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Abstract. We study (symmetric) three-class association schemes. The graphs with four distinct eigenvalues

which are one of the relations of such a scheme are characterized. We also give an overview of most known
constructions, and obtain necessary conditions for existence. A list of feasible parameter sets on at most 100
vertices is generated.
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1. Introduction

In the theory of (algebraic) combinatorics association schemes play an important role.
Association schemes may be seen as colorings of the edges of the complete graph satisfying
nice regularity conditions, and they are used in coding theory, design theory, graph theory
and group theory. Many chapters of books or complete books are devoted to association
schemes (cf. [2, 10, 12, 34]).

The special case of two-class association schemes (colorings with two colors) is widely
investigated (cf. [13, 62]), as these are equivalent to strongly regular graphs. Also the
case of three-class association schemes is very special: there is more than just applying the
general theory. However, there are not many papers about three-class association schemes
in general. There is the early paper by Mathon [52], who gives many examples, and the
thesis of Chang [19], who restricts to the imprimitive case. The special case of distance-
regular graphs with diameter three has been paid more attention, and for more results on
such graphs we refer to [10].

We shall discuss three-class association schemes, mainly starting from regular graphs
with four distinct eigenvalues (cf. [23]), since for most of the (interesting) schemes indeed
at least one of the relations is such a graph. However, most such graphs cannot be a
relation in a three-class association scheme (cf. [26]). (It is even so that there are graphs
that have the same spectrum as one of the relations of a three-class association scheme,
which are themselves not a relation of a three-class association scheme, cf. [39]). We shall
characterize the graphs with four distinct eigenvalues that are a relation of a three-class
association scheme. We shall give several constructions, and obtain necessary number
theoretic conditions for existence.

We start with a brief introduction to association schemes. For (more) basic results on
association schemes and their proofs we refer to [10, 12]. At the end we shall classify
the three-class association schemes into three classes, one which may be considered as
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degenerate, one in which all three relations are strongly regular, and one in which at least
one of the relations is a graph with four distinct eigenvalues. This classification is used to
generate all feasible parameter sets of (hondegenerate) three-class association schemes on
at most 100 vertices, which are listed in the appendix.

2. Association schemes

LetV be afinite set of vertices. é-classassociation schenmenV consists of a set af + 1
symmetric relationg Ry, Ry, ..., Ry} on V, with identity relationRy={(x, x) | x € V},
such that any two vertices are in precisely one relation. Furthermore, theénéeaisection
numbers ﬁ such that for anyx, y) € Ry, the number of verticessuch thatx, z) e R and
(z,y)eR; equalspikj . If a pair of vertices is in relatiol® , then these vertices are called
ith associates|f the union of some relations is a nontrivial equivalence relation, then the
scheme is calletnprimitive, otherwise it is callegrimitive.

Association schemes were introduced by Bose and Shimamoto [8]. Delsarte [27] applied
association schemes to coding theory, and he used a slightly more general definition by not
requiring symmetry for the relations, but for the total set of relations and for the intersection
numbers. To study permutation groups, Higman (cf. [41]) introduced the even more general
coherent configurationgor which the identity relation may be the union of some relations.

In coherent configurations for which the identity relation is not one of its relations we must
have at least 5 classes (6 relations).

There is a strong connection with group theory in the following wag i a permutation
group acting on a vertex s¥t, then theorbitals, that is, the orbits of the action & onV?2,
form a coherent configuration. @ actsgenerously transitivethat is, for any two vertices
there is a group element interchanging them, then we get an association scheme. If so, then
we say the scheme is in tiggoup case

2.1. The Bose-Mesner algebra

The nontrivial relations can be considered as graphs, which in our case are undirected.
One immediately sees that the respective graphs are regular with aegres). For the
corresponding adjacency matricAsthe axioms of the scheme are equivalent to

d

d
A= A=l A=A, AA=} piA
k=0

i=0

It follows that the adjacency matrices generatd & 1)-dimensional commutative algebra
A of symmetric matrices. This algebra was first studied by Bose and Mesner [7] and is
called theBose-Mesner algebraf the scheme. The corresponding algebra of a coherent
configuration is called aoherent algebraor by some authors a cellular algebra or cellular
ring (with identity) (cf. [30]).

A very important property of the Bose-Mesner algebra is that it is not only closed under
ordinary multiplication, but also under entrywise (Hadamard, Schur) multiplicatidn
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fact, any vector space of symmetric matrices that contains the identity nasiix the
all-one matrixJ, and that is closed under ordinary and entrywise multiplication is the
Bose-Mesner algebra of an association scheme (cf. [10, Theorem 2.6.1]).

2.2. The spectrum of an association scheme

Since the adjacency matrices of the scheme commute, they can be diagonalized simulta-
neously, that is, the whole space can be written as a direct sum of common eigenspaces.
In fact, A has a unique basis of minimialempotents Ei =0, ..., d. These are matrices

such that

d
EiEj =5ij E; and ZEi =1.
i=0

(The idempotents are projections on the eigenspaces.) Without loss of generality, we may
takeEg=v~1J. Now let P andQ be matrices such that

d d
1
Aj:E P;E and Ej:;E Qij Aj.
i=0

i=0

ThusPQ=QP=uvl. It also follows thatA;E; = B; E;, so B; is an eigenvalue of;

with multiplicity m; =rank(E;j). The matrices? and Q are called theeigenmatriceof

the association scheme. The first row and column of these matrices are always given by
Po= Qio=1, Po =n; andQu = m;. FurthermoreP andQ are related byn; B; =n; Qj;i.

Other important properties of the eigenmatrices are given bgrtthegonality relations

d d
D MR P =wnisi and Y n Qi Qi = vm; .
i—0 1=0

Theintersection matrices jLdefined by(L;)xj = pikj also have eigenvaludy; . In fact, the
columns ofQ are eigenvectors df;. Moreover, the algebra generated by the intersection
matrices is isomorphic to the Bose-Mesner algebra.

An association scheme is callgelf-dualif P = Q for some ordering of the idempotents.

2.3. The Krein parameters

As the Bose-Mesner algebra is closed under entrywise multiplication, we can write

1 d
Ei o Ej = ;quf Ek
k=0
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for some real numbelq‘}, called theKrein parametersr dual intersection numbers. We
can compute these parameters from the eigenvalues of the scheme by the equation

d

K mim; Pi Py Pa

% = > 2
=0 |

The so-calledrein conditionsproven by Scott, state that the Krein parameters are nonneg-
ative. Another restriction related to the Krein parameters is the so-cbsalute bound
which states that for all |

mim, iti # ],
Mg =41 o
o0 > m +1 ifi=j.

2.4. Distance-regular graphs and strongly regular graphs

A distance-regular graplis a connected graph for which the distance relations (i.e., a pair
of vertices is inR; if their distance in the graph i3 form an association scheme. They were
introduced by Biggs [5], and are widely investigated. As general reference we use [10]. Itis
well known that an imprimitive distance-regular graph is bipartite or antipodiatipodal
means that the union of the distandeelation and the trivial relation is an equivalence
relation.

A connectedstrongly regular graphs a distance-regular graph with diameter two. A
graph G is strongly regular with paramete(s, k, A, ) if and only if it hasv vertices,
is regular of degre& (with 0 <k <v—1), any two adjacent vertices haxwecommon
neighbours and any two nonadjacent vertices hasemmon neighbours. The complement
of G is also strongly regular, and in fact any 2-class association scheme is equivalent to a
pair of complementary strongly regular graphs.

The property that one of the relations oflaclass association scheme forms a distance-
regular graph with diametet is equivalent to the scheme beiRgpolynomial that is, the
relations can be ordered such that the adjacency maAtrof relation R; is a polynomial
of degreei in A, for everyi. In turn, this is equivalent to the conditiorpﬁ?rl >0 and
pk =0fork>i+1,i =0,...,d— 1. For a 3-class association scheme the conditions are
equivalent top?, =0, p2, > 0 andp3, > 0 for some ordering of the relations.

Dually we say that the scheme @-polynomialif the idempotents can be ordered such
that the idempotenE; is a polynomial of degreein E; with respect to entrywise mul-
tiplication, for everyi. Equivalent conditions are thqﬁ1 >0 andq'l‘i =0fork>i+1,
i=0,...,d—1. Inthe case of a 3-class association scheme these conditions are equivalent
tog$; = 0,9, > 0 andg?, > 0 for some ordering of the idempotents. (Here we say that the
scheme ha®-polynomial ordering 123.)

