PROJECTIONS, EXTENDABILITY OF OPERATORS AND THE GATEAUX DERIVATIVE OF THE NORM

L. GAJEK, J. JACHYMSKI, AND D. ZAGRODNY

Dedicated to the memory of Prof. T. Świątkowski

Abstract. The Hahn–Banach extension theorem is generalized to the case of continuous linear operators mapping a subspace Y of a normed space X into a normed space V. In contrast with known results of this kind, we do not equip V with a partial ordering neither impose any restrictions on V. The extension property is fully characterized by the sign of the one sided Gateaux derivative of the norm $\|\cdot\|_X$. Other characterizations, involving e.g. Birkhoff's orthogonality, are also provided.

1. Introduction. Let $(X, \|\cdot\|_X)$ be a normed space. Let X^* denote the space of continuous linear functionals on X. For $f \in X^*$,

$$||f||_{X^*} = \sup\{|f(x)|: x \in X, ||x|| \le 1\}$$

defines a norm on X^* .

It follows from the fundamental Hahn–Banach extension theorem (see [2]) that for any linear subspace Y of X and any continuous linear functional

¹⁹⁹¹ Mathematics Subject Classification. 47A20, 47A30.

Key words and phrases. Hahn-Banach theorem, linear operators, Gateaux derivative, projections, Birkhoff's orthogonality.

on Y, there is an extension $F \in X^*$ of f such that $||F||_{X^*} = ||f||_{Y^*}$ (the subscript on $||\cdot||$ indicates where this norm is taken). This result plays a crucial role in geometric functional analysis (see, e.g., [4], p. 95 or [7], Section 2.4).

However, it is known that a similar result need not hold for the class L(X,V) of continuous linear operators from X to a normed space $(V,\|\cdot\|_V)$ even when V is two–dimensional only. Therefore, the following question arises: under what properties of a given normed space V, any operator $f \in L(Y,V)$ can be extended to $F \in L(X,V)$ with preserving its norm, i.e. in such a way that

$$||F||_{L(X,V)} = ||f||_{L(Y,V)},$$

where X is an arbitrary normed space and Y is its subspace. This question was investigated by Nachbin [10], who showed that if every family \mathcal{B} of balls in V, for which any two balls in \mathcal{B} have a common point, has a nonempty intersection, then every linear operator $f \in L(Y, V)$ can be extended to some $F \in L(X, V)$ with preserving its norm, no matter what are the properties of the normed spaces X and $Y \subset X$. Another characterization of such spaces V was given by Kelley [8] (see also [7]). The above property is very restrictive however, and it excludes the case V is the Euclidean space \mathbb{R}^2 , for instance. This limits very much a potential use of such a generalization of the Hahn–Banach theorem.

In this paper we study somewhat different problem: when, for a given normed space X and its subspace Y, any operator $f \in L(Y, V)$ can be extended to $F \in L(X, V)$ with (see Theorem 2.1) or without (see Corollary (2.1) preserving its norm, where V is assumed to be an arbitrary normed space. A solution to this problem is fully characterized by the sign of the one sided Gateaux derivative of the norm $\|\cdot\|_X$. Theorem 2.1 gives also two other conditions equivalent to the extension property, the first involving the so-called Birkhoff's orthogonality, and the second making use of some special continuous linear functionals on X. In contrast with the results of Nachbin [10] and Kelly [8], the properties of the space V play no role in characterizing the extension property of $f \in L(Y, V)$. Thus Theorem 2.1 and the results of Nachbin and Kelley are somehow complementary. If one does not want to impose any restrictions on X and Y, then the results of [10]and [8] are applicable; if no restrictions on V are demanded, then Theorem 2.1 and Corollary 3.1 may be useful. In Section 3 we consider three examples concerning the problem of existence of some planes (i.e., two-dimensional subspaces) in C([0,1]), the space of all real and continuous functions on the unit interval. In particular, our Example 3.1 shows that there is a plane $Y_0 \subset C([0,1])$ such that for none of the subspaces X of C([0,1]), $X \supseteq Y_0$,

there is a projection of norm one from X onto Y_0 unless $X = Y_0$. We emphasize here that, by the Kakutani theorem [6], one could conclude only that each subspace $X \subseteq C([0,1])$ of dimension ≥ 3 contains a plane Y (depending on X), for which there is no projection of norm one from X onto Y, whereas our plane Y_0 is a universal one having such a property.

