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Abstract
We introduce the following class of partizan games, called pomax games. Given a
partially ordered set whose elements are colored black or white, the players Black
and White take turns removing any maximal element of their own color. If there is
no such element, the player loses. We prove that pomax games are always integer-
valued and for colored tree posets and chess-colored Young diagram posets we give
a simple formula for the value of the game. However, for pomax games on general
posets of height 3 we show that the problem of deciding the winner is PSPACE-
complete and for posets of height 2 we prove NP-hardness. Pomax games are just
a special case of a larger class of integer-valued games that we call element-removal
games, and we pose some open questions regarding element-removal games that are
not pomax games.

1. Introduction

A pomax game is played as follows. Given a finite poset P whose elements are col-
ored black or white, the players Black and White take turns removing any maximal
element of their own color. When a player cannot make a legal move, he loses the
game. As an example, the pomax game in Figure 1 is a zero game (that is, a second
player win): If Black starts he must remove z and White can counter by removing

1This work was performed at KTH in Stockholm where the first author was writing his Master’s
thesis [7], laying the foundation for this paper.

2The second author was supported by a grant from the Swedish Research Council
(621-2009-6090).



INTEGERS: 16 (2016) 2

z w

x y

Figure 1: A pomax game of value zero.

x, leaving Black with no legal move. If White starts he must remove w, Black must
remove z, White removes x and finally Black removes the last element y.

With the convention that Black is the left (positive) player and White is the right
(negative) player, one may ask for the game value of a pomax game in general. As
we will show in Section 3, pomax games are always integer-valued – a very rare
property among combinatorial games.

Since the birth of modern combinatorial game theory in the 1970s, hundreds
of two-player games with perfect information have been invented (or discovered)
and analyzed. Many of them are impartial and thus have nimber values by the
Sprague-Grundy Theorem. Among the properly partizan games, some are always
numbers – Hackenbush restrained being the most prominent example [2] – but, to
the best of our knowledge, essentially only one game studied in the literature is
always integer-valued, namely Cutcake [1, pp. 24–27 and p. 51]. This game comes
in two flavors, Cutcake and Maundy Cutcake, both of which have a very regular
structure that admits a complete analysis.

Despite being integer-valued, pomax games have a sufficiently rich structure so
that it is PSPACE-complete to decide the winner of the game, as we will see in
Section 7. However, in some special cases the game is computationally tractable,
and in Sections 4 and 5 we give simple formulas for the value of the pomax game
played on colored tree posets and chess-colored Young diagram posets.

Many combinatorial games have been found to be PSPACE-complete, including
common board games like Checkers, Hex and Reversi [4, 8, 6], but also more fun-
damental games like General Geography. Recently, Grier showed that poset games
are PSPACE-complete in general [5].

A poset game is an impartial game played on a poset, where a legal move consists
of removing any element along with all greater elements. Examples include the
games Nim (where the poset is a disjoint sum of chains) and Chomp (where the
poset is a product of chains). In a wide sense, pomax games are a partizan variant
of poset games, but, being partizan, they have a quite different role to play in the
abelian group of games.

For an exposé over computational complexity results for combinatorial games,
we refer to [3].

Pomax games are just a special case of a larger class of games that we call
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element-removal games, and when possible we will state our results in this more
general setting.

The starting position of an element-removal game is a finite setX whose elements
are colored black or white, and in each move the player (Black or White) removes
an element of his own color. However, not all elements are removable at any stage,
but the set of removable elements is a function of the set A of elements that are still
present. Once an element becomes removable, it may never lose this status until it
is removed. Formally, the removability function ρ : 2X → 2X has the property that

ρ(B) ∩ A ⊆ ρ(A) ⊆ A

for any A ⊆ B ⊆ X .

Pomax games are the special case where ρ maps A to the maximal elements of
the subposet induced by A.