In the case of distance-regular graphs, the relation corresponding to adjacency generates
the whole corresponding association scheme. A similar thing often occurs if we have a
3-class association scheme. A scheme is said teeheratedy one of its relations (or the
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corresponding graph) if this relation determines the other relations (immediately from the
definition).

If one of the relations of a 3-class association scheme is a graph with four distinct
eigenvalues, then the number of common neighbours of two nonadjacent vertices equals
pfl or pfl (which are distinct, otherwise we have a strongly regular graph, which has only
three distinct eigenvalues), and so we can see from this number whether two vertices are
second or third associates. So the graph generates the whole scheme.

3. Examples

The d-classHamming scheme H, q) is defined on the orderedttuples ong symbols
(words of lengthd over an alphabet witlg letters), where two tuples are in relatiét

if they differ ini coordinates. The 3-class Hamming scheme is also known azutiie
schemeas it was introduced by Raghavarao and Chandrasekhararao [61]. The Hamming
scheme is characterized by its parameters urgesd, and then we also have tioob
schemesFord = 3 there is one Doob scheme (cf. [10]).

The d-classJohnson scheme (4, d) is defined on thed-subsets of am-set. Two
d-subsets are in relatioR; if they intersect ind —i elements. The 3-class version is also
known as thaetrahedral schemend was first found as a generalization of the triangular
graph by John [49]. The Johnson scheme is characterized by its parameterdua@ss
andn =8 (cf. [10]).

Therectangular scheme @, n), introduced by Vartak [69], has as vertices the ordered
pairs(i, j), withi=1,...,m,andj=1,...,n. For two distinct pairs we can have the
following three situations. They agree in the first coordinate, or in the second coordinate,
or in neither coordinate, and the relations are defined accordingly. Note that the graph of
the third relation is the complement of the line graph of the complete bipartite ¢taph
The scheme is characterized by its parameters.

The Hamming scheme, the Johnson scheme and the rectangular scheme are all in the
group case. Only the rectangular scheme does not define a distance-regular grapm(unless
or n equals two). There are many more examples of distance-regular graphs with diameter
three. In this paper we shall mainly focus on 3-class association schemes that are not such
graphs, although, of course, the general results do apply. For more examples and specific
results on distance-regular graphs we refer to [10]. The antipodal distance-regular graphs
with diameter three form a special class, as they are antipodal covers of the complete graph.
For more on such graphs, see [11, 16, 35, 50].

3.1. The disjoint union of strongly regular graphs

Take the disjoint union of, sam, strongly regular graphs, all with the same parameters
and hence the same spectrum. Then this graph generates an imprimitive 3-class association
scheme (the other relations are given by the disjoint union of the complements of the strongly
regular graphs, and the completgartite graph).

Conversely, any association scheme with the same parameters must be obtained in the
described way. Therefore, we may consider this case as degenerate, and it suffices to refer
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to the extensive literature (for example [13, 62]) on strongly regular graphs. The same
remarks hold for the next construction.

3.2. A product construction from strongly regular graphs

If Gis astrongly regular graph, then for any natural nunmhéhne graptG ® J,, defined by
its adjacency matridA ® J,, whereAis the adjacency matrix @, generates an imprimitive
3-class association scheme (here the other relation§ael, and a disjoint union of
n-cliques).

It is easy to show that any 3-class association schemepfite n; (or p3; =n;) must
be of this form.

3.3. Pseudocyclic schemes

A d-class association scheme is calpsudocyclidf all the nontrivial eigenvalues have
the same multiplicitiesn. In this case, we also have all degrees equai.to

If vis aprime power, and= 1 (mod 3), we can define the 3-clagalotomicassociation
scheme Cyck) as follows. Letx be a primitive element dBF(v). As vertices we take the
elements of5F(v). Two vertices will beith associates if their difference equal®*' for
somet (or, if the discrete logarithm (basg of their difference is congruent tanodulo 3),
fori=1,2, 3.

A similar construction gives pseudocyclieclass association schemes. Such schemes
are used by Mathon [52] to construct antipodal distance-regular graphs with diameter three.
The resulting graph had(v + 1) vertices and we shall denote it Iy P + 1) if P is the
original scheme. Fal =2, we get the so-called Taylor graphs (cf. [10]).

If v is not a prime power, then only three pseudocyclic 3-class association schemes are
known. On 28 vertices Mathon [52] found one, and Hollmann [48] proved that there are
precisely two. Furthermore, Hollmann [47] found one on 496 points.

3.4. The block scheme of designs

A guasi-symmetric design is a design in which the intersections of two blocks take two
sizesx andy. The graph on the blocks of such a design with edges between blocks that
intersect inx points is strongly regular, i.e., we have a 2-class association scheme.

Now, consider a block design with the property that the intersections of two blocks
take three sizes. Then possibly the structure on the blocks with relations according to the
intersection numbers is a 3-class association scheme. Delsarte [27] proved that if the design
is a4-design then we have a 3-class association scheme. Hobart [43] found several examples
in her search for the more general coherent configurations of(&;& 4). She mentions
the Witt designs 441, 5, 1) and 5¢24, 8, 1) and their residuals, and the inversive planes
of even order, that is, the @ + 1, 2' + 1, 1) designs. Of course, in any 3-design with
A =1 the blocks can intersect only in 0, 1 or 2 points, but the corresponding relations do
not always form a 3-class association scheme.
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Hobart and Bridges [44] also constructed a uniqu&2-5, 4) design with block inter-
sections 0, 1 and 2, and it defines the distance-regular graph that is also obtained as the
second subconstituent in the Hoffman-Singleton graph (see Section 5.1).

Beker and Haemers [3] proved that if one of the intersection numbers abak2:)
designequalk —r + A, wherer =A(v — 1)/(k — 1) is the replication number of the design,
andthere are two other intersection numbers, then we have animprimitive 3-class association
scheme, that is generated 8y® J, for some strongly regular graph (see Section 3.2).

3.5. Distance schemes and coset schemes of codes

Let C be a linear code wite+ 1 nonzero weights;. Take as vertices the codewords and
let a pair of codewords be in relatid® if their distance isv;. Itis a consequence of a result
by Delsarte [27] (cf. [17]) that if the dual cod®" is e-error-correcting, then these relations
form an(e + 1)-class association scheme. This scheme is calledist@nce schemaf the
code. Moreover, it has a dual scheme, calledttiset schemehich is defined on the cosets
of C*. Two cosetsc + C* andy+ C* are in relationR* if the minimum weight in the
coset(x —y) + C* equald. RelationR; is the coset graph &+, and is distance-regular.

A small example of a code with three nonzero weights is the binary zero-sum code of
length 6, consisting of all 32 words of even weight. Its dual code consist of the zero word
and the all-one word and certainly can correct 2 errors. Therefore, we have two dual 3-class
association schemes on 32 vertices. The graph (in the distance scheme) defined by distance
two in the code is a Taylor graph. The coset graph is the incidence graph of a symmetric
2-(16, 6, 2) design. Larger examples are given by the (duals of the) binary Golay code
[23, 12, 7] and its punctured [22, 12, 6] code and doubly punctured [21, 12, 5] code. For
all three codes the dual codes have nonzero weights 8, 12 and 16, so these define 3-class
association schemes oft22!%and 2 vertices, respectively. Also the Kasami codes (which
are binary BCH codes with minimum distance 5) give rise to 3-class association schemes
(cf. [17]).

3.6. Quadrics in projective geometries

Let Q be a nondegenerate quadridi@(3, q) with g odd (i.e., the set of isotropic points of
the corresponding quadratic for@). LetV be the set of projective pointssuch thaiQ(x)
is a nonzero square. Two distinct vertices are related according as the line through these
points is a hyperbolic line (a secant, i.e., intersecth@n two points), an elliptic line (a
passant, i.e., disjoint fror®) or atangent (i.e., intersectir@@in one point). These relations
form a 3-class association scheme (cf. [10]). The number of vertices af(agls- ¢)/2,
wheres =1 if Q is hyperbolic, and = —1 if Q is elliptic.

