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Abstract
We use the idea of index invariance under the Franklin mapping to prove higher
power generalizations of two results discovered by M. V. Subbarao. We then apply
similar ideas to a two-variable generalization of the Rogers-Ramanujan identities
due to G. E. Andrews.

1. Introduction

In 1970, M. V. Subbarao published a paper [5] providing combinatorial proofs of
the following two generalizations of Euler’s celebrated pentagonal number theorem:
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ak(�aqk)(aq; q)k�1 =
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k=1

(�1)k
�
a3k�1qk(3k�1)/2 + a3kqk(3k+1)/2

�
; (1.1)
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=
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(�1)k
�
a3k�1qk(3k�1)/2 + a3kqk(3k+1)/2

�
, (1.2)

where (a; q)n is the q-shifted factorial defined as follows for n � 0:

(a; q)n =
n�1Y
k=0

�
1� aqk

�
. (1.3)

Both L. J. Rogers and N. J. Fine had proven before Subbarao that these three series
are equal [1]. However, these proofs are both analytic. Subbarao’s fundamental
observation was that the Franklin mapping leaves the sum of the largest part and
number of parts in the Ferrers diagram unchanged. (We refer the reader to [4]
for complete details of Franklin’s proof of the pentagonal number theorem). Then
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upon noticing that the exponent of a in (1.1) records this quantity, which we will
henceforth refer to as the index, we immediately see that the left-hand side equalsX

k,r�1

�
Se(k, r)� So(k, r)

�
arqk. (1.4)

Following Subbarao, Se(n,m)
�
So(n,m)

�
denotes the number of partitions of n with

index m into an even (odd) number of parts. After calculating the index for certain
partitions of the pentagonal numbers for which the mapping fails, the desired result
quickly follows.

At the end of his paper, Subbarao noted that invariance of the index under the
Franklin mapping implies the invariance of real-valued functions of the index (such
as the square of the index). He proceeded to ask whether or not one could obtain
identities like (1.1) and (1.2) by taking advantage of the invariance of this more
general quantity. We answer this question in the a�rmative by rewriting the left-
hand sides of (1.1) and (1.2), and using Franklin’s combinatorial methods to deduce
the following pair of identities:
X

r,k�1

(�1)rqr(r�1)/2+kak+r
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r � 1

�
=
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�
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2 + a3kq

k(3k+1)
2

�
; (1.5)
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(�1)kqrk+k(k�1)/2+j�1a2k+r+j�2
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j � 1

�
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(�1)k
�
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�
. (1.6)

Here the an are indeterminates and the
⇥n
k

⇤
are q-binomial coe�cients defined as

n

k

�
=


n

k

�
q

=
(q; q)n

(q; q)k(q; q)n�k
(1.7)

for 0  k  n, and 0 otherwise. Equation (1.6) is a rewriting of (1.5) so that it is
revealed as a companion to (1.2). Equations (1.1) and (1.2) follow from (1.5) and
(1.6) upon setting an = an and invoking the q-binomial theorem.

We note in passing an interesting identity that arises upon setting an = n in (1.5)
and using Zagier’s identity [7, Theorem 2] to rewrite the subsequent right-hand side:
X

r,k�1

(�1)rqr(r�1)/2+k(k + r)

k � 1
r � 1

�

=
1X

n=0

[(q; q)1 � (q; q)n]� (q; q)1
1X

k=1

qk

1� qk
. (1.8)

Zagier introduced the series

F1(q) :=
1X

n=1

n(q; q)n�1q
n, (1.9)
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which he showed is equal [7] to

F2(q) :=
1X

n=0

[(q; q)n � (q; q)1]. (1.10)

As a power series in ⇣ � q for any root of unity ⇣, F1(q) equals the Kontsevich
function

F (q) :=
1X

n=0

(q)n, (1.11)

and Zagier used this fact to describe the expansion of F (q) for q near roots of unity.
(Indeed, F (q) only makes sense as a complex function of q at roots of unity, for the
series does not converge anywhere else in C). F (q) was further studied in [8] as an
example of a quantum modular form.

