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THE EXPECTED-PROJECTION METHOD:
ITS BEHAVIOR AND APPLICATIONS TO
LINEAR OPERATOR EQUATIONS AND
CONVEX OPTIMIZATION

D. BUTNARIU

Abstract. 1t was shown by Butnariu and Flam [5] that, under some con-
ditions, sequences generated by the expected projection method (EPM) in
Hilbert spaces approximate almost common points of measurable families of
closed convex subsets provided that such points exist. In this work we study
the behavior of the EPM in the more general situation when the involved
sets may or may not have almost common points and we give necessary and
sufficient conditions for weak and strong convergence. Also, we show how
the EPM can be applied to finding solutions of linear operator equations
and to solving convex optimization problems.

1. Introduction.

1.1 This work is aimed at giving an answer to the following problem
regarding the convergence of sequences generated in a Hilbert space via the
so called expected projection method:

(CP): Let (2, A, 1) be a complete probability space and let @ be a mea-
surable point-to-set mapping from 2 to the separable Hilbert space H such
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that, for each w € Q, the set Q,, is closed, convex and nonempty. Suppose
that Q has an integrable! selector, that is, there exists an integrable func-
tion ¢ : @ — H such that ¢(w) € Q, for almost all w € Q. In this case, the
operator P : H — H, called theezpected projection operator (with respect
to @), and given by

P(a) = | P(e)du(w), 1)

where P, (z) denotes the (metric) projection of x € H ounto the set Q,,, is

well-defined (cf. [5, Proposition 2.3]). An expected-projection method (EPM)

generated sequence {xk}keN (with respect to @) is defined recursively such

that the initial point 2° € H and
2" =P(2F), keN. (2)

The question is whether, or in what conditions, any EPM generated se-
quence converges (weakly or strongly) in H and, if affirmative, what can be
said about the location of its limit.

1.2 The convergence problem (CP) appears in applied mathematics in
various forms. Recall that a point z* € H is called an almost common point

of the sets Q. , w € £, if?
w({weateQu)) = 1. 3)

The so called stochastic convex feasibility problem (SCFP) studied in [5]
is that of finding an almost common point of the sets Q,, w € €. The
SCFP is termed consistent if the sets @, w € €2, have an almost common
point; otherwise, the SCFP is called inconsistent. It was shown in [5] that,
when the given SCFP is consistent and its data satisfy some additional
conditions, any EPM generated sequence converges strongly and its limit is
an almost common point of the sets Q,,, w € €. Moreover, by combining [5,
Lemma 4.6] and [3, Theorem 1] one can easily deduce that, if the SCFP is
consistent, then any EPM generated sequence converges weakly to an almost
common point of the sets Q,,, w € . These show that, when consistency of
the given SCFP can be a priori guaranteed, the EPM generated sequences
provide (weakly or strong) approximations of almost common points of the
sets Q,, w € (L.

It is known that the system of linear equations or/and inequalities (as
those encountered in computed tomography and in signal processing - see
[6] and the references therein), the Fredholm type integral equations (see

'In what follows integrability and integrals (with repect to p) are in the sense of
Bochner (see [12]).
*Note that, since Q is measurable, the set {w € Q;z* € Q. } is measurable too.
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[11]), some best approximation problems (see [5]), can be treated and solved
as particular SCFPs. Deciding if such a SCFP is consistent may be difficult
because of the amount and the randomness of the data. Even if such a
decision is possible at the theoretical level (as, for instance, in the case of the
Fredholm and Voltera type integral equations studied in [11]), the computer
related errors (rounding) may determine that practical computation of the
EPM generated sequence supposed to approximate a solution is done not
for the original consistent SCFP but for a slightly different SCFP which is,
in fact, inconsistent. These naturally lead to the following questions: (1)
Do EPM generated sequences converge (weakly or strongly) when the given
SCFP is inconsistent? and, if so, (i¢) What can be said about the limit of
such a sequence? Answering these questions means solving the convergence

problem (CP).