Finally, it should be stressed up that we do not assume any order structure in V, in contrast with the approach presented e.g. in [1].

2. The Hahn–Banach type theorem. From now on we shall omit the subscript on the norm whenever it is clear from the context which norm is considered. Let $\tau_+(y;x)$ denote one sided Gateaux derivative of the norm at $y \in X$ in the direction $x \in X$, i.e.,

$$\tau_{+}(y;x) = \lim_{s \searrow 0} \frac{\|y + sx\| - \|y\|}{s}.$$

The above limit is known to exist (see Mazur [9]).

Further, an element $x \in X$ is said to be orthogonal to an element y $(x \perp y)$ iff $||x + ty|| \geq ||x||$, for all t from the set $\mathbb R$ of all real numbers. This definition was introduced by G. Birkhoff [3]. If A and B are subsets of X, we say that A is orthogonal to B $(A \perp B)$ iff $a \perp b$, for all $a \in A$ and $b \in B$. When one of the sets is a singleton, say $B = \{b\}$, we use the notation $A \perp b$ instead of $A \perp \{b\}$.

LEMMA 2.1. Let $b \in X$ and A be a symmetric subset of X, i.e., $a \in A$ implies that $-a \in A$. Then

$$A \perp b$$
 iff $\tau_{+}(a,b) \geq 0$, for all $a \in A$.

Proof. (\Rightarrow) Fix an $a \in A$. By hypothesis, $||a+tb|| \ge ||a||$, for all $t \in \mathbb{R}$. Hence, $\frac{||a+tb||-||a||}{t} \ge 0$, for t > 0, which implies that $\tau_+(a,b) \ge 0$. (\Leftarrow) For $a \in A$, define the function φ_a by

$$\varphi_a(t) := \frac{\|a+tb\|-\|a\|}{t}, \quad \text{for } t > 0.$$

Since φ_a is non-decreasing (see, e.g., [11], Lemma 1.2), we get that $\varphi_a(t) \ge \lim_{s \searrow 0} \varphi_a(s) = \tau_+(a,b) \ge 0$, which gives $||a+tb|| \ge ||a||$, for $a \in A$ and t > 0. Hence, replacing an element a by -a, we may infer that $||a+tb|| \ge ||a||$, for $a \in A$ and t < 0. So finally, the above inequality holds for all $t \in \mathbb{R}$, i.e., $a \perp b$ for $a \in A$.

LEMMA 2.2. Assume that dim $X \ge 2$ and $x, y \in X$. Then $x \perp y$ iff there exists an $f \in X^* \setminus \{0\}$ such that |f(x)| = ||f|| ||x|| and f(y) = 0.

Proof. (\Rightarrow) If x=0 or y=0, the existence of f follows from the Hahn–Banach theorem and the fact that dim $X \geq 2$. So assume that $x \neq 0 \neq y$. Then, by the orthogonality, x and y are linearly independent. Define the functional f_0 by

$$f_0(tx + sy) := t$$
, for $t, s \in \mathbb{R}$.

Then f_0 is continuous and linear on the plane span $\{x, y\}$. Since $f_0\left(\frac{x}{\|x\|}\right) = \frac{1}{\|x\|}$, we infer that $\|f_0\| \ge \frac{1}{\|x\|}$. Simultaneously, for $t \ne 0$, we get, keeping in mind $x \perp y$,

$$||tx + sy|| = |t| ||x + \frac{s}{t}y|| \ge |t| ||x|| = |f_0(tx + sy)| ||x||,$$

which gives $||f_0|| \leq \frac{1}{||x||}$. So $||f_0|| = \frac{1}{||x||}$. By the Hahn-Banach theorem, there is an extension $f \in X^*$ of f_0 with the same norm as f_0 . Then f is a desirable functional.

