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ON BELLMAN SPHERES FOR LINEAR
CONTROLLED OBJECTS OF SECOND
ORDER

V.G. BOLTYANSKI AND J. MARTI VAZQUES

Abstract. In this paper, a connection between Bellman’s spheres for piece-
wise continuous and measurable controls is considered. The investigation
is conducted for linear controlled objects of the second order with a rather
complicated two—dimensional control region. A collection of examples is
included to illustrate the obtained results.

1. Statements of classic results. Consider a linear controlled object
& = Az + Bu, uel, (1)

where x € R™ is a contravariant vector (a phase state) with coordinates

rl,...,2" and u € R" is a contravariant vector (a control) with coordi-
nates u',...,u". The constant matrices A = (a%), B = (b}) (where 4,j =

1,...,n; k=1,...,r) define linear mappings A: R" — R", B: R" — R"
by the formulas (Az)" = az’, (Bu)' = biu* (here and in the sequel, sum-
mation over recurring indices is made). Finally, the control region U C R"
is a compact, convex set containing the origin.

A measurable function u(t), to <t <t; with values in R" is an admis-
sible control, if u(t) € U for all t € [ty, t1].
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Let wu(t), to <t < t; be an admissible control and zy € R™. Then the

integral equation

t

xz(t) =x9+ | (Az(s) + Bu(s))ds

to
has an absolutely continuous solution z(t), top < ¢t < t; defined uniquelly.
This solution complies with the condition z(tp) = xo and its derivative
z(t) (defined almost everywhere on [to, t1]) satisfies the equation #(t) =
Ax(t)4+Bu(t). Therefore x(t) is named the phase trajectory of the controlled
object (1) corresponding to the control u(¢) and the initial point xo. We
say the control u(t), top <t < t; transits the initial point zy to the origin
if the aforesaid trajectory satisfies the terminal condition z(¢;) = 0.

The linear problem in time-optimal control requires to find an admissible
control that transits a given initial point zy to the origin in the shortest
time. The admissible control and the corresponding phase trajectory which
solve the problem are said to be time-optimal (for brevity, optimal). In other
words, a process u(t), z(t), to <t < t; is optimal if u(¢) is an admissible
control, z(t) is the corresponding phase trajectory with xy = x(ty) and
x(t1) = 0, and in addition, the transit time is minimal, i.e., it is impossible
to transit zy to the origin in a time lesser than ¢; — .

Let u(t), z(t), to < t < t; be an admissible process for the object
(1) with boundary conditions z(tp) = o, x(t1) = 0. Then u(t) = u(t +
to), T(t) = x(t +tp), 0 <t < t; —tp also is a process with the same
boundary conditions: Z(0) = g, Z(t1 —tp) = 0. Thus it is possible to limit
ourselves by examination of processes with the initial moment ¢y = 0.

Bellman’s sphere Y75 is the set of all initial points z¢o € R" which
can be transited to the origin in a time not greater than 7. In other words,
zo € X if there exists an admissible, measurable control u(t), to <t <t
with t; —t9 < T such that the corresponding phase trajectory xz(t) with
the initial condition z(ty) = z( satisfies the terminal condition z(t;) = 0.

Similarly, ¥ is the set of all initial points =y € R™ which can be
transited to the origin in a time not greater than 1" by piecewise continuous,
admissible controls.

We now formulate some well-known results (for proofs see [1, 2]).

THEOREM 1. For every 1" > 0, Bellman’s sphere X7 C R" is a com-
pact, convex set containing the origin. Besides, the inclusions

ri L7 C | 2P c Bt c upe
t<T

hold, where i denotes the relative interior of a convex set.
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The first inclusion means every point xg €ri ¥} can be transited to
the origin in a time lesser than T by an admissible, piecewise continuous
control.

THEOREM 2 (EXISTENCE THEOREM). If there is an admissible control
transiting a given initial point o € R™ to the origin, then there exists an
optimal, measurable control that transits xy to the origin.