Forq even, anch > 3, let Q be a nondegenerate quadridis(n, ). Now, letV be the
set of nonisotropic points (i.e., the points not @) distinct from the nucleus (fon odd
there is no nucleus, fareven this is the unique pointsuch thatQ(u + v) = Q(u) + Q(v)
for all v). The relations as defined above now form a 3-class association scheme (cf. [10]).
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3.7. Merging classes

Sometimes we obtain a hew association schemmérgingclasses in a given association
scheme. Merging means that a new relation is obtained as the union of some original
relations, and then we say that the corresponding classes are merged. For example, take the
3-class association scheme with vertex set

V= {(Xl’ {{X27 X3, X4}a {X57 Xe, X7}}) | {Xi s i = 17 X 7} = {17 X 7}}

Two vertices(Xa, {{X2, X3, Xa}, {Xs, X, X7}}) and (y1, {{Y2, Y3, Ya}. {¥s. V6. Y7}}) are first
associates ifx; =y;. If X; #y1, then without loss of generality we may assume that

X1 € {Y2, Y3, Ya} andy; € {X2, X3, X4}. Nowthe vertices are second associatesifxs, X4} N

{y2, V3, Ya} =¥, otherwise they are third associates. This scheme was obtained by merging
two classes in the 4-class association scheme that arose while letting the symmetric group
S; act onV?2.

On the other hand, it can occur that merging two classes in a 3-class association scheme
gives a 2-class association scheme. Of course, this occurs precisely if the remaining relation
defines a strongly regular graph. If all three relations of a 3-class association scheme define
strongly regular graphs, then we are in a very special situation. It means that by any merging
we always get a new association scheme. After [36] we call schemes with this property
amorphic The amorphic 3-class association schemes are precisely the 3-class association
schemes that are not generated by one of their relations.

4. Amorphic three-class association schemes

In the special case that all three relations are strongly regular graphs, we show that the
parameters of the graphs are either all of Latin square type, or all of negative Latin square
type. The proof is due to Higman [42]. The same results can be found in [36], where also
all such schemes on at most 25 vertices can be found.

Theorem 4.1 If all three relations of a3-class association scheme are strongly regular
graphs then they either have paramet&rg, |, (n— 1), n— 2+ (I, — )(li — 2), l; (; — 1)),
i=1,230r (N li(n+1), —n—2+ @ + 1 +2),1i(i +1)),i=1,23.

Proof: SupposeR is a strongly regular graph with degragand eigenvalues;, r; and
s (we do not assume > 5). Without loss of generality, we may take

1 ng ny n3
p_ 1 n £ s
1l 5 rn s
1l 55 9 13
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SincePQ=vl,weseethat 3 ri++S=1+s+ro+s=1+s+S+rz3=0, and
S0

M- =r—=r3—=S.

Furthermore, from the orthogonality relations we derive that
A_2_3=
nn n, n3

and we find thaP2=vl, soP = Q, and so the scheme is self-dual. Nowsetr; —s,
then we find from the orthogonality relation

r r 2 n
1—Sl+2—52+§=1+i(u—1), soglzl—u

Ny no ns3 nq

0=1+

Furthermore, we have that

v N1 hy N3 v N1 N2 N3

O r O u —u 0
detP = det 1% % = det

0 51 r; s 0 0 u -u

0 51 S 13 0 S I3

= vU3(S; + S + Sg) = —vU?,

but on the other hand®? = v, so (detP)? = v*, and we find that = u?. This proves that
the parameters of the relations are either all of Latin squarghfpg (n — 1), n — 2+ (I; — 1)
(i —2), l;(l; — 1)) if n=u > 0, or all of negative Latin square tye?, | (n+ 1), —n — 2+
G+ +2),Lidi+1)if n=—u>0. O

A large family of examples is given by tHeatin square schemes; L(n). Suppose
we havem — 2 mutually orthogonal Latin squares, or equivalently an orthogonal array
OA(n, m), that is, anm x n?> matrix M such that for any two rows, b we have that
{(Maj, Mp) |i=1,...,n%}={(, j)|i, j=1,...,n}. Nowtake as vertices 1. ., n°. Let
I, andl, be two disjoint nonempty subsets{df . . ., m} of sizes andj, respectively. Now
two distinct vertices andw arelth associates iM;, = M;,, for somer € |, forl =1, 2,
otherwise they are third associates.

Many constructions for O, m) are known (cf. [9]). Fon a prime power, there are
constructions of Ofn, m) for everym <n+1, its maximal value. Fon=6, we have
m < 3 (Euler’s famous 36 officers problem), and fo& 10, currently only constructions
for m <4 are known. Fon # 4, a Latin square schenhg »(n) is equivalent to the algebraic
structure called #oop (cf. [59]). Two Latin square schemes are isomorphic if and only if
the corresponding loops aiotopic(cf. [19]). From [20, incl. errata] we find that there
are 22 nonisomorphit 2(6), 564 nonisomorphidt. 1 »(7) and 1,676,267 nonisomorphic
L12(8).
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The smallest examples of “schemes of negative Latin square type” are given by the
cyclotomic scheme Cycl(16) on 16 vertices (see Section 3.3 for a definition), and another
scheme with the same parameters (cf. [36]). Here all three relations are Clebsch graphs.
The second feasible parameter set of negative Latin square type is on 49 vertices. Here all
relations are strongly regular (49, 16, 3, 6) graphs, but such a graph does not exist, according
to Bussemaker et al. [14].

In order to have an amorphic 3-class association scheme, we need a partition of the edges
of the complete graph into three strongly regular graphs. On the other hand, this can be
proven to be sufficient. This observation (cf. [36]) is very useful in the following examples.
Letq= p©Vt, wherep ande are prime(e> 2), p is primitive (mode) andt is even. It
was proven by van Lint and Schrijver [51] that teelass cyclotomic scheme on the field
GF(q) (that is, leto be a primitive element dBF(q), and let two vertices bigh associates
if their difference equala®i*' for somej, fori =1, ..., €) has the property that any union
of classes gives a strongly regular graph. This implies that any partition of the classes into 3
sets gives a 3-class association scheme. van Lint and Schrijver also found several strongly
regular graphs by merging classes in the 8-class cyclotomic scheme on 81 vertices. Using
these we find a 3-class association scheme with degrees 30, 30 and 20, and at least two
nonisomorphic 3-class association schemes with degrees 40, 20 and 20.

5. Regular graphs with four eigenvalues

A graphG which is one of the relations, sa%, of a 3-class association scheme is regular
with at most four distinct eigenvalues. Any two adjacent vertices have a constant number
A = pi, of common neighbours, and any two nonadjacent vertices/nave?, or i’ = p?;
common neighbours. |k = u’, thenG is strongly regular, so it has at most three distinct
eigenvalues (possibly it is disconnected).ul# ', thenG generates the scheme, as the
other two relations are determined by the number of common neighbours. G haust

have four eigenvalues (and thénis connected) or be the disjoint union of some strongly
regular graphs. If5 has four eigenvalues, then the following theorem provides us with a
handy tool to check whether it is one of the relations of a 3-class association scheme.

Theorem 5.1 Let G be a connected regular graph with four distinct eigenvalues. Then G
is one of the relations of &-class association scheme if and only if any two adjacent vertices
have a constant number of common neighbpamsl the number of common neighbours of
any two nonadjacent vertices takes precisely two values.

Proof: Suppose thaG is regular of degre&, any two adjacent vertices i@ have
common neighbours, and that any two nonadjacent vertices have gitbret” common
neighbours. Note that these requirements must necessarily hold in ord&rntdooe one
of the relations of a 3-class association scheme, andutkat.’, otherwiseG is strongly
regular, and so it has only three distinct eigenvalues.

Now letG have adjacency matri&. To prove sufficiency we shall show that the adjacency
algebraA = (A2, A, |, J), which is closed under ordinary matrix multiplication is also
closed under entrywise multiplication SinceM o J= M for any matrixM, and any
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matrix M € A has constant diagonal, so tHdto | € A, we only need to show thaio A,
AZo AandA2o A2 areinA. Now Ao A=A, A20 A=A, and

AZo A2 = K21 4+ 22A4 ((n+ W)A? — i/ o (I — 1 — A)
=+ )N+ 02— au+ )+ up)A
+ (K =K+ p) + )l — ' J.