1.3 The main result proven in this paper, Theorem 2.2, shows that a
necessary and sufficient condition for an EPM generated sequence to be
weakly convergent is that the expected projection operator P has fixed a
point. This implies that the answer to the question (i) asked above is
affirmative because it may happen that P has fixed points even if the sets
Qu, w € Q, have no almost common points. Theorem 2.2 also answers the
question (i7): The weak limit of an EPM generated sequence, whenever it
exists, is a fixed point of P. If, in addition, the point-to-set mapping Q
has a square integrable selector, then the weak limit of any EPM generated
sequence minimizes the average of the squared distances to the sets Q. In
the particular case when the sets @, w € €2, have almost common points,
then all fixed points of P are almost common points of the sets @, w € )
and conversely.

Theorem 2.2 allows to enlarge the area of applicability of the expected
projection method. In Section 3 we show how this result can be used in
order to solve linear operator equations Tz = b in the space £2([a,b]).
Corollary 3.2 shows that, under quite mild conditions, finding a solution
of Asuch an equation is equivalent to solving a SCFP. Also, it describes
the behavior of the EPM generated sequences related to this SCFP in the
case when the given linear operator equation has solutions as well as in the
inconsistent case. It can be easily seen that Fredholm and Voltera type
integral equations in £2([a, b]) fall in the class of linear operator equations
whose solutions can be approximated via the EPM. Another category of
problems which can be reduced to SCFPs and solved via the EPM is that
of minimizing smooth convex functionals on compact subsets of R" (see
Section 3.3). Corollary 3.3 implies that large classes of such optimization
problems can be solved numerically by an iterative method whose basic
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requirement is the availability of reliable techniques of determining integrals
over the set of feasible solutions.

2. The convergence theorem.

2.1 In this section we give our main result describing the behavior of
the expected projection method generated sequences. To this end, some
preliminary notions and results are needed. Recall that a square-integrable
selector of the point-to-set mapping @ is a measurable function ¢ : Q@ — H
such that ¢(w) € Qu, for almost all w € €2, and such that the functional
w — ||p(w)||* is integrable. According to [1, Corollary 8.2.13], for each
x € H, the function w — d(z,Q,) : © — R4 is measurable and, therefore,
so is the function w — d?(z,Q,). By consequence, for each x € H, the
function f: H — [0, +oc] given by

= [ 1Ps(@) — o du(e), @
Q

is well-defined. Of course, the set Dom(f) = {x € H; f(z) < oo} my be
empty. The next result shows that this can not happen when the point-to-
set mapping @ has a square-integrable selector.

LEMMA. The following statements are equivalent:

(i) Dom(f) = H;

(i) Dom(f) # 0;

(¢it) For each point x € H, the function w — P,,(z) is square-integrable;

(iv) The point-to-set mapping Q has a square-integrable selector;

(v) For some point x° € H, the function w — P,(z°) is square—
integrable.

Proof. The implications (i)=(i1), (#ii)=(iv) and (iii)=-(v) are obvious. If
x* € Dom(f) and x € H, then

f@) < [ [1Pu@) = Pua®)] + |Pola™) - 2 du(w)
< [ I1P@) ~ Pula)|+ |Po(a”) — 2"l + 2" — o] du(w)
< [ Bl —all + |P.(") = o )

<4t — 2| + f@*) + 4 |2* — 2] -/QIIPM(:C*) — 2" dpu(w) < oo,

because the function w — || P, (z*) — 2*|| is integrable as being square inte-
grable. This proves (ii)=-(i). The implication (iv)=-(iii) follows from the
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fact that, for each square integrable selector ¢ of the mapping @ and for
any x € H, we have

f(x) < Jo lé(w) — 2l du(w)