Theorem 2 treats only measurable, optimal controls and Example 1 below
illustrates this circumstance: for every initial point zy # 0, there is a
measurable optimal control transiting =z to the origin, whereas there is
no piecewise continuous optimal control. Generally, the aim of the paper is
establishment of connection between Bellman’s spheres X1 and X7 for
linear controlled objects of second order.

The linear controlled object (1) is stable if for every £ > 0, Bellman’s
sphere X contains the origin in its interior.

For the object (1), we consider the conjugate equation

Y= —A. (2)
Here ¢ = (¢1,...,%y) is an auxiliary covariant vector (i.e., a row vector).
The equation (2) has coordinate form ; = —7/%@3-, j=1,...,n. We remark

for any u € U and any covariant vector v, the scalar product (¢, Bu) =
Y; ﬁcuk is defined.

Let u(t), to <t <t; be an admissible control and (t) be a solution of
(2). We say wu(t) satisfies the mazimum condition with respect to (t) if

(1(t), Bu(t)) = TeagW(t)’ Bu) almost everywhere on [tg, t1].  (3)

THEOREM 3 (THE MAXIMUM PRINCIPLE). For stable linear controlled
objects, (3) is a necessary and sufficient condition of optimality. More de-
tailed, an admissible process u(t), x(t), to <t < t1 transiting a point xg
to the origin is optimal if and only if u(t) satisfies the maximum condition
with respect to a nontrivial solution (t) of the conjugate equation.

The auxiliary proposition stated below illuminates geometrical sense of
the function ¢ (¢) in the maximum principle.

LEMMA 1. Let u(t),to < t < to+ T be an admissible, measurable
control optimally transiting xo to the origin in the time T and (t) be a
nontrivial solution of (2). The control u(t) satisfies the mazximum condition
with respect to Y (t) if and only if xo € LNXES, where L is the supporting
hyperplane of X1 with outward normal —(tp).
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In the following theorem, we consider controlled objects with strictly con-
vex Bellman’s spheres (i.e., ¥ has only one commom point with any its
supporting hyperplane).

THEOREM 4 (UNIQUENESS THEOREM). Let (1) be a stable linear con-
trolled object with strictly convexr Bellman’s spheres. If xq € X7, then
the corresponding optimal trajectory (along which xy can be transited to the
origin) is defined uniquelly.

We remark the inverse assertion for Theorem 4 is correct as well: If for
a linear object (1), Bellman’s sphere Y1 is not strictly convex, then for
a point xo € bd ¥, there are infinitely many optimal trajectories going
from xzq to the origin. More exactly, for a point zo € bd X7, an optimal
trajectory along which xg can be transited to the origin is defined uniquely
if and only if z¢ is an extremal boundary point of Y7, i.e., there are no
points y, z € ¥ distinct from xo such that zg € [y, 2].

2. Preliminare examples. Here and in the sequel, we consider a linear

controlled object

i=Ax+u (4)
with € R? and uw € U C R?. We assume the control region U is a two-
dimensional, compact, convex set in R? containing the origin in its interior.
Thus in comparison with (1), B: R? — R? is the identity mapping.

For every two-dimensional, compact, convex set M C R? and every
nonzero covariant vector ¢, we denote by My the intersection M N Ly,
where L, is the supporting line of M with the outvard normal . Thus
for the object (4), an admissible control wu(t), tg < t < t; satisfies the
maximum condition with respect to a nontrivial solution (¢) of (2) if
and only if u(t) € Uy almost everywhere on [to, ¢1]. Also, the condition
xo € LNYT® in Lemma 1 can be reformulated in the form z¢ € E$es(—1/;(to))'

Consider several examples which clarify connection between Y71 and
ypwe

EXAMPLE 1. Let ® = {¢1,p2,...} be a countable set dense in the seg-
ment [0, 27]. For every k = 1,2,..., denote by U, C R? the segment
that is centered at the origin, forms with z!-axis the angle ¢, and has
the length 2% By U designate the set of all points uj + us + ..., where
up € U, k=1,2,... Then U is a compact, convex, centrally symmetric
set in R2. Intuitively, U is a "polygon” with infinitely many sides such
that the directions of its sides form a set everywhere dense in [0, 2x]. If
¥ # 0 is a covariant vector orthogonal to Uy, for an index k, then Uy, is
a segment of nonzero length.
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Consider the linear controlled object