The key to proving (1.5) and (1.6) is nothing more than a few simple combina-
torial observations. However, their relevance lies in the fact that similar techniques
allow us to generalize Andrews’ analytic version of Schur’s combinatorial proof of
the Rogers-Ramanujan identities [2]. Thus the second objective of this paper is to
prove the following two theorems, where the Dn are the classical Schur polynomials
which admit simple closed form expressions as given in [2]:

Theorem 1. If D�1 = D0 = 1, Dn = Dn�1 + qnDn�2 for n > 0 and yn is a
sequence of indeterminates, then
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k,n�1

(�1)kq(
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k � 2

�◆
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�
. (1.12)

Theorem 2. If D⇤
�1 = 0, D⇤

0 = 1, D⇤
n = D⇤

n�1 + qnD⇤
n�2 for n > 0 and yn is a

sequence of indeterminates, then

X
k,n�1

(�1)kq(
k
2)+2nDn�2 yk+2n

✓
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k � 1

�
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n

k � 2

�◆

=
1X

m=1

(�1)m
�
y5mqm(5m+3))/2 � y5m+2q

(m+1)(5m+1)/2
�
. (1.13)

In Section 2 we will deduce (1.5) and (1.6) using Franklin’s combinatorial meth-
ods and prove these results using recurrence-based arguments in Section 3. In Sec-
tion 4 we will prove Theorems 1 and 2 and obtain the Rogers-Ramanujan identities
as special cases. In Section 5 we will make some concluding remarks.
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2. Combinatorial Arguments for (1.5) and (1.6)

We begin by studying the summand on the left-hand side of (1.1). For a particular
k, the coe�cient of qn is a polynomial in a where each term is of the form (�1)rak+r.
Here, r designates the number of parts in a particular partition of n. Let us now
fix a particular r = r0 and extract, from each polynomial coe�cient of each qn that
arises in the summand, the terms of the form (�1)r0ak+r0 . If we do this for each r
from 1 to k, then we may reformulate the summand as

kX
r=1

pk,r(q)(�1)rak+r, (2.1)

where pk,r(q) is the generating function for partitions into r distinct parts with
largest part exactly k. Hence pk,r(q) is simply the coe�cient of zr in

zqk(�zq; q)k�1 =
k�1X
r=0


k � 1

r

�
zr+1qr(r+1)/2+k. (2.2)

By the q-binomial theorem [3, Eq. (3.3.6)],

(z; q)N =
NX

j=0


N

j

�
(�1)jzjqj(j�1)/2, (2.3)

this coe�cient is found to be 
k � 1
r � 1

�
q(

r
2)+k. (2.4)

Now, because a is a parameter that explicitly records the index in this generating
function, we may invoke the invariance of the square of the index under the Franklin
mapping to see that (1.5) holds in the case an = an2

. The argument in fact reveals
that (1.5) holds generally for an = anu

, where u is any real number, and so we
may replace ak+r in (2.1) with any real-valued function of k + r, from which (1.5)
easily follows. Note that the combinatorial argument is essential in passing from
ak+r to ak+r. As mentioned before, (1.5) is trivially true in the case ak+r = ak+r,
but without knowing a priori that the identity resulting from comparing coe�cients
of an holds (which we analytically deduce in the next section), one cannot say
immediately that the statement is true for general an.

For (1.6), we first prove the following lemma. The argument is similar to the one
o↵ered by Subbarao for (1.2), using the same notation and paraphrasing in a little
more detail.