The paper is organized as follows. In Section 3 we show that element-removal
games, and thus pomax games, are always integer-valued. In Section 4 we study
balanced games, a special kind of element-removal game that is easy to analyze, and
in Section 5 we give a formula for the value of any pomax game on a colored tree
poset.

After that, we switch our focus to the computational complexity of pomax games.
In Section 7 we show that pomax games are PSPACE-complete even when restricted
to height-three posets. As a warm-up, we show NP-hardness in Section 6, a result
of more than pedagogical value since it holds already for posets of height two.

Finally, in Section 8 we suggest some further research and pose some open ques-
tions.

2. Prerequisites

Here, we will briefly recall those parts of combinatorial game theory that will be
used in the forthcoming sections. No proofs will be given, but everything follows
easily from the comprehensive discussion in the book “On Games and Numbers”
by Conway [2].

We will adopt standard notation and terminology for partizan games. Black will
always be the left player and White the right player, and we will use curly-bracket
notation G = {GL |GR}, where GL and GR are typical left and right options of the
game G. The game { | } is called the zero game and is denoted by 0, and the game
{ 0 | } is called 1.

Recall that there is an equivalence relation on games, denoted by an ordinary
equality sign “=”, such that G = 0 if and only if the second player wins G (under
optimal play). If G = H we will simply say that G is equal to H .

The (disjunctive) sum G+H and the negation −G is defined for games, and the
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equivalence classes of games form an abelian group under these operations, with
the equivalence class of 0 as the zero element.

There is also a partial order on (equivalence classes of) games, denoted by “≥”,
such that G ≥ 0 if and only if White wins as a second player. The order relation is
compatible with the group structure.

A game is integer-valued if it is equal to a game of the form 1+1+ · · ·+1 or its
negation, and the equivalence classes of integer-valued games form a totally ordered
abelian subgroup of the group of all games.

We will use the following sufficient condition for a game to be integer-valued,
which is a simple consequence of the Simplicity Theorem [2, Th. 11].

Lemma 1. A game with a finite number of options is integer-valued if its options
are integer-valued and the difference GR −GL between any right and left options is
at least 2. In that case, the value of the game is the integer closest to zero that is
strictly larger than any left option and strictly smaller than any right option.

For posets we will write x ! y to denote that x is covered by y, that is, x < y
and there is nothing in between.

3. Element-removal Games are Integer-valued

Clearly, the class of element-removal games (and the class of pomax games) is closed
under summation and negation, and negation just means inversion of the coloring so
that white elements become black and vice versa – it does not affect the removability
function.

Our first result is a structure theorem telling us that element-removal games are
very simple objects from an algebraic point of view.

Theorem 1. Any element-removal game (and thus any pomax game) is integer-
valued.

Proof. It suffices to show that, for any element-removal game G and any left (Black)
option GL, we have G−GL ≥ 1. By symmetry, this will imply that G−GR ≤ −1
and thus that GR − GL ≥ 2, and by Lemma 1, and Conway induction, G will be
integer-valued. So, if White starts playing the game G−GL− 1 we must show that
Black has a winning strategy.

Let X denote the set of elements of G and let x ∈ X be the element that Black
removed from G to obtain GL.

Case 1 White removes an element y from the G component. Since y is removable
from X , it is still removable from X \ {x}, and thus Black may reply by
removing y in the −GL component. The resulting position is GR −GRL − 1,
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where GR is the game obtained from G by removing the white element y
and GRL is obtained from GR by removing the black element x (which is
removable from X \ {y} since it is removable from X). By Conway induction,
this game is nonnegative.

Case 2 White removes an element y in the −GL component. Then Black replies
simply by removing x from the G component, and the resulting position is
of the form GL − GLL − 1, where GLL is obtained from GL by removing y.
Again, this is nonnegative by Conway induction.

Case 3 White consumes his single move in the −1 component. Then Black replies
by removing x from the G component, and the resulting position is GL−GL =
0.