 (\Leftarrow) For all $t \in \mathbb{R}$, we have

$$||f|| \cdot ||x|| = |f(x)| = |f(x+ty)| \le ||f|| \, ||x+ty||,$$

which implies $||x|| \le ||x + ty||$, i.e., $x \perp y$.

Theorem 2.1. Let X be a normed space with dim $X \geq 2$ and Y be a linear subspace of X. The following statements are equivalent.

- (i) For any normed space V and $f \in L(Y, V)$, there exists an extension $F \in L(X, V)$ of f such that ||F|| = ||f||.
- (ii) There exists a continuous linear projection P of X onto Y such that ||P|| = 1.
- (iii) There exists a linear subspace Z of X such that

$$X = Y + Z$$
 and $Y \perp Z$.

(iv) There exists a linear subspace Z of X such that

$$X = Y + Z$$
 and $\tau_+(y, z) \ge 0$, for all $y \in Y$ and $z \in Z$.

(v) There exists a linear subspace Z of X such that X = Y + Z and for all $y \in Y \setminus \{0\}$ and $z \in Z$ there is an $f \in X^* \setminus \{0\}$ such that f attains its norm at $\frac{y}{\|y\|}$ and vanishes at z.

Proof. The equivalence ((i) \Leftrightarrow (ii)) is well–known (see, e.g., [10], p. 28). To prove that (ii) implies (iii) put $Z := \ker P \ (= P^{-1}(0))$. Then, for all $y \in Y$ and $z \in Z$, we get $||y|| = ||P(y + tz)|| \le ||y + tz||$, for $t \in \mathbb{R}$, so $y \perp z$.

To prove that (iii) implies (ii), define P(x) := y, $(x \in X)$, where x = y + z (given $x \in X$, such an y is unique since $Y \perp Z$ implies $Y \cap Z = \{0\}$). Then P

is linear and, by orthogonality, $||P(x)|| = ||y|| \le ||y+z|| = ||x||$, so $||P|| \le 1$. Simultaneously, $||P|| \ge 1$, since P is a projection.

Finally, the equivalences $((iii)\Leftrightarrow(iv))$ and $((iii)\Leftrightarrow(v))$ follow immediately from Lemmas 2.1 and 2.2, respectively.

Corollary 2.1. Let X be a normed space and Y be a linear subspace of X. The following statements are equivalent.

- (i) For every normed space V and $f \in L(Y, V)$, there exists an extension $F \in L(X, V)$ of f (the norm of f need not be preserved).
- (ii) There exists a continuous linear projection of X onto Y.
- (iii) There are: an equivalent norm on X, say $||| \cdot |||$, and a projection $P \in L(X,Y)$ such that

$$|||P(x)||| \le |||x||| \quad for \ all \ x \in X.$$

(iv) There are: an equivalent norm on X, say $|\|\cdot\||$, and a linear subspace Z of X such that

$$X = Y + Z$$
 and $\tilde{\tau}_+(y,z) \ge 0$ for all $y \in Y$, $z \in Z$,

where

$$\tilde{\tau}_{+}(y,z) = \lim_{t \searrow 0} \frac{|\|y + tz\|| - |\|y\||}{t}.$$

Proof. In view of Theorem 2.1 the equivalences (i) \Leftrightarrow (ii) and (iii) \Leftrightarrow (iv) are obvious. In order to get that (ii) \Rightarrow (iii), it suffices to put

$$|||x||| = ||P(x)|| + ||x - P(x)||.$$

Obviously, (iii) implies (ii).

Sometimes $f \in L(Y, V)$ has some additional property, like e.g. monotonicity. The following two remarks may be helpful if we want to extend f with preserving such a property too.