! = 22 —i—ul, % = —z! +u2,

where the control u € R? with coordinates u!, u? runs over the control

region U described above. The conjugate system 1L1 = o, 1/}2 = —1 has
general solution

1 (t) = asin(t +0), a(t) = acos(t + 0),

where a, § are constant parameters. For any nontrivial solution (t) =
(1(t), 1a(t)), to <t < t1 of the conjugate system, the vector 1(t) rotates
clockwise.

If at a moment 7 the vector (7) is orthogonal to U for an index k,
then I = Uy(r)) is a segment of nonzero length. For ¢ <7, the set Uy )
is situated on one side of the segment I whereas for ¢ > 7 the set Uyr))
is situated on the other said of I. This means the control wu(t) satisfying
(3) with respect to (t) is discontinuous at t = 7. Hence the maximum
condition defines a measurable control u(t), ty) < ¢ < t; whose discontinuity
points are situated densely in [to, t1]. Consequently no optimal control is
piecewise continuous. Thus X5 coincides with the interior of L.

ExaMpPLE 2. Consider the linear controlled object

it =2 b, P =4? Wl <1, u? <L (5)

This object is stable, since U (i.e., the square |z!| <1, |#2| < 1) contains
the origin 0 € R? in its interior. Hence the maximum principle gives a
necessary and sufficient condition for optimality.

The maximum condition has the form

u' = sign Y1 (t) as Py #O; u? = sign Yo(t) as by #0,

where 9(t) = (¥1(t), ¥2(t)) is a solution of the conjugate system I
0, 92 = —1p1. The general solution of this system has the form

Y1 =c1, Yo =—cit+ ca,

c1, co being constants. For c¢; # 0, denoting by 6 the switching moment,

ie, 0= g—f, we obtain all controls satisfying the maximum condition:
ut =1, u®=—sign(t—0) as ¢ >0; (6)
ul=—1, WP=sign(t—0) as ¢ <0; (7)

—1<u'<1, «?= const ==+1 as ¢ =0, ca #£0. (8)
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To obtain the synthesis of optimal trajectories, first find the trajectories
corresponding to constant controls u' = +1, u? = 1. For u! =1, u? = 1,
we obtain from (5)

dl
d—;:xZ—ﬁ—l.

This gives the phase trajectories

o = % (a:Q + 1)2 -+ const .
Similarly we find the trajectories for other constant values u' = +1, u? =
+1.

Thus there are four parabolic arcs which correspond to constant controls
u! = £1, v? = £+1 and arrive to the origin. They divide R? into four
”curved quadrants” I, II, ITI, IV, where I and III contain positive and neg-
ative x!-semiaxes respectively. The optimal trajectories corresponding to
the controls (6), (7) (and arriving to the origin) cover the ”quadrants” I and
III and for every point xy in I or III there is a unique optimal trajectory
transiting xg to the origin. Every boundary point zg of Bellman’s sphere
ymes — Y situated in "quadrant” I or III is an extremal point of this
Bellman sphere. Hence there is a unique optimal trajectory along which zg
can be transited to the origin.

We show the optimal trajectories corresponding to controls (8) cover the
”quadrants” 11, IV and this completes the optimal synthesis. First inves-
tigate the controls (8) for u? = +1. Let u!(t), tg <t < t; be a function
with —1 < u'(t) < 1. Denote by x(t) the trajectory corresponding to the
control u' = ul(t), u*> = 1 and arriving to the origin at ¢ = t;. From (5)
we obtain ! < (22 +1) 42, since u!(t) < 1, v?(t) = 1. Integrating this
inequality from ¢ to t; and taking into account z'(t;) = 22%(t2) = 0, we
find

') < —% (220)" = 22(0).

This means the trajectory x(t) is situated on the right of the parabola z' =
%(xQ)Q + 22, i.e., on the right of the common boundary of the ” quadrants”
1II and IV.