4. Balanced Games

As we will see in Section 7, it is very hard to compute the value of a pomax game
in general (unless PSPACE = P). In this section, however, we will look at a class
of particularly well-behaved element-removal games to which we give the attribute
balanced. It turns out that the value of such a game is given simply by the number
of black elements minus the number of white elements.

Definition 1. An element-removal game is balanced if it has the following two
properties.

• All options are balanced.

• If all removable elements are of the same color, then at least half of the total
set of elements have that color.

For convenience, we say that a colored poset is balanced if its pomax game is.

Thus, a balanced colored poset cannot consist of millions of white elements covered
by a few maximal black elements – there is always a maximal element of the majority
color.

Proposition 1. The value of a balanced game is the number of black elements
minus the number of white elements, and the outcome of the game is independent
of the players’ strategies.

Proof. Let G be a balanced game with b black elements and w white elements.
Since all options of G are also balanced, by Conway induction, the value of any left
option is GL = b− w − 1 and the value of any right option is GR = b− w + 1.
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Figure 2: A chess-colored Young diagram with four outer corners.

If G has at least one left option and at least one right option it follows that
G = b− w by Lemma 1.

Suppose G has no right option. Then, since G is balanced, we have b ≥ w and
thus G = {GL | } = {b− w − 1 | } = b − w by Lemma 1. The case where G has no
left option is completely analogous.

Since the value of the game is a function of the number of black and white
elements, the outcome does not depend on the strategies.

4.1. Balanced Pomax Games

If we are given a poset and want to color it in a way that will make it balanced, it
seems natural to try a chess coloring, namely a coloring where no element covers
an element of the same color. In this section, we show that this idea is successful
at least for two kinds of posets: tree posets and Young diagram posets.

In a (non-empty) tree poset each element except one – the root – covers exactly
one element. (For technical reasons, the empty poset is also considered to be a
tree.)

Proposition 2. The pomax game on a chess-colored tree poset is balanced.

Proof. Suppose all maximal elements of the poset are white. Then, each black
element can be paired with one of the white elements covering it.

A Young diagram (in English notation) is a finite collection of cells, arranged in
left-justified rows, with the row lengths weakly decreasing. It can be interpreted
as a poset by the rule that a cell covers the cell immediately to its left and the
cell immediately above it (if those cells exist).3 The maximal cells are called outer
corners. Figure 2 shows an example.

Proposition 3. The pomax game on a chess-colored Young diagram is balanced.

3Young diagram posets can be equivalently characterized as being the order ideals of a product
of two finite chains.
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Figure 3: Chess-colored posets with more black than white elements but with all
maximal elements white. Left: a plane partition poset, that is, an order ideal of a
product of three chains. Right: a two-dimensional distributive lattice.

Proof. Suppose all outer corners of the Young diagram are white. Then, each row
that ends with a black cell has a row of the same length immediately below it, and
together these two rows have equally many black as white cells. A row that ends
with a white cell has at least as many white cells as black ones.

Figure 3 shows that Propositions 2 and 3 cannot be extended to three-dimensional
(plane partition) diagrams nor to two-dimensional distributive lattices. However,
they can be extended to a larger class of colorings, namely those avoiding blocking
triples.

Definition 2. A blocking triple in a colored poset is a triple of elements x! y ! z
such that x and y are of the same color and z is of a different color.

Lemma 2. Let P be a colored poset without blocking triples and suppose that all
maximal elements are white. Then, no black element is covered by a black element.

Proof. Let B be the set of black elements that are covered by a black element.
Suppose B is not empty, and let x be an element that is maximal in B. Then x is
covered by some black element y not in B which must be covered by some element z
since no black element is maximal in P . Since y does not belong to B, the element
z must be white, but this is impossible since x! y ! z form a blocking triple.

Proposition 4. Any colored tree poset without blocking triples is balanced.