SoA is also closed under entrywise multiplication, andGads one of the relations of a
3-class association scheme. O

If uworu' equals O, then it follows thab is distance-regular with diameter three. We
shall use the characterization of Theorem 5.1 in the following examples.

5.1. The second subconstituent of a strongly regular graph

The second subconstituenf a graph with respect to some vertexs the induced graph
on the vertices distinct from, and that are not adjacent xo For some strongly regular
graphs the second subconstituent is a graph that generates a 3-class association scheme.

Suppose is a strongly regular graph without trianglés= 0), with spectrurq[k]*, [r] T,

[s]9}. Then the second subconstitugBi(x) of G is a regular graph with spectrum
{[k+r+s]% [r17% [r + ]2, [s]97K} (cf. [23]), so in general it is a connected regu-

lar graph with four distinct eigenvalues without triangles. So if the number of common
neighbours of two nonadjacent vertices can take at most two values, then we have a 3-class
association scheme. This is certainly the cage i§ a strongly regulafv, k, 0, i) graph

with u =1 or 2, as we shall see.

If u=1 then it follows that inG,(x) two nonadjacent vertices can have either 0 or 1
common neighbours. Fdr> 2 the graphG,(x) has four distinct eigenvalues, so then it
follows that this graph is distance-regular with diameter three. The distance three relation
R is the disjoint union ok cliques of sizek — 1, which easily follows by computing the
eigenvalues ofA; = J + (k—2)| — A— A?, whereA is the adjacency matrix oB,(X).

On the other hand, it follows that any distance-regular graph with such parameters can
be constructed in this way, that is, given such a distance-regular graph, we can, using the
structure ofRg, construct a strongly reguldo, k, 0, 1) graph that has the distance-regular
graph as second subconstituent (Take such a distance-regular graph, and order the cliques
of the distance three relation. Extend the distance-regular graph with vesticasd
i=1,...,k, and with edge$oo, i} and{i, y}, y is a vertex of theth clique,i =1, ..., Kk,

then we get a strongly regulét + k2, k, 0, 1) graph). In fact, it now follows from a result

by Haemers [38, Corollary 5.4] that any graph with the same spectrum must be constructed
in this way. The result by Haemers can also be shown using Corollary 5.6, which we shall
prove later (see also [25]).

It is well known (cf. [62]) that strongly regular graphs with parameter, 0, 1) can
only exist fork =2, 3, 7 or 57. For the first three cases there are unique graphs: the 5-cycle
Cs, the Petersen graph and the Hoffman-Singleton graph. ThéeaS& is still undecided.

The second subconstituent of the Petersen graph is the 6<€ycl&he more interesting
case is the second subconstituent Hge8i of the Hoffman-Singleton graph. It is unique,
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which follows from the uniqueness of the Hoffman-Singleton graph and the fact that its
automorphism group acts transitively on its vertices.

If ©=2,then inG,(x) two nonadjacent vertices can have either 1 or 2 common neigh-
bours (They have at least one common neighbour, sinGalirey cannot have two common
neighbours that are both neighbourspés these two vertices then would have three com-
mon neighbours). Fde> 5 the graphG,(x) has four distinct eigenvalues, so then we have
a 3-class association scheme. Here we find for rela®giftwo vertices are third asso-
ciates if they have one common neighbourGa(x)) that Az =2J + (k—4)| — A— A?
with spectrum{[2k — 4]%, [k — 4], [—2]2%k=3)} which is the spectrum of the triangular
graphT (k). Using this, it is also possible to prove that any association scheme with these
parameters must be constructed as we did.

Consider the graph of the first relation of an association scheme with such parameters. It
has degrek — 2, no triangles, and any two nonadjacent vertices have either 1 or 2 common
neighbours (corresponding to relatidRgandR;, respectively). Now the third relation has
the spectrum of the triangular graplik), and since this graph is uniquely determined by its
spectrum (unleds= 8, butthen there is no feasible parameter set: from the integrality of the
multiplicities it follows thatk — 1 is a square), it follows that we can rename the vertices by

the pairdi, j},i, j =1, ..., Kk, suchthattwo vertices are not adjacent and have one common
neighbour if and only if the corresponding pairs intersect. Now we extend the graph with
verticesoo andi =1, ..., k, and with edgegoo, i} and{i, {i, j}},i,j=1,...,k. Then

it follows that this graph is strongly regular with parameters- %k(k+ 1),k,0,2). The

only problem in proving this is thatand{ j, h} with i # j, h have two common neighbours.

By considering the original association scheme, we see that the number of vertices that
are third associates witfi, j} and first associates witfy, h} equalsp3; =2. But such
vertices are of the forrfi, g}, which proves thatt = 2. Thus we have proven the following
proposition.

Proposition 5.2 Let G be a strongly regular graph without trianglesnd withy =1 or

2, and degree kwith k> 2 if =1, and k> 5if u=2. Then the second subconstituent

of G with respect to any vertex generate3-elass association scheme. Furthermany
scheme with the same parameters can be constructed in this way from a strongly regular
graph with the same parameters as G.

If © =2, thenthe only known example f@&rwith k > 5is the Gewirtz graph, and since this
graph is uniquely determined by its parameters, and it has a transitive automorphism group,
the association scheme generated by its second subconstituent gewiiszuniquely
determined by its parameters.

Payne [58] found that the second subconstituent of the collinearity graph of a generalized
quadrangle with respect to a quasiregular point is a 3-class association scheme (or a strongly
regular graph). Together with Hobart [45] he found conditions to embed the association
scheme back in a generalized quadrangle. Note that the second subconstituent of a gen-
eralized quadrangle with respect to a pginis a regular graph with at most four distinct
eigenvalues (cf. [23]). Furthermore, any two adjacent vertices have a constant number of
common neighbours. The quasiregularity of the pgimtow implies that the number of
common neighbours of two nonadjacent vertices can take only two values.
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5.2. Hoffman-cocliques in strongly regular graphs

Let G be ak-regular graph om vertices with smallest eigenvalag;,. A Hoffman-coclique
in G is a cocliqgue whose size meets the Hoffman (upper) ba#adA min/ (Amin — K). If C
is a Hoffman-coclique then every vertex notGnis adjacent to-Amn vertices ofC. If G
is a strongly regular graph with parametérsk, A, 1) and smallest eigenvalig then the
adjacencies betwedd and its complement forms the incidence relation of @,2-s, )
designD (which may be degenerate). Furthermore, the induced graph on the complement of
C is aregular graph with at most four distinct eigenvalues (cf. [23]). A necessary condition
for this graph to be one of the relations of a 3-class association scheme is that the design
D has at most three distinct block intersection numbers. If it forms an association scheme
then it is the block scheme & (see Section 3.4).

An example is given by an ovoid in the generalized quadra@gd4, 4). An ovoid
is a Hoffman-coclique in the collinearity graph of the generalized quadrangle. Here the
corresponding design is an inversive plane, and the induced graph on the complement of
the ovoid is the distance three graph of the distance-regular Doro graph.

5.3. A characterization in terms of the spectrum

Now suppose thas is a connected regular graph with spectrliki®, [A1]™, [12]™, [13]™}

that is one of the relations of a 3-class association scheme. The degmeis its largest
eigenvalue, and alsbcan be expressed in terms of the spectrum of the graph, since for a
connected regular graph with four distinct eigenvalues the number of triangles through a
vertex equalsh = Trace A%)/2v (cf. [23]), and so

A:T vk Tk

3 3
2A _ TracgA®) 1 Zmik?'
i=0

In generalyu andp’ do not follow from the spectrum @&. For exampleGQ(2, 4)\spread
andH (3, 3)3 have the same spectrum, and are both graphs from association schemes, but
they have distinct parameters (in fact, the first one is a distance-regular graph and the other
is not). But in many cases the parameters of the scheme do follow from the spectrum, as
they form the only nonnegative integral solution of the following system of equations.

If for every vertexx, the number of nonadjacent vertices that hal'eommon neighbours
with x equalsn,, andns is the number of nonadjacent vertices that haveommon
neighbours with, then the parameters satisfy the following equations, which follow from
easy counting arguments.

n+ny=v-—-1-Kk,

Nap’ +nap = k(k — 1 —2),

o(2)enft) -2 (2).
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where

o 1(1 S 4 2
i=0

is the number of quadrangles through a vertex (cf. [23]). Here we allow the quadrangles to
have diagonals. Since the number of triangles through an edge is constant, also the number
of quadrangles through an edge is constant and equaldz/k (cf. [23]). It follows

that given the spectrurlt of the graph and one extra parameter (for examglewe can
compute all other parameters of the association schemensFbis gives

N3z = h(29 )
(v =1—kpu —kk—=1-2)?