REMARK 2.1. Let X and Y be normed spaces, Y be a linear subspace of X. Let ϱ be a relation in X (i.e. $\varrho \subseteq X^2$) and ν be a relation in Y. A function $f: X \to V$ is called monotone on a set $A \subseteq X$ if for every $x_1, x_2 \in A$ such that $x_1\varrho x_2$, it holds $f(x_1)\nu f(x_2)$. Let $f \in L(Y,V)$ be monotone on Y. Assume that there is a decomposition of X, X = Y + Z, such that $Y \perp Z$. Then, by Theorem 2.1 (ii) and (iii), f can be extended to some $F \in L(X,V)$ with preserving its norm. If, additionally, the linear projection $P: X \to Y$, defined by the decomposition X = Y + Z, is monotone (i.e. $x_1\varrho x_2$ implies $P(x_1)\varrho P(x_2)$), then f can be extended to some

 $F \in L(X, V)$ with preserving not only the norm but also the monotonicity property. To see this it is enough to define F by $F(x) = f \circ P(x), x \in X$.

Remark 2.2. Let X and V be normed spaces, Y be a linear subspace of X. Let $M: X \to 2^V$ be a given set-valued map. Assume that $f \in L(Y, V)$ is such that

$$f(y) \in M(y)$$
 for all $y \in Y$.

If there is a decomposition X = Y + Z of X such that $Y \perp Z$, then there exists an extension $F \in L(X, V)$ of f such that ||F|| = ||f|| and

$$F(x) \in M(P(x))$$
 for all $x \in X$,

where P is a continuous linear projection generated by the decomposition X = Y + Z. For example, let C be a convex cone in V, $m: X \to V$, and let M be defined by

$$M(x) = \{ v \in V | v \in m(x) + C \}.$$

If $m(P(x)) \in m(x) + C$, for all $x \in X$, then we have additionally that

$$F(x) \in M(x)$$
 for all $x \in X$.

3. Projections of norm one onto some subspaces of C([0,1]). We begin with the following theorem which is due to R. C. James ([5], Theorem 4.5).

Theorem 3.1. If $f \neq 0$ and g are elements of the space C([0,1]) with the \sup -norm then

$$\tau_{+}(f;g) = \max \left\{ g(t) \operatorname{sign} f(t) : t \in M_f \right\},\,$$

where

$$M_f = \{t \in [0,1] : |f(t)| = ||f||\}.$$

Corollary 3.1. Let $g \in C([0,1])$ and X be a subspace of C([0,1]). Define the set X_s by putting

$$X_s := \{ f \in X : M_f \text{ is a singleton} \}.$$

- (i) If $X \perp g$, then g vanishes on the set $\operatorname{cl}\left(\bigcup_{f \in X_s} M_f\right)$, where $\operatorname{cl}(\cdot)$ denotes the closure operation.
- (ii) If g vanishes on the set $\bigcup_{f \in X \setminus \{0\}} M_f$, then $X \perp g$.

Proof. (i) By Lemma 2.1, $X \perp g$ implies that $\tau_+(f,g) \geq 0$, for all $f \in X$. In particular, if $f \in X_s$ then $M_f = \{t_0\}$ for some $t_0 \in [0,1]$ so, by Theorem 3.1, $g(t_0) \operatorname{sign} f(t_0) \geq 0$. Since $-f \in X$ and $M_f = M_{-f}$, we may conclude in the same way, that $g(t_0) \operatorname{sign}(-f(t_0)) \geq 0$. Hence, $g(t_0) = 0$, because f does not vanish at t_0 . By continuity, g(t) = 0 for all $t \in \operatorname{cl}\left(\bigcup_{f \in X_s} M_f\right)$.

(ii) By hypothesis, for any $f \in X \setminus \{0\}$, g vanishes on the set M_f so, by Theorem 3.1, $\tau_+(f,g) = 0$. Hence and by Lemma 2.1, we get that $X \perp g$.

EXAMPLE 3.1. Let Y_0 be the plane in C([0,1]) defined by $Y_0 := \operatorname{span}\{f_1, f_2\}$, where

$$f_1(t) := 1 - t^2$$
 and $f_2(t) := 1 + t$, for $t \in [0, 1]$.

