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Abstract. The Hahn—Banach extension theorem is generalized to the case
of continuous linear operators mapping a subspace Y of a normed space X
into a normed space V. In contrast with known results of this kind, we do
not equip V with a partial ordering neither impose any restrictions on V.
The extension property is fully characterized by the sign of the one sided
Gateaux derivative of the norm | - ||x. Other characterizations, involving
e.g. Birkhoff’s orthogonality, are also provided.

1. Introduction. Let (X, | -||x) be a normed space. Let X* denote the
space of continuous linear functionals on X. For f € X™,

[fllx+ = sup{lf(2)] : z € X, =] <1}

defines a norm on X*.
It follows from the fundamental Hahn—Banach extension theorem (see [2])
that for any linear subspace Y of X and any continuous linear functional
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on Y, there is an extension F' € X* of f such that ||F|x« = || f|ly+ (the
subscript on | - || indicates where this norm is taken). This result plays
a crucial role in geometric functional analysis (see, e.g., [4], p. 95 or [7],
Section 2.4).

However, it is known that a similar result need not hold for the class
L(X,V) of continuous linear operators from X to a normed space (V, |- ||v)
even when V is two—dimensional only. Therefore, the following question
arises: under what properties of a given normed space V, any operator
f € L(Y,V) can be extended to F' € L(X,V) with preserving its norm, i.e.
in such a way that

IFl vy = 1l

where X is an arbitrary normed space and Y is its subspace. This question
was investigated by Nachbin [10], who showed that if every family B of balls
in V, for which any two balls in B have a common point, has a nonempty
intersection, then every linear operator f € L(Y, V') can be extended to some
F € L(X,V) with preserving its norm, no matter what are the properties
of the normed spaces X and Y C X. Another characterization of such
spaces V was given by Kelley [8] (see also [7]). The above property is very
restrictive however, and it excludes the case V is the Euclidean space R2,
for instance. This limits very much a potential use of such a generalization
of the Hahn—Banach theorem.

In this paper we study somewhat different problem: when, for a given
normed space X and its subspace Y, any operator f € L(Y,V) can be
extended to F' € L(X, V) with (see Theorem 2.1) or without (see Corollary
2.1)) preserving its norm, where V is assumed to be an arbitrary normed
space. A solution to this problem is fully characterized by the sign of the
one sided Gateaux derivative of the norm || - |[[x. Theorem 2.1 gives also
two other conditions equivalent to the extension property, the first involving
the so-called Birkhoff’s orthogonality, and the second making use of some
special continuous linear functionals on X. In contrast with the results of
Nachbin [10] and Kelly [8], the properties of the space V play no role in
characterizing the extension property of f € L(Y,V). Thus Theorem 2.1
and the results of Nachbin and Kelley are somehow complementary. If one
does not want to impose any restrictions on X and Y, then the results of [10]
and [8] are applicable; if no restrictions on V' are demanded, then Theorem
2.1 and Corollary 3.1 may be useful. In Section 3 we consider three examples
concerning the problem of existence of some planes (i.e., two—dimensional
subspaces) in C([0, 1]), the space of all real and continuous functions on the
unit interval. In particular, our Example 3.1 shows that there is a plane
Yy € C([0,1]) such that for none of the subspaces Xof C([0,1]), X D Y,
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there is a projection of norm one from X onto Yy unless X = Y;. We
emphasize here that, by the Kakutani theorem [6], one could conclude only
that each subspace X C C([0,1]) of dimension > 3 contains a plane Y
(depending on X), for which there is no projection of norm one from X
onto Y, whereas our plane Y is a universal one having such a property.

Finally, it should be stressed up that we do not assume any order structure
in V, in contrast with the approach presented e.g. in [1].

2. The Hahn—Banach type theorem. From now on we shall omit
the subscript on the norm whenever it is clear from the context which norm
is considered. Let 74 (y; x) denote one sided Gateaux derivative of the norm
at y € X in the direction x € X, i.e.,

oy ey s —lyl
T+ (ya LE) - ;1{‘% s .
The above limit is known to exist (see Mazur [9]).

Further, an element x € X is said to be orthogonal to an element y
(x L y)iff ||z +ty|| > ||z]|, for all ¢ from the set R of all real numbers. This
definition was introduced by G. Birkhoff [3]. If A and B are subsets of X,
we say that A is orthogonal to B (A L B) iffa L b, for alla € A and b € B.
When one of the sets is a singleton, say B = {b}, we use the notation A L b
instead of A L {b}.