=v—l-k- ki —kA2+k(k—1) +(w—1—ku2—2uk(k—1—21)

The next theorem characterizes the regular graphs with four eigenvalues that generate a
3-class association scheme, as those graphs for which this nagisexrhat it should be.

It is a generalization of a characterization of distance-regular graphs with diameter three
among the graphs with four eigenvalues by Haemers and the author [25], and for its proof
we refer to the author’s thesis [24].

Theorem 5.3 Let G be a connected regular graph orvertices with four distinct eigen-
values say with spectrune = {[K]%, [A1]™, [12]™, [13]™). Let p be the polynomial
given by [x) = (X — A1) (X — A2) (X — A3) = X3 + pox% 4+ p1X + po and leti be given by
A= (k3 4+ myA3 +mA3 +mgad) /vk. Then G is one of the relations o8eclass association
scheme if and only if there isja such that for every vertex x the number of nonadjacent
vertices n, that haveu common neighbours with x equals

g(Z, ) =v-1-Kk
K(k—1— 2 — 2=l y)?
(K—2) 4+ p2) =k — pr+ po— 2uu(k — 1 — ) + ==k 2

Obviously, for regular graphs with four eigenvalues that generate a 3-class association
scheme, we have thatX, u) = g(Z, u), since they both equak. However, the equality
holds for any feasible spectrumof a regular graph with four eigenvalues and anyT his

can be proven using that

Ak + pak + po = (K3 + p2k? + pik + po)/v, and

1 3
- > mind 4+ paak + prk = (K* + pok® + pik?® + pok) /v,
i=0

which follow by taking traces of the equatiopgA) = p(k)/vJ and Ap(A) =kpk)/vJ,
respectively.
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For u =0, in which case we have a distance-regular graph, the characterization was
already obtained by Haemers and the author [25], as we mentioned before. Together with
the previous remarks this gives the following.

Corollary 5.4 Let G be a connected regular graph with four distinct eigenvalwath

k, L and ¢ (as functions of the spectryras before. Then G is a distance-regular graph
(with diameter thregif and only if for every vertex the number of verticesak distance
two equals

k(k—1—21)2
kp= —— .
E—2+k-1
This settles a question by Haemers [38] on the characterization of distance-regular graphs
with diameter three.

Added in proof: Fiol and Garriga [32] recently generalized this to all diameters.

If we have a 3-class association scheme, th€en, 1) must be a nonnegative integer.
On the other hand, if we have any graph with spect@imnd au such thaty(X, i) is a
nonnegative integer, then for any vertex, we can bound the number of nonadjacent vertices
that haveuw common neighbours with this vertex. For the proof we again refer to [24].

Proposition 5.5 With the hypothesis of the previous theorém (X, 1) is a nonnegative
integer, theny < g(Z, w).

Added in proof: It was recently proven by Fiol [31], that the condition, tigak, u) is
a nonnegative integer can be dropped.

In the special case thdd is cospectral with one of the relations of a 3-class association
scheme, this gives the following.

Corollary 5.6 Let G be a connected regular graph with four distinct eigenvalues that
is one of the relations of &-class association schemsuch that the number of vertices
nonadjacent to some vertex lkavingu common neighbours with x equalgx 0. If H is

a graph cospectral with Gthen for any vertex x in Hthe number of vertices that are not
adjacent to x and have common neighbours with x is at most mith equality for every
vertex if and only if H is one of the relations oBeclass association scheme with the same
parameters as the scheme of G.

5.4. Hoffman-colorings and systems of linked symmetric designs

Let G be ak-regular graph om vertices with smallest eigenvalag,. A Hoffman-coloring
in G is a partition of the vertices into Hoffman-cocliques, that is, cocligues meeting the
Hoffman (upper) boun@ = vimin/(Amin — k). It is well known that ifC is a Hoffman-
coclique, then every vertex not @ is adjacent ta-Anmi, vertices ofC. A spreadin G is a
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partition of the vertices into Hoffman-cliques, which is equivalent to a Hoffman-coloring
in the complement 06G. A regular coloringof a graph is a partition of the vertices into
cocliques of equal size, saysuch that for somk every vertex outside a cocliq@zof the
coloring is adjacent to preciselyertices ofC. So regular colorings are generalizations of
Hoffman-colorings. A graph with a regular coloring is regular, with dedgred (v/c — 1),
and it also follows that it has an eigenvalue= —I. Now we find thatc=vA /(A — k),
similar to the size of a coclique in a Hoffman-coloring. In the following we shall say that
the regular coloring corresponds to eigenvalue

Supposés has a regular coloring. Then we define relati®idy adjacency irG, R, by
nonadjacency i and being in distinct cocliques of the coloring, aRglby nonadjacency
in G and being in the same coclique of the coloring. Itis easy to see that these relations form
a 3-class association schem&ifs strongly regular (cf. [40]). A lot of Hoffman-colorings
exist in the triangular graph&(n), for evenn, as these (the schemes) are equivalent to
one-factorization®f K,,. Forn=4 and 6, the one-factorizations Kf, are unique, there
are six nonisomorphic ones for= 8, and 396 fon = 10 (cf. [56]). Dinitz et al. [29] found
that there are 526,915,620 nonisomorphic one-factorization&; gfand they estimated
these numbers far= 14, 16, and 18.

If the relations as defined above form an association schemeGtban have at most four
distinct eigenvalues. However, this is not sufficient, as the gta8) ® J, with spectrum
{[8]*, [2]*, [0]°, [-4]*} has a Hoffman-coloring, i.e., 3 disjoint cocliques of size 6, but
the corresponding relations do not form an association scheme. It turns out that here the
multiplicity of the eigenvalueis = —4 is too large. In fact, if the relations do form an
association scheme, and we assume that the regular coloring corresponds to the eigenvalue
A3, then it has eigenmatrix

1 k v—k—-c c—1
P 1 M —M -1 ’

1 1 —A2 -1

1 23 —A3—C c-—1

with multiplicities 1,mq, m,, andmg, respectively. Now it easily follows thatms + 1) = v,
so thatmz = —k/A3. On the other hand, this additional conditionrogis sufficient.

Theorem 5.7 Let G be a connected k-regular graph envertices with four distinct
eigenvalues. If G has a regular coloring corresponding to eigenvadag A3, which has
multiplicity mg < —k/A3, then the corresponding relations form an association scheme.

Proof: Let A; be the adjacency matrix @& (and R;), and Az the adjacency matrix
corresponding to the regular colorinBs), soAz = I ® J,,c — |, wherec is the size of the
cocliques. Since any vertex outside a cocliquef the coloring is adjacent te A3 vertices
of C, it follows that A;(Az + | ) = —A3(J — (As+ 1)), and soA 1 Az € (I, J, A1, Ag).

Let 1 andAi; be the remaining two eigenvalues@fand letB = (A; — 111 ) (A — Azl),
then the nonzero eigenvaluesBfare (k — A1) (k — A2) with multiplicity 1, and (A3 — A1)
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(A3 — A2) with multiplicity ma. If we let Eo=v~1J, andEs=c (A3 + 1) —v~1J, then
BEy = (k—A1)(k—22)Ep and BEz = (A3 — A1)(Az — A2)Ea.

By use of rankEo) = 1, rank E3) =v/c—1>ms, E5= Eo, E3= Es, and EqE3=0, it
follows thatB — (k — 11) (K — X2) Eg — (A3 — A1) (A3 — A2) E3 =0, as all its eigenvalues are
Zero. SoA% e (l, J, A1, Ag), and it follows that this algebra is closed under multiplication.
Hence we have an association scheme. O

A system of | linked symmetfe(v, k, A) designssacollectionofset¥;,i =1,...,1 +1
and an incidence relation between each pair of sets forming a symméetri&2x) design,
such that for any, j, h the number ok € V; incident with bothy € V; andz € V;, depends
only on whethery andz are incident.

