldots, w_{q^{n}}$. Then $v_{1}, \ldots, v_{q^{n}}$ are linearly independent over \mathbb{F}_{q}.

Proof. Suppose that in $\mathbb{F}_{q}{ }^{n}$, we have $a_{1} w_{1}+\cdots+a_{q^{n}} w_{q^{n}}=0$, where $a_{1}, \ldots, a_{q^{n}} \in \mathbb{F}_{q}$. In other words,

$$
a_{1}+a_{2} d_{2 j}+\cdots+a_{q^{n}} d_{q^{n} j}=0, \quad \text { for all } 1 \leq j \leq q^{n}
$$

By definition,

$$
d_{i j}=m_{i}\left(d_{2 j}, \ldots, d_{n+1 j}\right), \quad \text { for all } 1 \leq i, j \leq q^{n}
$$

so that the polynomial function defined by

$$
g\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{q^{n}} a_{i} m_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

satisfies

$$
g\left(d_{2 j}, \ldots, d_{n+1 j}\right)=0, \quad \text { for all } 1 \leq j \leq q^{n}
$$

Since, by construction, we have $\left\{\left(d_{2 j}, \ldots, d_{n+1 j}\right): 1 \leq j \leq q^{n}\right\}=\mathbb{F}_{q}{ }^{n}$, it follows from Lemma 1 that $a_{1}=\cdots=a_{q^{n}}=0$. Hence $w_{1}, \ldots, w_{q^{n}}$ are linearly independent over \mathbb{F}_{q} and so are $v_{1}, \ldots, v_{q^{n}}$.

Lemma 3. $K(\bar{f}) v_{j}=f\left(d_{2 j}, \ldots, d_{n+1 j}\right) v_{j}$.
Proof. Since

$$
\begin{aligned}
f\left(d_{2 j}, \ldots, d_{n+1 j}\right) d_{i j} & =f\left(d_{2 j}, \ldots, d_{n+1 j}\right) m_{i}\left(d_{2 j}, \ldots, d_{n+1 j}\right) \\
& =\overline{m_{i} f}\left(d_{2 j}, \ldots, d_{n+1 j}\right)=\sum_{k=1}^{q^{n}} c_{k}\left(\overline{m_{i} f}\right) d_{k j}
\end{aligned}
$$

we have

$$
\begin{aligned}
\left(K(\bar{f})_{i 1}, \ldots, K(\bar{f})_{i q^{n}}\right) v_{j} & =\left(c_{1}\left(\overline{m_{i} f}\right), \ldots, c_{q^{n}}\left(\overline{m_{i} f}\right)\right) v_{j} \\
& =\sum_{k=1}^{q^{n}} c_{k}\left(\overline{m_{i} f}\right) d_{k j}=f\left(d_{2 j}, \ldots, d_{n+1}\right) d_{i j} .
\end{aligned}
$$

Hence the lemma follows.
The formula for the number of solutions is derived immediately from these lemmas.

Theorem 4. Let $n(f)$ be the number of distinct solutions of $f \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$. Then $n(f)=q^{n}-\operatorname{rank} K(\bar{f})$.

Proof. Let $F: \mathbb{F}_{q}^{q^{n}} \rightarrow \mathbb{F}_{q} q^{n}$ be the linear map defined by $K(\bar{f})$. From Lemmas 2 and 3 , we see that $\operatorname{dim}(\operatorname{ker} F)=n(f)$. By the rank-nullity theorem (e.g., [2, Chapter II, page 298]), it follows that $q^{n}=\operatorname{rank} K(\bar{f})+n(f)$.

Acknowledgement. The author is grateful to an anonymous referee whose suggestions improved the paper significantly.

References

[1] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999), 7-29.
[2] N. Bourbaki, Algebra I, Springer-Verlag, Berlin, 1989.
[3] L. E. Dickson, History of the Theory of Numbers, Dover Publications, New York, 2005.
[4] N. Matsuki, Counting problems and ranks of matrices, Linear Algebra Appl. 465 (2015), 104-106.