LEMMA 2.1. Let b € X and A be a symmetric subset of X, i.e., a € A
implies that —a € A. Then

ALb iff 74(a,b) >0, forallac A

Proof. (=) Fix an a € A. By hypothesis, ||la + tb|| > ||a||, for all t € R.
Hence, w > 0, for ¢ > 0, which implies that 7 (a,b) > 0.
(<) For a € A, define the function ¢, by

putty o= o2 =
Since ¢, is non-decreasing (see, e.g., [11], Lemma 1.2), we get that ¢, (t) >
limg\ o a(s) = 74(a,b) > 0, which gives ||a+tb|| > ||al|, for a € A and t > 0.
Hence, replacing an element a by —a, we may infer that |a + tb|| > ||a||, for
a € A and t < 0. So finally, the above inequality holds for all ¢ € R, i.e.,
albforacA. O

, fort>0.

LEMMA 2.2. Assume that dim X > 2 and x,y € X. Then x L y iff there
exists an f € X*\ {0} such that |f(z)| = || f| ||z|| and f(y) = 0.
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Proof. (=) If z = 0 or y = 0, the existence of f follows from the Hahn—
Banach theorem and the fact that dim X > 2. So assume that = # 0 # .
Then, by the orthogonality, x and y are linearly independent. Define the
functional fy by

fo(tz + sy) :=t, fort,seR.

Then fj is continuous and linear on the plane span{z,y}. Since fy (ﬁ) =
||Tl||’ we infer that [ fol| = ﬁ Simultaneously, for ¢ # 0, we get, keeping in
mind z 1 y,

S
[tz + syll = [¢] llz + Syl = [¢] 2] = [fo(tz + sy)l l|z]l,

which gives | fo| < ﬁ So || foll = m By the Hahn-Banach theorem,
there is an extension f € X* of fy with the same norm as fy. Then f is a
desirable functional.

(<) For all t € R, we have

LNzl = [f ()] = |f(z + )] < [ = + ],
which implies ||z|| < ||z + ty]|, i.e., x L y. O

THEOREM 2.1. Let X be a normed space with dim X > 2 and Y be a
linear subspace of X. The following statements are equivalent.
(i) For any normed space V and f € L(Y,V), there exists an extension
Fe L(X,V) of f such that |[F| = ||f|.
(ii) There exists a continuous linear projection P of X onto Y such that
1Pl = 1.
(iii) There exists a linear subspace Z of X such that

X=Y+7 and Y L Z.
(iv) There ewxists a linear subspace Z of X such that
X=Y+7 and 74+(y,z) >0, forallyeY andze€ Z.

(v) There exists a linear subspace Z of X such that X =Y + Z and for
ally € Y\ {0} and z € Z there is an f € X*\ {0} such that f attains
its norm at ﬁ and vanishes at z.

Proof. The equivalence ((i)<(ii)) is well-known (see, e.g., [10], p. 28). To
prove that (ii) implies (iii) put Z :=ker P (= P~1(0)). Then, for ally € Y
and z € Z, we get ||y|| = [|P(y +t2)| < |ly+tz|, for t eR, s0y L z.

To prove that (iii) implies (ii), define P(z) :=y, (x € X), wherez = y+2
(given x € X, such an y is unique since Y L Z implies YNZ = {0}). Then P
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is linear and, by orthogonality, ||P(z)| = |ly|| < ||y + z|| = ||z]|, so || P|| < 1.
Simultaneously, ||P|| > 1, since P is a projection.

Finally, the equivalences ((iii)<(iv)) and ((iii)< (v)) follow immediately
from Lemmas 2.1 and 2.2, respectively. O

COROLLARY 2.1. Let X be a normed space and Y be a linear subspace
of X. The following statements are equivalent.