Now take as vertices the union of alf, and define relations by being in the same
subsetV;, being incident in the system of designs or being not incident in the system of
designs. This defines a 3-class association scheme. The association schemdioked
designs (note that such a system is contained in the systérinked designs) can also
be considered as the block scheme of the &, | ) design that is obtained by taking as
points the elements of the sét and as blocks the elements of the remainifgwith the
obvious incidence relation.

The only known nontrivial systems of linked designs have paramete ", k = 22m-1
—2m-1l p=22m-2_om-1 | <22m1_1 mx>1 (and their complements) (see [18]).
Mathon [53] determined all systems of linked 26, 6, 2) designs.

The incidence graph of a system of linked designs is the graph of the relation defined
by incidence. IfG is a graph with four distinct eigenvalues, that is the incidence graph
of a system of linked designs, th&h has a regular coloring. The following theorem
characterizes these graphs.

Theorem 5.8 Let G be a connected k-regular graph envertices with four distinct
eigenvalues. Suppose G has a regular coloring correspondinggiy A3, with cocliques

of size ¢ such that the corresponding relations form an association scheme. lagtdm
m, be the multiplicities of the remaining two eigenvalugsand A,, respectively then

¢ — 1 <min{my, my}, with equality if and only if G is the incidence graph of a system of
linked symmetric designs.

Proof: Leth=1, 2, and take

—k-c
Ezuaﬂ_;\h\]
Mh

v—_=C v—k—-c
=Ww-k-— )l + A A A— —— | A
(v C+ An)l + An K 1+<h -1 )3,

then ranKE) <m, + 1. Now partitionE and A; according to the regular coloring, say
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E=(Ej), Av=(Aj),i, j=0,...,mz. Thenitfollows thatifi # j, then

v—_=C clv—k—-o0) v—k-c
Eij:)\h—k A;;  and Eii:ic—l |+(Kh—7c_1 )J.

Observe that it follows frommz = —k/A3 that mpA; + mpA, =0, sor, #0. SoE; is

nonsingular, se =rank(E;j) <rank(E), which proves the inequality. In case of equality

we have rankEqg) = rank(E), and then it follows thag;; = EioEgolon. From this we

derive thatAioA,-Toz AioAgi € (I, J), and sinceAig has constant row and column sums,

we find thatAq is the incidence matrix of a symmetric design. Furthermore, we find that

AioAoj € (Ajj, J) fori # j, which proves that the designs are linked (cf. [18, Theorem 2]).
O

Forl =1, a system of linked designs is just one design, and we get the incidence graph
and corresponding incidence scheme of a symmetiic, R; A) design. It is bipartite
distance-regular. In fact, it is well known that any bipartite regular graph with four distinct
eigenvalues is the incidence graph of a symmetric design (cf. [23]). This result now also
follows from Theorem 5.8. In order to determine all nonisomorphic schemes given a certain
parameter set of this form, we should mention that two dual (as well as complementary)
designs generate the same association scheme. A general reference for designs is [4].

Theorem 5.8 is the analogue of the following theorem by Haemers and Tonchev [40,
Theorem 5.1] (herg is the multiplicity of the smallest eigenvalue).

Theorem 5.9 If G is a primitive strongly regular graph with a Hoffman-colorinthen
c—1<g-wv/c+1, with equality if and only if G is the incidence graph of a system of
linked symmetric designs.

6. Number theoretic conditions

Using the Hasse-Minkowski invariant of rational symmetric matrices, Bose and Connor [6]
derived number theoretic conditions for the existence of so-called regular group divisible
designs, which can be seen as extensions of the well-known Bruck-Ryser conditions for
symmetric designs. Godsil and Hensel [35] applied the results of Bose and Connor to
imprimitive distance-regular graphs with diameter three. In fact, we find that after slight
adjustments of the results of Bose and Connor, they are also applicable to imprimitive 3-class
association schemes. Also in the primitive case, Hasse-Minkowski theory can be useful,
under the condition that one of the relations is a strongly regular graph, preferably one that
is determined by its spectrum. If one of the relations is a lattice graph or a triangular graph,
we can use results of Coster [21] or Coster and Haemers [22], respectively. These results are
obtained by using the Grothendieck group, a technique similar to Hasse-Minkowski theory.
The results are in a sense generalizations of [63] and [57], respectively, which are only
applicable to designs. A general reference for applications of Hasse-Minkowski theory to
designs is [60].

Consider an imprimitive 3-class association scheme, where one of the relatios, say
forms the disjoint union o cliques of sizen. Let A be the adjacency matrix of one of
the other (nontrivial) relations, sd,. Suppose that the graph definedRyhas degreg,
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any two adjacent vertices haxecommon neighbours, any two nonadjacent vertices that
are in the same cligue of relatid® haveix common neighbours, and any two nonadjacent
vertices from distinct cliques haye common neighbours. #f= %(/j — A), thenA satisfies

the equation

(A+81)2=Kk+8%—wl +u/ I+ —p)ln® I

Since A+ 31 is a symmetric rational matrix, it follows that the right-hand side of the
equation is rationally congruent to the identity matrix. Note that the matrix has spectrum

{[(k_’_a)Z]l’ [(k+ 8)2 _ mm/]m—l’ [k+ 82 _ M]m(n—l)}

Now, the results of Bose and Connor generalize in an obvious way, and we obtain the
following conditions. Here the Hilbert norm residue symbmlb),, is defined to be 1 if the
equatiorex? + by? = 1 (modp') has a solutiorx, y, for everyr, and otherwise it is defined

to be—1.

Lemma 6.1 If an imprimitive3-class association scheme as given above extsts

(a) if m is eventhen(k + 8)2 — mny/ is a rational squareand if m=2 (mod 4 and n is
even therk + 8% — u, —1), = 1 for all odd primes p.

(b) if m is odd and n is eventhen k+ 8% — 1 is a rational squareand ((k 4 8)% — mry/,
(—1)2™Dny/), =1for all odd primes p.

(c) ifm and n are both oddhen(k + 82 — 11, (—=1)2™Pn) 5 ((k+ 8)2 — mny/, (—1)2(M-D
nu')p =1for all odd primes p.

Actually, we know a little bit more, ifu # '/, since thenA has four distinct eigenval-
ues, and then it follows that at least onekof 82 — 1 and (k + 8)% — mry’ is a rational
square. Examples of parameter sets wit}# 0 that are ruled out by these conditions are
(m,n, k, A, ', n)=(10,4, 18 8, 8,6), (17,5,32 12,12 8), (22, 4, 42, 20, 20, 14).

7. Lists of small feasible parameter sets

In order to generate feasible parameter sets for 3-class association schemes we shall classify
them into three sets:

1. Atleast one of the relations is a graph with four distinct eigenvalues;

2. At least one of the relations is the disjoint union of some (connected) strongly regular
graphs having the same parameters;

3. All three relations are strongly regular graphs—The amorphic schemes.

These three cases cover all possibilities. Case 2 is degenerate (see Section 3.1). For the
remaining two cases we generated all feasible parameter sets on at most 100 vertices. For
Case 3 we used Theorem 4.1. For Case 1 we started from an algorithm to generate feasible
spectra of graphs with four distinct eigenvalues (actually three algorithms for three types
of spectra, cf. [26]; these generate the parameters, Pyy, Pq, P31, My, my, mg and

p1,), added the parametgr= p3; and (using the results from Section 5.3 and Section 2)
computed all other parameters, and checked them for necessary conditions (integrality
conditions, Krein conditions, and the absolute bound).
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Appendices

In the following appendices all possible parameter sets for 3-class association schemes on
at most 100 vertices are listed, except for the more “degenerate” ones, i.e., the schemes
generated by the disjoint union of strongly regular graphs, the schemes gener@tgdly
whereG is a strongly regular graph, and the rectangular scheRies n), except for the
very small schemeR(2, 2), the 6-cycleCg, and the Cube. The parameters of the more
“degenerate” schemes are given below.