Similarly (since u'(t) > —1), the trajectory z(t) is situated on the left

of the parabola z! = 1(2%)? — 22 ie., of the common boundary of the
"quadrants” IV and I. In other words, z(t) is situated in "quadrant” IV.
Analogously, for u? = —1, the controls (8) define trajectories lying in the

”quadrant” II.
If zg is situated in the boundary of the "quadrant” 1V, there is a unique
optimal trajectory along which zo can be transited to the origin (since x
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belongs also to I or I11). But for any interior point zy of the ”quadrant” IV,
there are infinitely many optimal trajectories from z( to the origin. Indeed,
we can take any piecewise continuous function u!(t) with —1 < u!(t) <1
and move under action of the control u! = u!(t), u?> = 1 untill arrival to
the boundary of the ”quadrant” 1V; after that the trajectory goes along the
boundary under u' =const = £1, u? = 1. These trajectories are optimal
(since they satisfy the maximum principle) and the transit time is equal to
|z¢| (since 2% = 1). Thus the boundary of X1 contains a segment that
is the intersection of the "quadrant” 1V and the line 2?2 = —T. For the
"quadrant” Il the situation is similar.

ExXAMPLE 3. Consider the linear controlled object

il =zt +ut, 2% = 227 + 42 u € U,

where U is the control region as in Example 1. The conjugate system
1 = 1, Yo = 219 has general solution

Pi(t) = cre’,  Po(t) = cae®. 9)
In particular (for ¢; =1, ¢a = 0), we have the solution
W(t) = (e, 0). (10)

Denote by e1, es the unit vectors of the z'- , z2-axes correspondingly and

by f!, f? the covariant vectors of dual basis, i.e., (f*, e;) = 0i (Kronecker
delta). For (10), i.e., for (t) = e'f!, the maximum condition takes the
form wu(t) € Uy Let Uiy = [a, b (it is possible [a, b] degenerates,
ie., a =b). For every point p € [a, b], denote by z,(t),0 <t < T the
phase trajectory corresponding to the control w,(t) = p with the terminal
condition z,(7) = 0. Then wy(t) transits optimally the point z,(0) to
the origin in the time T, since u,(t) satisfies the maximum condition with
respect to (10). Hence by Lemma 1, z,(0) € E?es(_fl). Thus the point
xp(0) belongs to the segment [x,(0), (0)] and this segment coincides with
E%es(i 1y Since every point of this segment can be optimally transited to
the origin in the time 7" by a constant (hence piecewise continuous) countrol,
the face 2%65(7 ) is contained in X7

Similarly, for ¢; = —1, ¢o = 0, we obtain from (9) the solution (t) =
(—et, 0) = —e! ! and conclude the face 7% (s1y of Bellman’s sphere X7
is contained in X7,

Furthermore, taking c; = 0, co = 1, we obtain (t) = (0, e?*) = &% f2.
For this case, the maximum condition is u(t) € Us2y. As abowe, the face
YIRS j2y of Bellman’s sphere i is contained in Y. Finally, for ¢ =

0, co = —1, we conclude the face E%les(fZ) of Bellman’s sphere X% is
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contained in L. Thus we have four faces of ¥ which are contained
in X7

Other points of bd X% do not belong to X5, Indeed, any solution
() distinet from considered ones has the form (9) with ¢; # 0, 2 # 0.
Hence the vector (t) rotates and (as in Example 1) for any admissible
control u(t), top < t < t; satisfying the maximum condition with respect
to 1(t), its discontinuity points are situated densely in [to, t1], i.e., u(t) is
not piecewise continuous.

Thus

SPYC N hd DS = S0 bd P,

where P is the circumscribed parallelogram for Bellman’s sphere X7 with
the sides parallel to eq, es.

3. Main results. Consider the oblect (4) for n = 2, where U C R? is
a two-dimensional, convex, compact set containing the origin in its interior.
Any one-dimensional face of U (if exists) has the form L N bd U, where
L is a supporting line of U, having with U more than one common point.
The set of all one-dimensional faces of U is no more than countable. We
say a contravariant vector ¥ # 0 is exceptional if it is the outward normal
for an one-dimensional face of U, i.e., Uy, is a segment of nonzero length.