(i) For every normed space V' and f € L(Y,V'), there exists an extension
F e L(X,V) of f (the norm of f need not be preserved).
(ii) There exists a continuous linear projection of X onto Y.
(iii) There are: an equivalent norm on X, say || - |||, and a projection
P e L(X,Y) such that

P@I <l forallzeX

(iv) There are: an equivalent norm on X, say ||| |||, and a linear subspace
Z of X such that

X=Y+7 and 7+(y,2) >0 foralyeY, z€ Z,

where

t _
ol ezl = sl
t\.0 t

7:+(ya Z) -

Proof. In view of Theorem 2.1 the equivalences (i)<(ii) and (iii)<(iv) are
obvious. In order to get that (ii)=-(iii), it suffices to put

]l = [[P@)] + [lz = P(2)]-
Obviously, (iii) implies (ii). O

Sometimes f € L(Y,V) has some additional property, like e.g. mono-
tonicity. The following two remarks may be helpful if we want to extend f
with preserving such a property too.

REMARK 2.1. Let X and V be normed spaces, Y be a linear subspace
of X. Let o be a relation in X (i.e. ¢ C X?) and v be a relation in V.
A function f: X — V is called monotone on a set A C X if for every
z1,x2 € A such that zjpxs, it holds f(z1)vf(z2). Let f € L(Y,V) be
monotone on Y. Assume that there is a decomposition of X, X =Y 4+ 7,
such that Y L Z. Then, by Theorem 2.1 (ii) and (iii), f can be extended
to some F' € L(X,V) with preserving its norm. If, additionally, the linear
projection P : X — Y defined by the decomposition X = Y + 7, is
monotone (i.e. z1oxe implies P(z1)oP(z2)), then f can be extended to some
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F € L(X,V) with preserving not only the norm but also the monotonicity
property. To see this it is enough to define ' by F'(z) = fo P(x), z € X.

REMARK 2.2. Let X and V be normed spaces, Y be a linear subspace of
X. Let M : X — 2 be a given set-valued map. Assume that f € L(Y,V)
is such that

fy) € M(y) for all y € Y.

If there is a decomposition X =Y + Z of X such that Y | Z, then there
exists an extension F' € L(X, V) of f such that || F| = || f|| and

F(z) € M(P(x)) for all z € X,

where P is a continuous linear projection generated by the decomposition
X =Y + Z. For example, let C' be a convex cone in V, m: X — V, and
let M be defined by

M(z)={veV|vem)+C}h
If m(P(z)) € m(x) + C, for all z € X, then we have additionally that
F(x) € M(x) for all x € X.

3. Projections of norm one onto some subspaces of C([0,1]). We
begin with the following theorem which is due to R. C. James ([5], Theorem
4.5).

THEOREM 3.1. If f (#0) and g are elements of the space C([0,1]) with
the sup norm then
7+(f19) = max {g(t) sign f(t) : t € My},

where
My =A{te0,1]: [fO)f = [/}
COROLLARY 3.1. Let g € C([0,1]) and X be a subspace of C([0,1]).
Define the set Xg by putting
Xs:={fe€X: Myisasingleton}.

(i) If X L g, then g vanishes on the set cl (UfeXs Mf), where cl(-) denotes

the closure operation.
(ii) If g vanishes on the set Usex\qoy My, then X L g.



EXTENDABILITY OF LINEAR OPERATORS 35

Proof. (i) By Lemma 2.1, X 1| g implies that 7.(f,g) > 0, for all f € X.
In particular, if f € X, then My = {to} for some ty € [0, 1] so, by Theorem
3.1, g(to)sign f(tg) > 0. Since —f € X and My = M_¢, we may conclude
in the same way, that g(to) sign(— f(tp)) > 0. Hence, g(ty) = 0, because f

does not vanish at 9. By continuity, g(¢) = 0 for all ¢ € cl (UfeXs Mf>.

(i) By hypothesis, for any f € X \ {0}, g vanishes on the set My so,
by Theorem 3.1, 74(f,g) = 0. Hence and by Lemma 2.1, we get that
X 1g. U

ExAaMPLE 3.1. Let Yj be the plane in C([0, 1]) defined by Y := span{ f1, f2},
where
fi(t) =1 —t*and fo(t) :=1+1t, for t € [0, 1].

Let X be any subspace of C([0,1]) such that Yy C X # Y. We show that
there does not exist a projection of norm one from X onto Yj. Suppose, on
the contrary, there is such a projection. Then, by Theorem 2.1, there exists

a subspace Z C X such that X =Yy + Z and Yy L Z. Let g € C([0,1])
and Yy L g. Observe that, for any ¢y € [0, 1], there is an f € Y} such that
My = {to} (it suffices to put f := fi + 2ty f2). Therefore, by Corollary 3.1,
we may conclude that g = 0. Hence, Z = {0} so X = Y}, a contradiction.