Lemma 1. For |a|, |q| < 1,

X
r,k�1

(�1)rak+2r�1qrk+(r
2)

(aq; q)r�1
=

1X
k=1

(�1)k
�
a3k�1qk(3k�1)/2 + a3kqk(3k+1)/2

�
. (2.5)
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Proof. We note that a typical term in the summand of the left-hand side of (2.4)
is of the form u(n)qn, where

u(n)qn = (�1)rak+2r�1qrk+(r
2)(aq)b1(aq2)b2 · · · (aqr�1)br�1 (2.6)

with bi � 1. Clearly the exponent on a is k + 2r� 1 + b1 + · · · + br�1, and n equals

rk +
✓

r

2

◆
+

r�1X
i=1

ibi. (2.7)

We rewrite (2.7) as a sum of r distinct positive integers c1 + · · · + cr, with cj =
k + j + br�1 + · · · + br�j for 1  j  r � 1 and cr = k. The desired result then
follows upon invoking the Franklin mapping.

Alternatively, one may note that the sum indexed by k is a geometric series whose
sum equals aqr/(1� aqr). Thus the left-hand side of (2.4) equals the left-hand side
of (1.2), which in turn equals the right-hand side of (2.4). Hence the lemma is
proven.

The q-binomial theorem in the following form [3, Eq. (3.3.7)]:

1
(z; q)N

=
1X

j=0


N + j � 1

j

�
zj (2.8)

applied to 1
(aq;q)r�1

then results in (1.6), after employing the same logic used to
prove (1.5).

3. Analytic Proofs of (1.5) and (1.6)

The fact that the a terms are isolated on either side of (1.5) and (1.6) suggests
that we can prove the identities by comparing coe�cients. We comment that our
arguments here are alternatives to the classical proofs of (1.1) and (1.2), which
employ the Rogers-Fine identity. After shifting k ! k � r in the left-hand side of
(1.5) and interchanging the order of summation, we obtain the following identity
upon comparing coe�cients:

qk�1
k�1X
r=1

(�1)rqr(r�3)/2+1


k � r � 1

r � 1

�
=

8><
>:

(�1)kq
k(3k+1)

2 if k ⌘ 0 (mod 3),
0 if k ⌘ 1 (mod 3),
(�1)kq

k(3k�1)
2 if k ⌘ �1 (mod 3).

(3.1)

Dividing both sides by qk�1, shifting r ! r + 1, and substituting k � 2 for n, (3.1)
becomes

nX
r=0

(�1)rqr(r�1)/2


n� r

r

�
=

8><
>:

(�1)kq
k(3k�1)

2 if n = 3k,

(�1)kq
k(3k+1)

2 if n = 3k + 1,
0 if n = 3k + 2.

(3.2)
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Let S(n) denote the left-hand side of (3.2), R(n) the right-hand side, and

T (n) =
nX

r=0

(�1)rqr(r+1)/2


n� r

r

�
. (3.3)

Then

T (n)� T (n� 1) =
nX

r=0

(�1)rqr(r+1)/2

✓
n� r

r

�
�


n� r � 1

r

�◆

=
n�1X
r=0

(�1)rqr(r+1)/2+n�2r


n� r � 1

r � 1

�

= �qn�1
n�2X
r=0

(�1)rqr(r�1)/2


n� r � 2

r

�

= �qn�1S(n� 2). (3.4)

Similarly we can prove T (n � 1) � T (n � 2) = S(n), which implies that S(n) =
�qn�2S(n�3). A quick check that R(n) satisfies this same recurrence proves (1.5).
Warnaar presents a di↵erent proof of (3.2) in [6].

In (1.6), we first shift j ! j� 2r +2 and interchange the j and r sums to obtain
X

k,j,r�1

(�1)rqkr+r(r�1)/2+j�2r+1ak+j


j � r � 1

r � 2

�
. (3.5)

Now we shift j ! j � k and interchange the j and k sums to get

1X
j=1

aj

j�1X
k=1

b(j�k+1)/2cX
r=1

(�1)rqkr+r(r�1)/2+j�k�2r+1


j � k � r � 1

r � 2

�
. (3.6)

We study the inner two sums:

j�1X
k=1

b(j�k+1)/2cX
r=1

(�1)rqkr+r(r�1)/2+j�k�2r+1


j � k � r � 1

r � 2

�

=
bj/2cX
r=1

(�1)rqr(r�1)/2+(j�2r+1)r
j�2rX
k=0

qk(1�r)


k + r � 2

k

�

=
j�1X
r=1

(�1)rqr(r�1)/2+j�r


j � r � 1

r � 1

�
, (3.7)

where the first step involves an interchange of sums followed by the substitution
k ! j � 2r + 1� k, and the second uses the identity

KX
k=0

qkm


k �m� 1

k

�
= qKm


K + m

K

�
, (3.8)
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which can be proven by induction. The result then follows upon comparison with
(3.1).