The number of vertices of the scheme is denoted.blf the scheme is primitive, then
this number is irbold face The “spectrum” is given by the last three rowsR¥, and so
the first row represents the spectrum of the first relation, and similarly for the second and
third relation. In the first row of the spectrum, the multiplicities of the (eigenvalues of the)
scheme are denoted in superscript. In Appendices A and D the multiplicities are omitted,
since there the schemes are self-dual, so the multiplicities are equal to the dégrdes.
andL 3 here denote the reduced intersection matrices, that is, the first row and column are
omitted. # denotes the number of nonisomorphic schemes of that type. At the end of the
line remarks are made. The more “degenerate” schemes would read as follows.

v spectrum Ly Ly L3 #
mn {(m1)(n-1), 1, 1-m 1-n} (M2)(N-2) n-2 M2 n-20 1 m2 1 ] 1 R(mn)
{ n-1, -1, -1, n-1} (m1M-2) 0 m1 0n-20 nm1 0 O If mxor N equals 2
{ mi, -1, m1, -1} (m2)(n-1) n-1 0 n-10 0 O 0o m2 then DRG, Q-polynomial
wn { k, K7L s9T N k-1-h 0 Kk-1-A we2ksA 0 0 0 (n-Dw ? disjoint union of n
{wi-k, wi-k, -1-r, -1-s} p k-p 0 Kk-p w-2k-2+p0 0 0 (n-vHw SRG(W, k, A, )
{(n-Dw, -w, 0, 0} 0 0 k 0 0 wi-k k w-1-k (n-2)w
f (n-vw g
wn { nk, nr', 0 N nsv} n\ n-1 n(k-1-A) n-1 0 0 n(k-1-A) 0 n(w-2k+A) 7 SRG(W,k,A\,lD®Jp
{ n-1, n-1, -1, n-1} nk 0 0 0n-20 0 0 n(w1-k)
{n(w1-k), n(-1-r), o0, n(-1-s)} nu 0 n(k-p) 0 0 n-1 n(k-p) n-1 n(w-2k-2+)
Appendix A

The amorphic schemes—all relations are strongly regular; excluded here are the rectangular
schemedR(m, m), exceptR(2, 2).

v spectrum Ly Ly Ls #
4 {1, 1,1, 1} 0 0 0O 0 0 1 0 1 0 1 L11 (2 ~ R22)
4, 1, 1, 1} 0 0 1 0 0 O 1 0 0
4, 1, 1, 1} 0 1 0 1 0 0 0 0 0
6 {6 2 2022 2 2 1 2 2 2 1 2 0 4 L1o (4) [36]
6, -2, 2 22 2 2 2 2 2 1 2 1 0
3 -1 -1, 3 2 4 0 4 2 0 0 0 2
6 {5 -3 1, 1} 0 2 2 2 2 1 2 1 2 2 Cycl(16) [36]
5,1, -3 13 2 2 1 2 0 2 1 2 2
5,01, 1,3 2 1 2 1 2 2 2 2 0

(Continued on next page.
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Li2 (5)

Ly, (5), Cycl(25) [36]

L1, (6) [19, 59]

0 SRG(36,20,10,12)\spread
Bussemaker, Haemers, Spence

564

1676267

L2 (6)

L1, (7) [20, errata]

L1z (7)

Lo (7)

Lo (7)

SRG does not exist [14]

L2 (8) [20]

L1 (8)

L14 (8)

Lp2 (8)
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v spectrum Ly L, L3 #

64 {28, 4, -4, -4y 12 9 6 9 6 6 6 6 2 >1  Lp3(8)
{21, -3, 5, -3} 12 8 8 8 8 4 8 4 2
{14, -2, -2, 6} 12 12 4 12 6 3 4 3 6

64 {27, -5, 3, 3} 10 8 8 8 6 4 8 4 6 >1 de Caen, Van Dam
{18, 2, -6, 2} 12 9 6 9 2 6 6 6 6
{18, 2, 2, -6} 12 6 9 6 6 6 9 6 2

64 {21, 5, -3, -3} 8 6 6 6 6 9 6 9 6 >1  Lz3(8), Cycl(64)
{21, -3, 5, -3} 6 6 9 6 8 6 9 6 6
{21, -3, -3, 5} 6 9 6 9 6 6 6 6 8

81 {56, 2, -7, -7} 3712 6 12 2 2 6 2 0 >1 L1, (9)
{16, -2, 7, -2y 42 7 7 7 7 1 7 1 0
{8, -1, -1, 8} 42 14 O 14 2 0 0o 0 7

81 {48, 3, -6, 6} 2715 5 15 6 3 5 3 0 >1  L13(9)
{24, -3, 6, -3} 30 12 6 12 9 2 6 2 0
{8, -1, -1, 8} 30 18 O 18 6 O 0o 0 7

81 {40, 4, -5, -5} 19 16 4 16 12 4 4 4 0 >1  L14(9)
{32, -4, 5, -4} 20 15 5 15 13 3 5 3 0
{8, -1, -1, 8} 20 20 O 20 12 O 0o 0 7

81 {48, 3, -6, 6} 27 1010 10 2 4 10 4 2 >1 Ly, (9)
{16, -2, 7, -2} 30 6 12 6 7 2 12 2 2
{16, -2, -2, 7} 30 12 6 12 2 2 6 2 7

81 {40, 4, 5, -5} 1912 8 12 6 6 8 6 2 >1  Ly3(9)
{24, -3, 6, -3} 20 10 10 10 9 4 10 4 2
{16, -2, -2, 7} 20 15 5 15 6 3 5 3 7

81 {32, 5, -4, -4} 13 12 6 12 12 8 6 8 2 >1 Lo4 (9)
{32, -4, 5, -4} 12 12 8 12 13 6 8 6 2
{16, -2, -2, 7} 12 16 4 16 12 4 4 4 7

81 {40, -5, 4, 4} 19 10 10 10 4 10 4 6 >2 Van Lint-Schrijver
{20, 2, -7, 2} 20 12 8 12 1 6 8 6 6
{20, 2, 2, -7} 20 8 12 8 6 6 12 6 1

81 {30, -6, 3, 3} 9 12 8 12 12 6 8 6 6 >1 Van Lint-Schrijver
{30, 3, -6, 3} 12 12 6 12 9 8 6 8 6
{20, 2, 2, -7} 12 9 9 912 9 9 9 1

81 {32, 5 -4, -4 13 9 9 9 6 9 9 9 6 >1 L33 (9)
{24, -3, 6, -3} 12 8 12 8 9 6 12 6 6
{24, -3, -3, 6} 12 12 8 12 6 6 8 6 9

100 {72, 2, -8, -8 5014 7 14 2 2 7 2 0 >1 L, (10)
{18, -2, 8, -2} 56 8 8 8 8 1 8 1 0
{9 -1, -1, 9} 56 16 O 16 2 0 0O 0 8

100 {63, 3, -7, -7} 3818 6 18 6 3 6 3 0 >1 L3 (10)
{27, -3, 7, -3} 42 14 7 14 10 2 7 2 0
{9 -1, -1, 9} 42 21 O 21 6 O 0O 0 8

(Continued on next page.
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(Continued.
v spectrum Ly Ly L3 #
100 {54, 4, -6, 6} 2820 5 2012 4 5 4 0 ? L1 4 (10),

SRG(100,63,38,42)\spread
{36, -4, 6, -4 3018 6 18 14 3 6 3 0
{9 -1-1 9 3024 0 2412 0 0

100 {45, 5, -5 -5} 2020 4 2020 5 4 5 0 ? L5 (10),
SRG(100,54,28,30)\spread

{45, -5, 5, -5} 2020 5 2020 4 5 4 0
{9 -1,-1 9 2025 0 2520 O 0 0 8

100 {63, 3, -7, -7} 381212 12 2 4 12 4 2 >1 Ly, (10)
{18, -2, 8, -2} 42 7 14 7 8 2 14 2 2
{18, -2, -2, 8 4214 7 14 2 2 7 2 8

100 {54, 4, 6, -6} 281510 15 6 6 10 6 2 ? L3 (10)
{27, -3, 7,-3} 3012 12 1210 4 12 4 2
{18, -2, -2, 8 3018 6 18 6 3 3 8

100 {45, 5, -5, -5} 2016 8 16 12 8 8 8 2 ? L4 (10)
{36, -4, 6, -4 201510 1514 6 10 6 2
{18, -2, -2, 8 2020 5 2012 4 5 4 8

100 {55, -5, 5, 5} 301212 12 6 4 12 4 6 ?
{22, 2, -8, 2} 301510 15 0 6 10 6 6
{22, 2, 2,-8 301015 10 6 6 15 6 O

100 {44, -6, 4, 4} 181510 1512 6 10 6 6 ?
{33, 3,-7, 34 2016 8 16 8 8 8 8 6
{22, 2, 2,-8 201212 1212 9 12 9 O

100 {45, 5,-5,-5} 201212 12 6 9 12 9 6 ? L33 (10)
{27, -3, 7,-3y 201015 1010 6 15 6 6
{27, -3, -3, 7} 201510 15 6 6 10 6 10

100 {36, 6, -4, -4} 1412 9 12 12 12 9 12 L34 (10)

o o
N

{36, -4, 6, -4 121212 1214 9 12 9
{27, -3, -3, 74 1216 8 1612 8 8 810
100 {33, -7, 3, 3} 81212 1212 9 12 9 12 ?