The following problem arises naturally in the context of Example 3.1:
Give a general characterization of these non—Euclidean normed spaces X
of dimension > 3 which contain a two-dimensional subspace Y with the
property that the identity map on Y is the only projection of norm one
from a subspace of X onto Y. Observe that e.g. Theorem 2.1 (iii) demands
to verify the existence of subspaces Y and Z of X such that Y 1 Z and
X =Y + Z. However, as is shown in Example 3.1, even if X is given, it
may be troublesome to check the above condition.

EXAMPLE 3.2. Let Yj be the plane in C([0, 1]) defined by
Y] :=span{e;,ep} where e1(t) :=t and ey(t) :=t>, for t € [0,1].

Elementary computations show that, for f € Y7 \ {0}, the set M is either
a singleton {to} with ¢p € (—1 +v/2,1], or My = {1+ v/2,1}. Thus, we
may apply Corollary 3.1 to conclude that Y; L g iff g|[_1+\/§’1]: 0. Let Z;
be the set of all such functions g. Then, by Theorem 2.1, we may infer that
the space X1 := Y; + Z; is the largest (with respect to the inclusion C)
subspace of C([0,1]), for which there exists a projection of norm one from
X1 onto Y. On the other hand, there exists a subspace X dense in C(]0, 1])
such that, for any subspace X’ # Y; satysfying Y7 € X’ C X, there is no
projection of norm one from X’ onto Y7 (it suffices to consider the space X
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of all real-valued polynomials restricted to [0,1]; in this case, g € X and
Y1 L g imply g = 0).

REMARK 3.1. The results of Example 3.2 can be extended to the planes
Y., defined by
Yin := span{eg, e, },

where k& and n are non—negative integers, k& < n, and e, (t) := t™ for
t € [0,1] and m € NU {0}. Then, there is a projection of norm one from
C([0,1]) onto Yi, iff & = 0. Further, for n > k > 1, define a real number
trn € (0,1) as the solution of the equation

(n—k)z" +na"* — k=0
(this equation has a unique solution in (0, 1)), and put
Lin = {g € C([Oa 1]) : g’[tkn,l] = 0}

We leave it to the reader to verify that Xp, := Yi, + Zg, is the largest
subspace of C([0,1]), for which there exists a projection of norm one from
Xpn onto Y.

We close our paper with an example of a three—dimensional space X,
X c C(]0,1]), and its two—dimensional subspace Y, for which the family of
projections of norm one from X onto Y is infinite. We emphasize that such
a case could not occur if X was a Hilbert space.

EXAMPLE 3.3. Let X be the subspace of C([0,1]) defined by
X = Span{flv f27 f3}v
where fi(t) := ‘t— %’ and fo(t) := 1 for t € [0,1], and f3(t) := ‘t— %‘ for
te [0, %} and f3(t) :=0for ¢ € (%,1}
Clearly, the functions fi, fo, f3 are linearly independent, so dim X = 3.
Further, let

Y :=span{fi, fa}.
It is easy to verify that for f € Y, either My = {%}, or My = {0,1}, or

My = {O, %, 1}, or My = [0,1]. Applying Lemma 2.1 and Theorem 3.1 it
can be obtained that for a function g € C(|0, 1)),

1
Y 1g iff g(§>:0 and ¢(0)-g(1) <0.
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Hence, we easily get that if g € X and g = af; + Bfs +vf3, then Y L g iff
B =0 and a(a+) < 0. This leads to the following equivalence: for g € X,

Y 1 g \/ \/ g=Af,
AER fe[f3—f1,f3]

where [f3 — f1, f3] denotes the segment with ends at the points f3 — f1 and
f3. That means that the set of all elements in X which are orthogonal (from
the right) to Y is the symmetric cone generated by the segment [fs — f1, f3]
with 0 as its vertical. For A € [0, 1], let

gn = fz3—Afi and Z) :=span{g\}.
Then Y L Z) and X =Y 4 Z, for A € [0,1]. Let Py denote a continuous
linear projection from X onto Y such that ||Py|| = 1, the existence of
which is guaranteed by Theorem 2.1 (see the proof of (iii) = (ii)). It is
clear that, for X', X" € [0,1], Py # Py if X # X', Therefore, the family
{P\: X €[0,1]} is infinite. Furthermore, it contains all possible projections
of norm one from X onto Y.
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