(5)
< lal? + Jo lp)I? du(w) + 2 - ||zl - Jq ll¢(w)]] dp(w) < oo,
and
Jo I Po(@)]1? dp(w) < Jo [ Pola) — 2| + [|2[1)? dpa(w)
= f(@)+ lzl® + 2 ] - fo | Po(x) — z]| dp(w) (6)
< f@) + [lel® +2- 2]l - fo ll¢(w) — 2| du(w),
where

| 10) =l dute) < [ o) du() + o] < oo,

Observe that from (5) also follows that (iv)=-(¢). Now, if (7) holds, then the
function w — ||P,(x) — z|| is square integrable and, by applying the first
inequality in (6), we obtain (#i7). The implication (v)=-(#i7) results from
the inequality

IR = o) = 2] e =]

which is satisfied for each pair (w,z) € Q x H. O

2.2 Our answer to (CP) is stated as follows:
THEOREM.
(A) The following statements are equivalent:
(A1) The set Fixz(P) of the fized points of P is nonempty;
(A2) There exists a point x° € H such that the EPM generated

0

sequence 3 } . with the initial point x° is bounded;

(A3) There exists a point x° € H such that the EPM generated
sequence {x } with the initial point z° has a weak accumulation point
and

lim (zF! —2%) =0 (7)

k—o0

(A4) There exists a point x° € H such that EPM generated sequence
{J: }keN with the initial point x° converges weakly;
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(Ab) For each point 2° € H, the EPM generated sequence {Ik}keN

0 converges weakly.

with the initial point x

(B) The weak limit of an EPM generated sequence, whenever it erists,
belongs to Fix(P).

(C) If either one of the conditions (i)—(v)of Lemma 2.1 is satisfied, then
the function f: H — [0,00] given by (4) is everywhere finite, convez, con-
tinuously differentiable and Fix(P) = Argmin(f). In this case, whenever
an EPM generated sequence converges weakly its limit is a (global) mini-

mizer of f.

2.3 The proof of Theorem 2.2 is given below. Observe that Theorem
2.2 and the considerations contained in its proof imply that each of the
following statements holds:

(j) If f is proper and Argmin(f) # (), then f is everywhere finite
and the weak limit of any EPM generated sequence exists and belongs to
Argmin(f) = Fiz(P).

(4j) If the set [],Q. of the almost common points of Q,, w € Q, is

nonempty, then f is finite (any point in [],Q. defines a constant selec-
tor of Q), infyem f(z) = 0 and, therefore, Fiz(P) =[],Q, and any EPM

generated sequence {mk}keN converges weakly to a point in [],Q..

2.4 We start the proof of Theorem 2.2 by observing that the implications
(Al)<(A2) result from [9, Theorem 5.2] because, according to [5, Theorem
3.2], the expected projection operator P is nonexpansive. Note that, ac-
cording to Lemma 2.1, under the assumptions of (C') the function f defined

by (4) is everywhere finite. Therefore, Proposition 2.5 in [5] applies and it
shows that f is convex, continuously differentiable and, for each x € H,

Vf(z) =2 (z—P(z)). (8)
These imply that
Argmin(f) = Fiz(P). 9)
Hence, (C) follows from (A).
2.5 In order to prove (A) we use the following

LEMMA. If Fiz(P) # 0 and if {xk}k N is an EPM generated sequence,

€
then, for any z € Fix(P) and for each k € N,

2 2 2
o = et o] < <] (10
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Proof. Note that

k+1 k+1 k

<ol —zaft — b s=<ab —P(2), 2" — b >

—< (l‘k o $k+1) 4+ (xk-i-l o P(z)),ka o :Ek >

2
S P(Z)’$k+1 ks ka+1 _ xk”

_ Mp(z) ~ P - < P@h) ~ ()0t - 2 >} ~ [Pty — <.

where the quantity between the square brackets is nonpositive because of

Proposition 2.4 in [5]. This shows that

2
<k 7Z’xk+1 _ .k S< 7H$k+1 7$kH

Hence,
k+1 2 k 2 k+1 k|2 k k1 k
Hx sz :Hx —ZH —I—Hx fo +2-<a¥ -z — x>
2 2 2
S R e VR
and the proof is complete. ]

2.6 The implication (A1)=-(A3) is a direct consequence of the following
LEMMA. If Fixz(P) # 0, then any EPM generated sequence {xk}keN

is bounded and satisfies (7).Moreover, the series > = ka‘H — iEkH con-
verges.