Proof. Suppose all maximal elements are of the same color, say white. Then, by
Lemma 2, each black element is covered by some white element. This pairing shows
that there are at least as many white as black elements.
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Proposition 5. Any colored Young diagram without blocking triples is balanced.

Proof. Suppose all outer corners are of the same color, say white. We want to show
that at least half of the cells are white.

In light of Lemma 2 it is easy to see that any row in the Young diagram has at
most one more black cell than white cells, and this happens only if the row both
starts and ends with a black cell. Furthermore, a row both starting and ending with
a white cell has an excess of white cells.

Any row both starting and ending with a black cell must have a row immediately
below starting and ending with a white cell.

4.2. Other Balanced Element-removal Games

The pomax games considered above have several cousins which are element-removal
games but not pomax games. Some of these variants can be shown to be balanced
by the same argument as we used for pomax games.

First, we consider a variant called min-max-removal games. It is an element-
removal game played on a poset, but we let not only the maximal elements but also
the minimal elements be removable.

Starting with a colored tree poset, playing the min-max-removal game will soon
result in a poset consisting of several disjoint trees, so we ought to formulate our
results for such forest posets. The blocking triples turn out to be the right tool in
this situation too.

Proposition 6. The min-max-removal game on any colored forest poset without
blocking triples is balanced.

Proof. Identical to the proof of Proposition 4.

Starting with a Young diagram poset and playing the min-max-removal game
will soon result in a skew Young diagram poset, that is, a Young diagram with a
smaller Young diagram deleted from its upper-left corner.

Proposition 7. The min-max removal game on any colored skew Young diagram
poset without blocking triples is balanced.

Proof. Identical to the proof of Proposition 5.

Now, let us throw the whole poset overboard for a while and consider a couple
of element-removal games with a different ground structure.

Given a tree (in the graph-theoretical sense) whose vertices are colored black
or white, the leaf-removal game is an element-removal game on the vertices of the
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Figure 4: A chess-colored truncated square diagram with 11 corners.

tree, where the leaves are the removable elements. By a chess coloring we mean a
black-white vertex coloring where adjacent vertices have different colors.

Proposition 8. The leaf-removal game on any chess-colored tree is balanced.

Proof. We can think of our tree as a chess-colored tree poset by choosing any root
vertex (unique minimal element) and letting all edges (covering relations) be di-
rected from the root. Then, the proof of Proposition 2 applies.

Finally, let us consider the corner-removal game, which is an element-removal
game where the ground set is an n × n array of colored cells and where a cell is
removable if it is a corner, that is, if it has at most one neighboring cell in the same
row and at most one neighboring cell in the same column. We introduce the term
truncated square diagrams for the cell diagrams obtained by iteratively removing
corners from an n× n cell array. Figure 4 shows an example.

Cells are neighbors if they have a common side, and, as always, by a chess coloring
we mean a black-white coloring where neighbors have different colors.

Proposition 9. The corner-removal game on any chess-colored truncated square
diagram is balanced.

Proof. Identical to the proof of Proposition 5, except that there is no need for
Lemma 2.

5. Tree Posets

In Section 4 we saw that it is easy to compute the value of the pomax game on a
colored tree poset without blocking triples: Just take the number of black elements
minus the number of white elements. In this section we give a complete analysis of
pomax games on tree posets.

Let us begin with a simple example, namely the colored tree poset in Figure 5,
which is just a chain. The pomax game on that poset is clearly a zero game: If
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blocking triple

essential part

Figure 5: A chain poset with a blocking triple.

Black starts he loses immediately, and if White starts he will lose when the four
topmost elements are removed. Note that the two elements at the bottom do not
affect the value of the game at all. They are “blocked” by the blocking triple above.

Our example suggests the following definition.

Definition 3. For any colored tree poset P , its essential part, denoted by essP , is
the (unique) maximal upper set that does not contain any blocking triple.