Let X be any subspace of C([0,1]) such that $Y_0 \subset X \neq Y_0$. We show that there does not exist a projection of norm one from X onto Y_0 . Suppose, on the contrary, there is such a projection. Then, by Theorem 2.1, there exists a subspace $Z \subset X$ such that $X = Y_0 + Z$ and $Y_0 \perp Z$. Let $g \in C([0,1])$ and $Y_0 \perp g$. Observe that, for any $t_0 \in [0,1]$, there is an $f \in Y_0$ such that $M_f = \{t_0\}$ (it suffices to put $f := f_1 + 2t_0f_2$). Therefore, by Corollary 3.1, we may conclude that g = 0. Hence, $Z = \{0\}$ so $X = Y_0$, a contradiction.

The following problem arises naturally in the context of Example 3.1: Give a general characterization of these non–Euclidean normed spaces X of dimension ≥ 3 which contain a two–dimensional subspace Y with the property that the identity map on Y is the only projection of norm one from a subspace of X onto Y. Observe that e.g. Theorem 2.1 (iii) demands to verify the existence of subspaces Y and Z of X such that $Y \perp Z$ and X = Y + Z. However, as is shown in Example 3.1, even if X is given, it may be troublesome to check the above condition.

EXAMPLE 3.2. Let Y_1 be the plane in C([0,1]) defined by

$$Y_1 := \text{span}\{e_1, e_2\}$$
 where $e_1(t) := t$ and $e_2(t) := t^2$, for $t \in [0, 1]$.

Elementary computations show that, for $f \in Y_1 \setminus \{0\}$, the set M_f is either a singleton $\{t_0\}$ with $t_0 \in (-1 + \sqrt{2}, 1]$, or $M_f = \{-1 + \sqrt{2}, 1\}$. Thus, we may apply Corollary 3.1 to conclude that $Y_1 \perp g$ iff $g|_{[-1+\sqrt{2},1]} = 0$. Let Z_1 be the set of all such functions g. Then, by Theorem 2.1, we may infer that the space $X_1 := Y_1 + Z_1$ is the largest (with respect to the inclusion \subseteq) subspace of C([0,1]), for which there exists a projection of norm one from X_1 onto Y_1 . On the other hand, there exists a subspace X dense in C([0,1]) such that, for any subspace $X' \neq Y_1$ satysfying $Y_1 \subset X' \subseteq X$, there is no projection of norm one from X' onto Y_1 (it suffices to consider the space X

of all real-valued polynomials restricted to [0,1]; in this case, $g \in X$ and $Y_1 \perp g$ imply g = 0).

Remark 3.1. The results of Example 3.2 can be extended to the planes Y_{kn} defined by

$$Y_{kn} := \operatorname{span}\{e_k, e_n\},\$$

where k and n are non-negative integers, k < n, and $e_m(t) := t^m$ for $t \in [0,1]$ and $m \in \mathbb{N} \cup \{0\}$. Then, there is a projection of norm one from C([0,1]) onto Y_{kn} iff k=0. Further, for $n>k\geq 1$, define a real number $t_{kn}\in (0,1)$ as the solution of the equation

$$(n-k)x^n + nx^{n-k} - k = 0$$

(this equation has a unique solution in (0,1)), and put

$$Z_{kn} := \{ g \in C([0,1]) : g \big|_{[t_{kn},1]} = 0 \}.$$

We leave it to the reader to verify that $X_{kn} := Y_{kn} + Z_{kn}$ is the largest subspace of C([0,1]), for which there exists a projection of norm one from X_{kn} onto Y_{kn} .

We close our paper with an example of a three–dimensional space X, $X \subset C([0,1])$, and its two–dimensional subspace Y, for which the family of projections of norm one from X onto Y is infinite. We emphasize that such a case could not occur if X was a Hilbert space.

EXAMPLE 3.3. Let X be the subspace of C([0,1]) defined by

$$X := \operatorname{span}\{f_1, f_2, f_3\},\$$

where $f_1(t) := \left| t - \frac{1}{2} \right|$ and $f_2(t) := 1$ for $t \in [0, 1]$, and $f_3(t) := \left| t - \frac{1}{2} \right|$ for $t \in \left[0, \frac{1}{2} \right]$ and $f_3(t) := 0$ for $t \in \left(\frac{1}{2}, 1 \right]$.