Proof. Suppose that z € Fiz(P). Summing up the inequalities in (10) for
k=0,1,...,n we obtain

n

, 2 2
> ot = ot < e -]
k=0

2
This implies that the series Y 72 HIk+1 — ka converges and, therefore,
the equality (7) holds. Applying again (10), we deduce that the sequence

{sz — zH}k N is nonincreasing, hence convergent and, thus, bounded.
€

Consequently, the sequence {wk}keN is bounded too. O
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2.7 Recall (see [9, Section 4]) that the asymptotic center of the bounded

sequence {yk}keN
H — [0, 00) defined by

ha; {yk}keN) = iy Hyk B xH ' (11)

Also, if {yk}keN converges weakly, then its weak limit and its asymptotic

in H is the unique minimizer of the functional A(:; {yk}keN) :

center coincide. We use this fact in order to prove the next result from
which the implication (A3)=-(A1l) clearly follows.

LEMMA. If x* is a weak accumulation point of an EPM generated se-
quence {xk}keN which satisfies (7), then z* € Fix(P).

Proof. Let {J:kp} . be a subsequence of {ij}keN which converges weakly
P

to x*. Then, for each p € N, we have

kap —P(z")|| < kap — :Ekp+1H + kap+1 —P(z*)

e M

< Hﬁkp _ xkp+1H i kap g

because P is nonexpansive. This implies

h(P(z); {ats }peN) = Timyp oo ka —P(a*)

)

s fate) ),

peEN

N L

< limy_, H:vkp —x*

where h is the function defined by (11). Note that z* is the asymptotic center

of {xkp }peN and, therefore, it is the unique minimizer of h(:; {xkp }pEN) over

H. Since P(z*) also minimizes the functional A(:; {wkp} eN)’ it results that
P

z* = P(z*). O

2.8 Recall that weakly convergent sequences are bounded. Therefore,
the following implications hold (A5)= (A4) =(A2). Now we prove that

Al)=(A5). To this end, let {zF be an EPM generated sequence.
keN

Then, according to (A1) and Lemma 2.6, this sequence is bounded (and,
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consequently, has a weak accumulation point) and it satisfies (7). Accord-
ing to Lemma 2.7 all accumulation points of {xk}keN belong to Fiz(P).
Suppose, by contradiction, that {xk}keN does not converge weakly. Then,

{xk}k N has two different weak accumulation points z’ and z” and, nec-
€

essarily, 2/, 2" € Fiz(P). Applying Lemma 2.5 we deduce that the sequences

(5, o
keN
fore, the following limit exists and is finite

2

}k N Are nonincreasing and bounded. There-
€

|

= {2/ = l|2"]* + 2 - limg oo < 2¥, 2" —2' >

a = limy_, [ka -2 - ka —a’

Let {xkp} and {:th } be subsequences of {xk} converging weakly
peEN qeEN keEN
to ' and z”, respectively. Then,

a = ||:L./H2 - H$””2 +92. limpﬂoo < xkl’,z” DA
= ||x/H2 _ Hx”HQ +92 < J:’,:C” >

= — " = 2"].
Also, we have

a = ||x/H2 _ Hx//H2 +92. limq—>oo < xhq’x// 2>
= Hl'/H2 - Hx”HQ 49 < I”,,’L‘” AN

— ' — .
These show that |2’ — 2”|| = a = — |2’ — 2" , i.e., 2’ = 2", a contradiction.
|
2.9 In order to prove (B), suppose that {wk}keN is an EPM generated

sequence which converges weakly to z*. Then, according to (A), we have
that Fiz(P) # () and (7) is satisfied. Now, application of Lemma 2.7 yelds
that z* € Fiz(P) and the proof of the theorem is complete. O