We will refer to the elements of the essential part as essential elements.

From now on, we will let Po(P ) denote the pomax game on the colored poset P .

As the following theorem shows, all non-essential elements might be thrown away
without affecting the value of the game, and since the essential part is balanced its
game value is easy to compute.

Theorem 2. For any colored tree poset P , the game equality Po(P ) = Po(essP )
holds.

For the proof of Theorem 2 we need the following lemma.

Lemma 3. Let P be a black-rooted colored tree poset with at least one white element
but no blocking triple. Let m be the (integer) game value of Po(P ). Then, in the
game Po(P )−m, if Black starts White can win before Black gets an opportunity to
remove the root of P .

Proof. By Propositions 4 and 1, White will win Po(P ) −m when Black starts, no
matter what strategies they use. If White removes all white elements in the −m
component (if m is positive) before making any move in the Po(P ) component, she
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will never have to remove all white elements in the Po(P ) component, and thus the
root will never be removable for Black.

Proof of Theorem 2. We assume that essP ̸= P ; otherwise there is nothing to
prove.

The essential part consists of a disjoint union of trees essP = T1 ∪ T2 ∪ · · · ∪ Tk

and the non-essential part P \ essP is a tree. For i = 1, . . . , k, let mi be the
value of Ti (which is just the number of black minus the number of white elements
since Ti does not contain any blocking triple). We want to show that the game
Po(P )−m1−m2− · · ·−mk is a win for the second player. By symmetry, it suffices
to show that White will win if Black starts.

Note that, by construction of the essential part and by our assumption that
essP ̸= P , none of the trees T1, . . . , Tk is unicolored. Thus, by Lemma 3, if Black
starts White can win Po(essP ) − m1 − m2 − · · · − mk without ever giving Black
an opportunity to remove a minimal element of essP . By adopting this strategy
to the game Po(P ) − m1 − m2 − · · · − mk, White can win without removing any
non-essential element. Black will not get the chance to remove any non-essential
element, because each black maximal element x of P \ essP is covered by some
black minimal element of essP – otherwise x would have been essential.

6. Pomax Games of Height 2 are NP-hard

Up to this point all of our results have been about the simplicity of pomax games:
They are integer-valued and their values are easy to compute in some cases, in
particular if the poset is a tree. In this and the forthcoming section, however, we
will show that in general it is very hard to find the winner of a pomax game, even
for very shallow posets. (All this is under the assumption that PSPACE ̸= P.)

By the height of a poset we mean the length of its longest chain.

Theorem 3. The problem of deciding whether a given pomax game equals zero is
NP-hard even if the height of the colored poset is restricted to two.

Proof. Recall that a Boolean formula is on conjunctive normal form (CNF) if it is
a conjunction of clauses, where each clause is a disjunction of literals, each literal
being a variable or the negation of a variable. If every clause has exactly three
literals, it is a 3CNF-formula. An example is (x1 ∨ ¬x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4).

We will make a reduction from the canonical NP-complete problem 3-SAT.
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Figure 6: The colored poset constructed from the 3CNF-formula (x1 ∨ x2 ∨ ¬x3) ∧
(¬x1 ∨ x2 ∨ x3).

3-Satisfiability (3-SAT)

Input A 3CNF-formula.

Output “Yes” if and only if the formula is true for some assignments of the
variables.

Given a 3CNF-formula we will construct a colored poset (in polynomial time)
whose pomax game is zero precisely if the formula is true.

For each variable xi in the formula we put two white assignment elements in
the poset, one called “xi = 0” and one called “xi = 1” (where 0 and 1 should be
interpreted as “false” and “true”, respectively). Also, for each clause Cj in the
formula we put a black clause element cj in the poset and we let it be covered by
exactly those assignment elements that would make the clause false. For instance,
the clause element corresponding to x1∨x2∨¬x3 would be covered by the assignment
elements “x1 = 0”, “x2 = 0” and “x3 = 1”.