LEMMA 2. Let u(t), to < t < t1 be an admissible control satisfying
the mazimum condition with respect to a nontrivial solution ¥ (t) of (2).

Assume p(t) does not have the same direction for all t, i.e., % # const .
Under this condition, the control u(t) is piecewise continuous if and only

if there are only finitely many moments t € [tg, t1] at which ¥(t) is an
exceptional vector for U.

Proof. The reasoning in Example 1 shows for ¢y < t < t;, the moment
t is a discontinuity point of wu(t) if and only if Uy is a segment of
nonzero length, i.e., 9(t) is an exceptional vector for U. Lemma 1 follows
immediately from this assertion. O

THEOREM 5. Let (4) be a linear controlled object of the second order with
a two-dimensional, compact, convex control region U C R? containing the
origin in its interior. If U has only finite number of one-dimensional faces,
then for every T > 0,

pwC __ ymes
yPve _ yomes
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Proof. Let zo € ¥ and u(t), to <t < t; be an admissible, measurable,
optimal control transiting xy to the origin. Then w(t) satisfies (3) with
respect to a nontrivial solution v (¢) of (2). If ¢(¢) has a constant direction,
then for all ¢, the control u(t) belongs to the same face Uiy of U, where
P = % = const. In this case, as in Example 3, there is a constant,

optimal control u(t), tp <t < t; transiting z( to the origin, i.e., zg € X7".

If however the direction of 9 (t) in not constant, then by Lemma 2, u(t) is
piecewise continuous (since there are only finitely many exceptional vectors)
and also zp € . O

Foregoing Example 2 illustrates Theorem 5. In that Example, the control
region U C R?, i.e., the square |z!| < 1, |22| < 1, has four one-dimensional
faces. As we have seen, for every initial point g € R?, there is a piecewise
continuous, admissible control transiting z to the origin, i.e., X7 = e,

In the sequel, we assume U has infinitely many one-dimensional faces.
First we presuppose the eigenvalues of the matrix A are complex. Then
¥(t) rotates in a fixed direction (counterclockwise or clockwise, depending
on A) and for any nontrivial solutions ™M) (¢), ¥ (t) of (2), the relation
Y@ (t) = eV (t + a) holds, ¢, a being real constants. This implies there
is a mimimal positive period 7 for directions of (t), ie., ¥t + 1) =
q(t), g > 0 for any solution () of (2) and any ¢.

Let #(t) be a nontrivial solution of (2). Choose a convergent sequence
t1, ta, ... such that for any k the vector (tx) is exceptional and tj is
distinct from ¢’ = limg_oo tg. We put W(t) = ¢(t — ¢'). Then W(t) is a
nontrivial solution of (2) and for every interval I containing 0 in its interior,
there is a moment ¢ € I such that ¢ # 0 and W(¢) is an exceptional vector.
We shall consider ¥(¢) on the segment [0, 7].

Let now wu(t), to < t < t; be a piecewise continuous, optimal control
transiting an initial point xy to the origin. By a translation t — ¢ +
const, we can replace it by a piecewise continuous control @(t), tog <t <ty
which transits zy to the origin in the same time and satisfies the maximum
condition with respect to W(¢). Moreover, since the directions of the vectors
1) are periodic with the period 7, we can assume 0 < ¢{; < 7. Hence {g > 0
(since by Lemma 2, the segment [to, t1] cannot contain 0 in its interior).

Thus we can limit ourselves by consideration of piecewise continuous,
optimal controls u(t), to <t < t; with [tg, t1] C [0, 7]. By Lemma 2, there
are only finitely many moments t € [ty, t1] for which the vector W(t) is
exceptional.