3. Applications of the EPM.
3.1 The EPM in the particular case when € is finite, A = 2 and
w: A—|0,1] is defined by

p(A) =D Has

a€A
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where, for a € Q, u, are positive real numbers with } .o p, = 1, reduces to
the so called simultaneous projection method which originates in Cimmino’s
work [7]. Recent research concerning the behavior of the simultaneous pro-
jection method (see Censor and Zenios [6], Combettes [8], lusem and De
Pierro [10], Pierra [13], and the references therein) were mostly motivated
by its applications to solving systems of convex inequalities appearing in
computed tomography and signal processing. Kammerer and Nashed [11,
Section 4] observed that an algorithm similar to that proposed by Cimmino
for solving finite systems of linear equations (seen as problems of finding
common points of hyperplanes in R™) can be applied to solve Fredholm and
Voltera type integral equations (seen as SCFP of finding almost common
points of infinite families of hyperplanes in a Hilbert space). The EPM can
be viewed as an extension of the algorithm proposed in [11]. In what follows
we show how the EPM can be used as an iterative algorithm for finding so-
lutions of linear operator equations and of convex optimization problems.
Other applications of the EPM are discussed in [5].

3.2 Finding solutions to the linear operator equation Tx = b in
L %([a,b]) via the EPM. Let Q = [a,b] be a real interval provided with
the o—algebra A of all its Lebesgue measurable subsets and with the prob-
ability measure p = (b—a) !- )\, where A stands for the Lebesgue measure
on A. Denote H := L3([a,b]), the Hilbert space of all square integrable
functions on §2 with the inner product

<z,y>= /Q:c(w) cy(w)dp(w).

If £ : H — R is a linear continuous function, then we denote by &* the
unique element of H satisfying [|£[[, = ||£*]] and < £*, 2 >= &(x), for any
x € H (such a £* exists by Riesz’s theorem).

Let T : H — H be a linear operator and b € H. We consider the (linear
operator) equation
Tx =0. (12)
This equation can be represented as a SCFP and solved by the EPM. Pre-
cisely, we have the following result:

COROLLARY. If, for each w € Q , the linear function T, : H — R
given by T,r = (Tz)(w) , is continuous and has ||T,|, # 0, and if the
function (:Q — R defined by

() = 2

= ’
1751

(13)

is integrable, then
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(a) The point-to-set mapping Q : 2 — H defined by
Qu == {Z € H;T,z= b(w)}a (14)

has closed, convex, nonempty values and is measurable;
(b) For any pair (w, x) € Q x H, the metric projection of x onto the

set Q. is given by

bw)—Tox

; (15)
[

P,x =z +

(c) For each x € H, the function w — P,z : Q) — H is integrable;

(d) An EPM generated sequence {xk}kerith respect to @ converges

weakly if and only if the linear operator equation

b — T,
/ LQI LT =0, (16)
o T,

has at least one solution in H ;

(e) If the equation (16)has solutions, then any EPM generated sequence
with respect to Q converges weakly to a solution of (16);

(f)An element x* € H is a solution of the equation (12) if and only if
x* is an almost common point of the sets Q,, w € £,

(g9) If the equation (12) has solutions, then any EPM generated sequence
with respect to Q converges weakly to a solution of it.

Proof. The fact that each set @, is convex, closed and nonempty is obvious.
Note that the function g : Q@ x H — R defined by g(w,z) = T,z — b(w),
has the properties that, for each = € H, g(-,z) is measurable and, for each
w € Q, g(w,-) is continuous. Thus applying to g the Theorem 8.2.9 in [1]
we deduce that the point-to-set mapping @ is measurable. Hence, (a) is
proven. For an arbitrary x € H, denote by z, the right hand side of the
equation (15). Observe that

and that, for any z € H,
<X — 2y, 2 — 2 >=0.