Clearly, the functions f_1 , f_2 , f_3 are linearly independent, so dim X=3. Further, let

$$Y := \operatorname{span}\{f_1, f_2\}.$$

It is easy to verify that for $f \in Y$, either $M_f = \left\{\frac{1}{2}\right\}$, or $M_f = \{0, 1\}$, or $M_f = \left\{0, \frac{1}{2}, 1\right\}$, or $M_f = [0, 1]$. Applying Lemma 2.1 and Theorem 3.1 it can be obtained that for a function $g \in C([0, 1])$,

$$Y \perp g$$
 iff $g\left(\frac{1}{2}\right) = 0$ and $g(0) \cdot g(1) \leq 0$.

Hence, we easily get that if $g \in X$ and $g = \alpha f_1 + \beta f_2 + \gamma f_3$, then $Y \perp g$ iff $\beta = 0$ and $\alpha(\alpha + \gamma) \leq 0$. This leads to the following equivalence: for $g \in X$,

$$Y \perp g \iff \bigvee_{\lambda \in \mathbb{R}} \bigvee_{f \in [f_3 - f_1, f_3]} g = \lambda f,$$

where $[f_3 - f_1, f_3]$ denotes the segment with ends at the points $f_3 - f_1$ and f_3 . That means that the set of all elements in X which are orthogonal (from the right) to Y is the symmetric cone generated by the segment $[f_3 - f_1, f_3]$ with 0 as its vertical. For $\lambda \in [0, 1]$, let

$$g_{\lambda} := f_3 - \lambda f_1$$
 and $Z_{\lambda} := \operatorname{span}\{g_{\lambda}\}.$

Then $Y \perp Z_{\lambda}$ and $X = Y + Z_{\lambda}$ for $\lambda \in [0,1]$. Let P_{λ} denote a continuous linear projection from X onto Y such that $\|P_{\lambda}\| = 1$, the existence of which is guaranteed by Theorem 2.1 (see the proof of (iii) \Rightarrow (ii)). It is clear that, for λ' , $\lambda'' \in [0,1]$, $P_{\lambda'} \neq P_{\lambda''}$ if $\lambda' \neq \lambda''$. Therefore, the family $\{P_{\lambda} : \lambda \in [0,1]\}$ is infinite. Furthermore, it contains all possible projections of norm one from X onto Y.

References

- [1] AKILOV, G.S., KUTATELADZE, S.S., Ordered vector spaces (in Russian). Nauka, Novosibirsk (1978).
- Banach, S., Thèorie des opèrations linèaires. Monografie Matematyczne, Vol 1, Warsaw, (1931).
- [3] BIRKHOFF, G., Orthogonality in linear metric spaces. Duke Math. J. 1 (1935), 169–172.
- [4] Holmes, R. B., Geometric functional analysis and its applications. Springer, New York, (1975).
- [5] JAMES, R.C., Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc. 61 (1947), 265–292.
- [6] KAKUTANI, S., Some characterizations of Euclidean space. Japan J. Math. 16 (1933), 93–97.
- [7] Kantorovich, L.V., Akilov, G.P., Functional Analysis (in Russian). Nauka, Moscow (1977)
- [8] Kelley, J.L., Banach spaces with the extension property. Trans. Amer. Math. Soc. 72 (1952), 323–326.
- [9] MAZUR, S., Über convexe Mengen in linearen normierten Räumen. Studia Math. 4 (1939), 70-84.
- [10] Nachbin, L., A theorem of the Hahn-Banach type for linear transformations. Trans. Amer. Math. Soc. 68 (1950), 28–46.
- [11] PHELPS, R.R., Convex functions, monotone operators and differentiability. Lecture Notes in Mathematics, Vol. 1364, Springer-Verlag, Berlin, (1989).

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY OF LÓDŹ AL. POLITECHNIKI 11 90-924 LÓDŹ, POLAND