This leads us to the following definition. Let V' C [0, 7] be an interval,
a half-open interval or a segment. We say V is a pwc-interval if for any
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segment [to, t1] C V there are only finitely many moments t € [to, 1] for
which W(t) is exceptional. Later on, we consider maximal pwc-intervals
(not contained in another one). Maximal pwe-intervals are pairwise disjoint
and the set of all maximal pwc-intervals is no more than countable. Thus
later on, any piecewise continuous, optimal control is defined on a segment
contained in a maximal pwc-interval and satisfies the maximum condition
with respect to W(t).

Let V be a maximal pwc-interval with endpoints a, b, a < b (i.e.,
either V' = [a, b] or V is obtained from [a, b] by removal of one or both
endpoints). Then we put 6(V) = b — a. Evidently, for every T > 0, there
are only finitely many maximal pwc-intervals with (V) > T.

Fix now a positive number 1" and denote by s the translation t — ¢—1T.
Let V' be a maximal pwc-interval. We put

o) = U ZF°Cen)- (11)
teVns(V)

Since the eigenvalues of A are complex, every Bellman’s sphere X7 is
strictly convex. This means every set E%les(_q,(t)) consists of only one point
and for any maximal pwe-interval V, the set o, (V) C bd X7 is either an

arc (containing or not its endpoints) or a point.

THEOREM 6. Let (4) be a linear controlled object of the second order
with complex eigenvalues of the matriz A. We assume the control region
U C R? is a two-dimansional, compact, convex set containing the origin in
its interior. For every T > 0, the relation

YOV = (int TES) U (U aT(V)> (12)
|4

holds, i.e., ¥ is the union of the interior of Bellman’s sphere X% and
finitely many sets o,.(V) each of which is either an arc (containing or not
its endpoints) or a point.

Proof. Let zy be a boundary point of X% belonging to 5. Then there
exists an admissible, piecewise continuous, optimal control wu(t), tg < t <
to+ 1" transiting =y to the origin. We can assume u(t) satisfies the max-
imum condition with respect to W(t) and [tg, to + T] is contained in a
maximal pwe-interval V. Since tg, to + T € V, the relation ¢ty € V N s(V)
holds. Moreover, by Lemma 1, zy = E%Gs(f\y(to)), ie., xg € 0,(V). This
means X" C S, where S is the right-hand side of (12).

To establish the inverse inclusion, it is sufficient to prove o, (V) C X"
for every maximal pwe-interval V. Let xg € o,.(V), ie., xo = E?es(fxlf(to))’
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where tg € VNs(V) (see (11)). Then tg, to+T €V, i.e., [to, to+T] C V.
Hence there are only finitely many moments ¢ € [tg, to+ 71| for which W(t)
is exceptional. By Lemma 2, the admissible control u(t), to <t <tg+T
satisfying (3) with respect to W(t), is piecewise continuous. Denote by
x(t), to < t < tg+ T the phase trajectory corresponding to this control
with terminal condition z(tp+7) = 0. Then u(t) optimally transits x(to)
to the origin in the time 7. By lemma 1, z(tg) = E%les(iqj(to)) , 1e., x(to)
coincides with xg. Thus zy can be transited to the origin in the time T by
a piecewise continuous control, i.e., xg € X", This proves S C X", O

CONSEQUENCE. Under the conditions of Theorem 6 for T > 0 large
enough, the intersection L5V N bd L2 s empty, i.e., X7 coincides

with the interior of X5,

Indeed, any maximal pwc-interval V' is contained in [0, 7] and hence
(V) < 1. Consequently for T' > 7 every set o,(V) is empty (since V N
s(V) =10).

Example 1 considered abowe illustrates Theorem 6. In that Example,
there is none pws-interval. Indeed, for any solution W(¢) of (2) and any
segment [to, t1], there are infinitely many moments ¢ € [to, t1] at which
U(t) is exceptional. Consequently the right-hand side of (12) coincides
with int 2, ie., I = int ¥, And by an exchange of the set @
in Example 1, it is possible to obtain linear controlled objects for which
there are finitely many maximal pwc-intervals or infiniteli many ones placed
arbitrarily. More detailed, let A = {Vi, Vi, ...} be a family of pairwise
disjoint sets contained in [0, 27| such that (i) every V; is either an interval,
or a half-open interval, or a segment; (ii) at least one of the points 0, 27
is not contained in any V;; (4ii) if distinct sets Vj, V; have a common
endpoint a, then a ¢ V;, a ¢ V;. Under these conditions, there exists
a two-dimensional, compact, convex set U C R? containing the origin in
its interior such that for the linear controlled object &' = 22 + ul, 32 =
—x'+u? with the control region U, the family of all maximal pwc-intervals
coincides with A (and similarly for any linear controlled object (4) of second
order with complex eigenvalues of A).