4. Proofs of Theorems 1 and 2

Andrews’ original left-hand side (as presented in Theorems 1 and 2 of [2]) associated
with our Theorem 1 is

�
1X

n=1

(yq; q)n�1y
2n+1q2nDn�2 �

1X
n=1

(yq; q)ny2n+2q2n+1Dn�2. (4.1)

The proof proceeds in much the same way as that of (1.5), the only di↵erence being
that we now extract terms of the form (�1)k0y2n+k0 and (�1)k0y2n+1+k0 . (See [2]
for details as to why 2n + k0 and 2n + 1 + k0 are the invariant quantities under
Schur’s transformations). One obtains two simplified series that have the same
form as (2.1), namely they each involve pn,k(q) summed against a polynomial in y.
Substituting in (2.4) for pn,k(q), with k replaced by n, yields Theorem 1. Theorem
2 is just the identity that results from the same procedure applied to

�
1X

n=1

(yq; q)n�1y
2n+1q2nD⇤

n�2 �
1X

n=1

(yq; q)ny2n+2q2n+1D⇤
n�2. (4.2)

We now deduce the first of the Rogers-Ramanujan identities [3] from Theorem
1, which states that

(q; q)1 lim
n!1

Dn = (q; q)1
1X

n=0

qn2

(q; q)n
= 1 +

1X
n=1

(�1)n
�
q

n(5n�1)
2 + q

n(5n+1)
2

�
, (4.3)

and leave out a proof for the second as the treatment would be nearly identical.
Adding 1 to the left-hand side of (1.12) and setting yn to be the constant sequence
1 yields

1 +
X

n,k�1

(�1)kqk(k�1)/2+2nDn�2

✓
n� 1
k � 1

�
+ q


n

k � 1

�◆
. (4.4)

Using (2.3), (4.4) becomes

1�
1X

n=1

qnDn�2

�
qn(q; q)n�1 + qn+1(q; q)n

�
= (q; q)1 lim

n!1
Dn,

by [2, Lemma 1]. Clearly 1 added to the the right-hand side of (1.12) equals

1 +
1X

n=1

(�1)n
�
qn(5n�1)/2 + qn(5n+1)/2

�
, (4.5)

and (4.3) is proven.
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5. Concluding Remarks

It would be highly desirable to obtain simple q-hypergeometric proofs of Theorems
1 and 2 in this paper or the corresponding theorems in Andrews’ paper. A shift
from k ! k�2n on the left-hand side of (1.12), followed by an interchange of sums,
yields the following identity after comparing coe�cients of yk:

S(k) =
b(k�1)/2cX

n=1

(�1)kq(k�2n�1)(k�2n�2)+2n+1Dn�2

⇥
✓

qk�2n�2


n� 1

k � 2n� 1

�
�


n

k � 2n� 2

�◆
:= T (k), (5.1)

where

S(k) =

8><
>:

(�1)kqk(5k�1)/2 if k ⌘ 3 (mod 5),
(�1)kqk(5k+1)/2 if k ⌘ 4 (mod 5),
0 otherwise.

(5.2)

Christoph Koutschan has used his package HolonomicFunctions to provide a com-
puter proof of this equality. His package generates the simple recurrence relation
T (k + 5) = �qk+4T (k), and it is not di�cult to check that S(k) satisfies this as
well.

Also interesting would be further analytic or partition theoretic generalizations
of this type.

Acknowledgements I thank George Andrews for his continued support, as well
as the referee for his/her careful reading of the first two drafts of this paper.
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