These show that P,z = z, is the metric projection of z onto @, i.e., (b)
is proven. In order to prove (c¢) observe that, according to (a), (b) and to
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Corollary 8.2.13 in [1], for every x € H, the function w — P,z is measurable.

Also, we have
1P du(e / €] (e

where ¢ is the function defined by (13). This implies that the function
w — P,(0) is integrable. If x is any element of H, then

Jo IPoz]ldp(w) < Jo [|Poz — Pu(0)| du(w) + Jo [P (0)]| du(w)

<zl + Jo 1P (0) [ dps(w),
proving that the function w — P,z is integrable. Combining (a), (b) and

(c) we deduce that the expected projection operator P with respect to the
point-to-set mapping @ is well-defined and for any = € H,

b(w) — T,z
r=zx —l—/ — - Thdu(w). (17)
T

Therefore, application of Theorem 2.2(A) yields (d) and (e). According to
(14), the element z* € H is a solution of (12) if and only if z* € [],Q., i.e.
(f) holds. By consequence, application of Remark 2.3(j7) implies (¢). O

3.3 Finding solutions to convexr programming problems with the EPM.
Consider the optimization problem (P) : Find x € X such that

f(z) = inf{f(y);y € X},
where f : R™ — R is convex and continuously differentiable and X C R"
is convex, compact and has nonempty interior. Clearly, the problem (P)
has at least one optimal solution. Recall (see, for instance, [2, Section 3.5])
that (P) can be equivalently rewritten in variational form: Find x € X such
that, for each y € X,

<z—1y,Vf(y) ><0. (18)

In this way, the optimization problem (P) can be transformed into an equiv-
alent SCFP where €2 = X, A=the family of all Lebesgue measurable sub-
sets of X, u = (A(X))~!- X with A being the Lebesgue measure on X, and
Q@ : ) — R"™ is defined by

Qy={re X;<az—-yVf(y) ><0}. (19)
Note that the point-to-set mapping ) is measurable because its graph is
closed. Any common point of the sets @, y € X, satisfies (18) and, thus,

is an optimal solution of (P). Moreover, we have that N cx @y = [1,Qy
because, if z € [],Q, and if, for some y* € X,

<z -y, Vf(y") >>0,
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then there exists an open neighborhood N of y* such that, for all y € N,

and this is a contradiction because (N N X) > 0. Hence, finding an almost
common point of the sets @, y € X, amounts to finding an optimal solution
of (P). Combining these facts, Theorem 2.2 and the well-known formula of
the orthogonal projection on a half-space in R™ we get the next result which
describes an iterative method of approximating solutions of (P).

COROLLARY. Suppose that the function f:R™ — R is a convex and
continuously differentiable and that X is a convex compact subset of R"
such that Int(X) # 0. Then, for any initial point x° € R", the sequence
recursively defined by’

1
wk'H::ck—i——-/ min |0
X

< xk _yavf(y) >
69 -V f(y)dA(y)

V£ @)l (20)

converges to a mintmizer of the function f over X.

3

In general, computing the multiple integrals involved in (20) may be
difficult even if we are able to determine explicit formulae for f and Vf.
However, in practical problems, X is usually given as the solution set of a
system of inequalities

gi(z) <0, 1<i<m,

where, for each ¢, the function g; : R™ — R is convex. In such a case,
one can apply the algorithm described by in [4, Section 4] for computing
the triangulation 77 as defined there for some small number ¢ > 0. This
triangulation 77 is a collection of simplices of diameter less that the given
g, included in X, and whose union form a convex polytope with Hausdorff
distance to X no greater than ¢ and having all its vertices in X. Therefore,
the Lebesgue sum
SE =Y Fi(bar(r)) - A7),
Te€T

where Fy,(y) stands for the integrand in (20) and bar(7) denotes the barycen-
ter of the simplex 7, approximates the integral in (20) with an error which
converges to zero as € \, 0.
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