We want the removal of an assignment element “xi = α” during play to corre-
spond to actually assigning the value α to the variable xi, so we need some mech-
anism to prevent White from cheating by removing both “xi = 0” and “xi = 1”.
This is accomplished by letting “xi = 0” and “xi = 1” cover a black candy element
so that White cannot cheat without uncovering candy for his opponent.

Finally, we put as many black isolated elements in the poset as there are Boolean
variables, so that Black has something to eat while White is trying to satisfy the
formula. Figure 6 shows an example of our construction.

If White starts she cannot win, because Black has an isolated element for each
pair of white assignment elements, and if White cheats Black gets candy.

If Black starts, White will win unless some of the black clause elements are
uncovered during the game. Clearly, White can avoid uncovering a clause element
precisely if the 3CNF-formula is satisfiable.
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7. Pomax Games of Height 3 are PSPACE-complete

Since the number of moves during a pomax game is bounded by the size of the poset,
its outcome can be determined by an algorithm using only a polynomial amount of
space. In this section we show that pomax games are in fact PSPACE-complete.

Theorem 4. The problem of deciding whether a given pomax game equals zero is
PSPACE-complete even if the height of the colored poset is restricted to three.

Proof. We will make a reduction from the following archetypical PSPACE-complete
problem.

Quantified boolean formula problem (QBF)

Input A QBF-formula, that is, a formula of the type

∀x1∃x2∀x3∃x4 · · · ∀xn−1∃xnφ(x1, . . . , xn),

where φ is a CNF-formula C1 ∧C2 ∧ · · ·∧Cm. The number n of variables
is even.

Output “Yes” if and only if the QBF-formula is true.

We will think of QBF as the problem of deciding the winner of a two-player game
where the players, let us call them Black and White, assign truth values to the
variables xi. Black assigns variables with odd indices and White assigns variables
with even indices. Furthermore, Black must assign x1 first and then White, with
knowledge of the value of x1, must assign x2, and so on. When all n variables have
been assigned, White wins if the CNF-formula φ becomes true.

Given a QBF-formula as above we will construct a colored poset (in polynomial
time) whose pomax game is zero precisely if the formula is true. Let us build this
poset step by step, initially focusing on the main picture and taking care of the
details as we go along.

As in the proof of Theorem 3, for each variable xi in the formula we put two
assignment elements in the poset, one called “xi = 0” and one called “xi = 1”. But
now we color the elements black if i is odd and white if i is even.

Again following the proof of Theorem 3, for each clause Cj in the formula we
put a black clause element cj in the poset and we let it be covered by exactly those
assignment elements that would make the clause false.

As before, we need some mechanism to prevent players from cheating by remov-
ing both “xi = 0” and “xi = 1”, and this is accomplished by letting “xi = 0” and
“xi = 1” cover some candy elements of the opposite color so that a player cannot
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Figure 7: The assignment, clause and candy elements of the colored poset con-
structed from the QBF instance ∀x1∃x2∀x3∃x4 (x1 ∨ ¬x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4).

cheat without uncovering lots of candy for his opponent. From now on we assume
that there is enough candy to make sure that no player will ever cheat. (Obviously,
if cheating uncovers more candy elements than the total number of non-candy ele-
ments in the poset, there will be no cheating. A more careful analysis shows that
it suffices to have m+1 white candy elements for each variable with odd index and
one single black candy element for each variable with even index.) Figure 7 shows
an example of a colored poset as constructed so far.

The idea is that Black would start the game and assign a value to x1 by choosing
to remove either “x1 = 0” or “x1 = 1”. Then, White would remove either “x2 = 0”
or “x2 = 1”, and Black would remove either “x3 = 0” or “x3 = 1”, and so on.
Finally, White would remove either “xn = 0” or “xn = 1” and she will win the
game if no clause element cj has been uncovered, which is the case exactly if the
CNF-formula φ is true. However, nothing in the present construction will force the
players to make the assignments in the correct order from left to right.