We now assume A has real eigenvalues A1 # As. Let ej, es be relevant
eigenvectors: Ae; = Aier, Aes = Msep and f1, f2 be the dual basis for
e1, ez, i.e., (f', ej) =4}

The first ¥-quadrant is the set of all covariant vectors 1 satisfying the
inequalities (1, e1) > 0, (¥, ea) > 0. The second -quadrant consists of
all covariant vectors ¥ with (¢, e1) < 0, (¢, e2) > 0. Finally, the third
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one is given by (¢, e1) < 0, (¥, e2) < 0 and the fourth one is defined by
<71ZJ7 €1> >0, <w7 €2> <0.

For any solution xz(¢) of the homogeneous equation # = Az and any
solution ®(t) of (2), we have (¢(t), z(t)) = const. Consequently (since
x(t) = e;ett, i = 1,2 satisfies © = Az) for any solution () of (2), the
scalar product (¢(t), e;) preserves its sign. Hence if ¢(0) is situated in i-th
-quadrant, then (t) belongs to i-th -quadrant for —oo < t < oo and
¥ (t) rotates in a fixed direction (counterclockwise or clockwise, depending
on parity of 7). And for any ¢ (t), ) (t) situated in i-th 1-quadrant,
the relation ¥ (t) = eV (t + o), co < t < oo holds, ¢, a being real
constants.

For every i = 1,2,3,4, we fix a solution W (1), —0o < t < oo of (2)
situated in i-th t-quadrant. Let V be an interval, a half-open interval
or a segment. We say V is a pwe-interval with respect to W (t) if for
any [to, t1] C V there are only finitely many moments ¢t € [to, t1] for
which W (#) is exceptional. Later on, we consider maximal pwc-intervals.
For every i = 1,2,3,4, the maximal pwc-intervals with respect to W@ (¢)
are pairwise disjoint and the set of all maximal pwc-intervals is finite or
countable.

Let V be a maximal pwe-interval with respect to W@ (t) and a < b
be its endpoints. Then we put (V) = b — a. Unlike the case of complex
eigenvalues, now it is possible for any 71" > 0, there are infinitely many
maximal pwe-intervals with (V) > T' (since the maximal pwc-intervals are
situated in the line —oo < ¢ < oo instead of [0, 7].

Let now wu(t), to < t < t; be a piecewise continuous, optimal control
transiting a point xg to the origin and ¥ (¢) be a solution of (2) such that
u(t) satisfies the maximum condition with respect to ¢ (¢). If ¢(t) does not
have a constant direction (i.e., ®¥(t) is situated in i-th t-quadrant for an
i), then with a translation ¢t — ¢+ const, we can replace u(t) by a control
u(t), to < t < t; which transits zy to the origin in the same time and
satisfies the maximum condition with respect to W (¢). By Lemma 2, there
are only finitely many moments t € [to, t1] for which W()(t) is exceptional,
i.e., [to, 1] is contained in a maximal pwe-interval with respect to W@ (t).
Thus for piecewise continuous, optimal controls, we can limit ourselves by
two cases: (i) the control satisfies the maximum condition with respect
to a solution (t) with constant direction (i.e., either (i(t), e1) = 0 or
((t), e2) =0), (ii) for an ¢ = 1,2, 3,4, the control is defined on a segment
contained in a maximal pwc-interval and satisfies the maximum condition
with respect to W@ ().
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Fix now a positive number 7" and denote by s the translation ¢ — t—T.
Let V be a maximal pwc-interval with respect to W) (¢). We put

o(V)= U ZE°wow)-
teVns(V)

We remark for any i = 1,2,3,4 and any t, the supporting line of Bell-
man’s sphere Y7 with the outward normal —W@(t) has with this Bell-
man’s sphere only one common point. This means every set E%es(iq,m(t))
consists of only one point. Furthermore, if V is a maximal pwc-interval
with respect to W (t), then the set o,.(V) C bd X2 is either an arc
(containing or not its endpoints) or a point.