For each i ∈ {1, . . . , n− 1}, to make sure that the player making the assignment
of the variable xi+1 will not have to do that before the other player has assigned
the previous variable xi, we install a gadget consisting of six new elements called
a0i , a1i , b00i , b01i , b10i , b11i , and the covering relations “xi+1 = β” " aβi " bαβi and
“xi = α”" bαβi for α,β ∈ {0, 1}. We color aβi black if i is odd and white if i is even,
and bαβi white if i is odd and black if i is even.

This completes our construction, and the result is exemplified in Figure 8.

Note that, since no player cheats and uncovers candy for the opponent, for each
i, any time during play at most one of the elements a0i and a1i is maximal and at
most one of the elements b00i , b01i , b10i and b11i is maximal.

A player, let us say White, does not gain anything from removing “xi+1 = β”
while the previous pair of assignment elements “xi = 0” and “xi = 1” are both still
present, because the other player, Black, could answer immediately by removing
the element aβi without uncovering any white element. Not until later when Black
removes “xi = α” for some α ∈ {0, 1}, White is compensated by the uncovering of
the white element bαβi , so White could as well have waited for this to happen before
she removed “xi+1 = β”.



INTEGERS: 16 (2016) 15

Figure 8: The colored poset constructed from the QBF instance ∀x1∃x2∀x3∃x4 (x1∨
¬x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4).

We conclude that, if Black starts the game, White will win, and hence the game
is ≤ 0, if and only if the QBF-formula is true. If White starts the game, Black will
win by simply removing aβi whenever White removes “xi+1 = β”, so the game is
always ≥ 0.

8. Future Research and Open Questions

Theorems 3 and 4 leave us with an obvious open question.

Open Problem 1. Is it a PSPACE-complete problem to compute the outcome of
a given pomax game even if the height of the colored poset is restricted to two?

Colored posets like the one in Figure 7 seem very hard to analyze, and though
the players may cheat by assigning the variables in the wrong order, we would
guess that games of this type are PSPACE-complete. There is also a theorem by
Schaefer [9, Th. 3.8] that points in this direction.

The posets constructed in the proofs of Theorems 3 and 4 have small height but
they might be quite high-dimensional. One could ask if it is possible to trade low
height for low dimensionality while still maintaining the hardness of the problem.

Open Problem 2. How computationally hard is the problem of computing the
outcome of a pomax game on a colored Young diagram poset?

In Section 4.2 we defined some particular element-removal games that are not
pomax games, and we saw that they behave well if their underlying structure (poset,
tree graph or cell diagram) is chess-colored. In particular min-max-removal games
on forest posets and leaf-removal games might be possible to analyze for any coloring
by essentially the same method we used for pomax games on tree posets in Section 5.

Open Problem 3. Find a formula for the value of the min-max-removal game on
any colored forest poset.
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Open Problem 4. Find a formula for the value of the leaf-removal game on any
colored tree.

As mentioned in the introduction, pomax games are a partizan variant of poset
games. But there is a more straightforward way to make a poset game partizan and
that is simply to color the elements and let the active player choose any element of
his own color and remove it along with all greater elements (even if some of those
happen to be of the opposite color). The games so obtained – let us call them par-
tizan poset games – seem to be related to Hackenbush restrained. For instance, it is
easy to see that they equal numbers (by essentially the same argument as for Hack-
enbush restrained, see [2, p. 87]), and every restrained Hackenbush tree is obviously
equivalent to a partizan poset game on a colored tree poset. This latter obser-
vation shows that partizan poset games are not integers but can take the value
of any dyadic rational number. However, the similarity with restrained Hacken-
bush apparently disappears for more complex posets (or more complex Hackenbush
graphs).

We think that a more thorough study of partizan poset games would be worth-
while.
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