Finally, let P be the circumscribed parallelogram for 37 with sides
parallel to eq, e, i.e., P D Y1 and the sides of P are contained in the
supporting lines of ¥ with outward normals +f1, +f2. Every side of
P has with X7 a common segment (maybe degenerating into one point)
and Y7 Nbd P is the union of these four segments.

THEOREM 7. Let (4) be a linear controlled object of the second order with
real, distinct eigenvalues of the matric A. We assume the control region
U C R? is a two-dimansional, compact, convex set containing the origin in
its intertor. For every T > 0,

P = (e vy U [ (U(”aT(W) U(SFenbd Py, (13)
i=1,2,34 \V

where U(i) means the union over all mazximal pws-intervals with respect
to w® (t). In other words, X5 is the union of the interior of Bellman’s
sphere XI5 and no more than countable family of sets situated in bd X7
each of which is either an arc (containing or not its endpoints) or a point.

Proof. Let z be a boundary point of % belonging to 7. Then there
exists an admissible, piecewise continuous, optimal control wu(t), tg < t <
to+T transiting xg to the origin. We can assume without loss of generality
that one of the following cases is realized: (7) the control u(t) satisfies the
maximum condition with respect to W@ (¢) for an index i =1,2,3,4; (i)
the control wu(t) satisfies the maximum condition with respect to a solution
¥ (t) of (2) that has a constant direction.

In the case (i), the inclusion [to, to + 7] C V holds, where V is a
maximal pwe-interval with respect to W@ (t). Since tg, to + 1 € V, the
relation top € VNs(V) holds. Moreover, by Lemma 1, xy = T (L) (1))
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Consequently zg € o,(V). This means zg € S, where S is the right-hand
side of (13).

In the case (ii), the control wu(t) satisfies the maximum condition with
respect to 1 (t), where either ¢ (t) = +fle ™t or ¢(t) = +f%e 2t Let
P(t) = fle~Mt (other cases are similar). Then u(t) € Uy for all ¢. As
in Example 3, x( € E?es(_fl). Hence zg € ¥** Nbd P C S. Thus in both

pwc

the cases, zg € S, i.e., X CS.
To establish the inverse inclusion, it is sufficient to prove the inclusions

0,.(V) C 2P for every maximal pwe-interval V with respect to W (t),

meS 1 hd P C ¥PY,

The first one can be established as in the end of the proof of Theorem 6
and the second one as in Example 3. U

Theorem 7 can be illustrated by Example 3 abowe. In that Example,
there is none pwc-interval in any i-th 1-quadrant. Hence the relation (13)
takes the form X5 = (int X7%)U(ZP* Nbd P). The intersection XN
bd P contains four faces of X7 situated in the supporting lines of 77
parallel to x!- and z2-axes. For every point xp € Y2 Nbd P there exists
a constant optimal control transiting zg to the origin.

REMARK. For every T > 0, the set ¥ Nbd P C X7 is in Theorem
7 nonempty, i.e., X does not coincide with int . Moreover, by an
exchange of the set ® (cf. Example 1), it is possible to construct a linear
controlled objects like one in Example 3 such that there are infinitely many
nonempty arcs o, (V) for every 7' > 0. This distinguishes the case of real
eigenvalues from the case of complex ones.

We remark in addition, if A has coinciding eigenvalues with only one
Jordan’s box of second order, then Theorem 7 (with obvious modification)
holds. And if A has coinciding eigenvalues with two one-dimensional Jor-
dan’s boxes, then (for any 7' > 0) the relation ¥ = X5 holds. The
same relation holds (for any matrix A) if U C R? is a segment containing
the origin in its relative interior.
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