{33, 3, -7, 3 1212 9 12 8 12 9 12 12
{33, 3, 38, -7} 12 912 91212 12 12 8

Appendix B

Four integral eigenvalues; excluded here are association schemes generatedsy, SRG
and the rectangular schemém, n), except the 6-cycl€s and the Cube.

v spectrum Ly Ly L3 #

6 2, 12 12 214 010 101 010 1 G ~ R32)
{2, 1, -1, 2} 101 010 100 DRG
{1, -1, 1, -1} 020 200 000 Q@123

(Continued on next page.
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1% spectrum Ly L, L3 #
8 {3 1% 13 31 o0 20 2 01 0 10 1 Cube =~ RA42)
{3 -1, -1, 3} 2 01 02 0 1 00 DRG
{1 -, 1, -1 030 3 00 0 00 Q123
15 {4, 25 -a1*% 2% 1 20 2 4 2 0 20 1 L(Petersen)
{8 -2, -2 2} 1 21 2 41 1 10 DRG, R SRG
{2 -, 2, -1 0 40 4 4 0 0 01
20 {9 35 19 3% 4 40 4 4 1 0 10 1 J(6,3)
{9 -3 -, 3} 4 41 4 4 0 1 00 R ~ R, DRG
{1 -, 1, -1 090 9 0 O 00 Q123, @321
27 {6 385 0% 3% 1 40 4 4 4 0 44 1 H3.3)
{12, o, -3 3} 2 22 2 5 4 2 4 DRG
{8 -4 2, -1 0 33 3 6 3 3 31 Q123
27 {8 2% 18 4% 1 60 6 8 2 0 20 2 GQ(2,4)\spread
{16, -2, -2, 4} 3 41 410 1 1 10 R DRG, R, SRG
{2 -, 2, -1 0 80 8 8 0 0 01
28 {12, 2™ -2°% 47} 4 61 6 4 2 1 20 56 T8 \spread,
Chang®\spread [68]
{12, -2, -2, 4} 6 42 4 6 1 2 10 R SRG
{3 -1, 3, -1} 4 8 8 4 0 0 02
3 {7, 2% 24 71 0 60 6 0 8 0 80 4 IG1573)
4, -1, -1, 14} 3 04 013 0 4 0 4 R and Ry DRG
{8, -2 2, -8 070 7 0 7 0 70 @123, @213
32 {6 2% 2B 1% 0 50 5 010 0100 3 1G(16,6,2)
{15, -1, -1, 15} 2 04 014 0 4 06 R and Ry DRG
{10, -2, 2, -10} 0 60 6 0 9 0 90 @123, (@213
32 {15, 3% 1% 5% 6 80 8 6 1 0 10 1 2GQR2+)
{15, -3, -1, 5} 8 61 6 8 0 1 00 R and R, DRG
{1, -1, 1, -1 0150 15 0 0 0 00 @123, @321
35 {12, 5°% 0¥ 3¥ 5 60 6 9 3 0 31 1 J(7,3)
{18, -3, -3, 3} 4 6 6 9 2 2 20 R and Ry DRG, R, SRG
{4 -3 2, -1} 0 93 9 9 0 3 00 Q123
35 {12, 3M 2° 3Y 4 61 6 9 3 1 30 =1 SRGE351668)
\spread [40]
{18, -3, -3, 3} 4 62 6 9 2 2 20 R SRG
{4 -, 4, -1} 3 90 9 9 0 0 03

3 {12, 41 220 34 5 24 2 0 4 4 48 0 SRG(35,18,9,9)
\spread [40]
{6 -1, -1, 6} 4 08 0 5 0 8 08 Ry SRG
{16, -4, 2, -4} 3 36 3 0 3 6 36
36 {5 2% 110 3% o0 40 4 8 8 0 82 1 Sylvester, block
scheme of residual
of 4-(11,5,1)
{20, -1, -4, 4} 1 22 211 6 2 62 DRG, Ry ~ Ly(6)
{10, -2, 4, -2} 0 41 412 4 1 44

(Continued on next page.



THREE-CLASS ASSOCIATION SCHEMES

93

(Continued.

1% spectrum Ly Ly La #

40 {9 31 19 3% 260 618 3 0 3 >1 GQ(3,3)\spread
{27, -3, -3, 3} 2 61 618 2 1 2 0 DRG, R, SRG
{3 -1, 3, -1 0 90 918 0 0 0 2

40 {18, 4 *? 2% 6°% 8 54 5 0 4 4 4 0 SRG(40,27,18,18)

\spread [40]
{9 -1, -1, 9) 10 08 0 8 0 8 0 4 R SRG
{12, -4, 2, -4} 6 66 6 0 3 6 3 2
42 {5 2 22 51 0 40 4 016 016 1 IG(21,51)
{20, -1, -1, 20} 1 04 019 0 4 012 R and Ry DRG
{16, -2, 2, -16} 0 50 5 015 015 O Q123, Q213
42 {6 22 1% 3¥ 050 520 5 0 5 1 Ho-Si ,(x), block scheme
of 2-(15,5,4)
{30, -2, -5, 3} 1 41 421 41 4 0 DRG
{5 -1, 5 -1} 0 60 624 0 0 0 4
45 {8 22 29 4% 0 52 5 510 210 1 Gewirtz  »(x)
{20, -1, -5, 5} 24 2 9 8 4 8 4 Ry SRG
{16, -2, 6, -2} 1 52 510 5 2 5 8
45 {8, 4 18 22 3 40 424 4 0 4 0 SRG(45,12,3,3)\spread
[10, p. 152]
{32, -4, -4, 2} 1 61 62 3 1 3 0 DRG, R SRG
{4 -1 4, -1} 0 80 824 0 0 0 3

45 {16, 4 B, 220 4% 6 63 6 4 6 3 6 ?

{16, -2, -2, 6} 6 46 4 8 3 6 3 3 R =~ T(10), R; SRG
{12, -3, 3, -3} 4 84 8 4 4 4 4 3

45 {24, 3 %, 32 6% 12 56 5 0 3 6 3 >2 GQ(4,2) \spread
{8 -1, -1, 8 15 09 0 7 0 9 0 3 R SRG
{12, -3, 3, 3 12 66 6 0 2 6 2 3

45 {24, 2 %, 3% 6°% 11102 10 4 2 2 2 396 T(10) “\spread [56]
{16, -2, -2, 6f 15 63 6 8 1 3 1 0 R SRG
{4, -1, 4, -1} 12120 12 4 0 0 0 3

48 {12, 2%, 4% 67 1 55 5 010 510 3 system of 2 linked

2-(16,6,2) designs [53]
{15, -1, -1, 15} 4 08 014 0 8 012
{20, -2, 4, -10} 363 6 0 9 3 9 7 Q213

48 {15, 5 *? 11 32} 6 80 82 2 0 2 0 [35, Lemma 3.5]
{30, -5, -2, 3} 4101 1018 1 1 1 O DRG
{2 -1, 2, -1} 0150 1515 0 0 O 1

51 {16, 4 Y, -1 % 4y 5100 1020 2 0 2 >1 3(Cycl(16)+1)

32, -4, -2, 4} 5101 1020 1 1 1 O DRG
{2 -1, 2, -1} 0160 1616 0 0 0 1

52 {25, 5 ¥, 1% 518 12120 1212 1 0 1 4 Taylor [15, 67]

{25, -5 -1, 5 12121 1212 0 1 0 0 R and R, DRG

{1 -1, 1, -1} 0250 25 0 0 0 0 O @123, @321
56 {15, 77, 1%, 3% 6 80 816 6 0 6 1 J@BD3)

{30, -2, -5, 3} 4 83 815 6 3 6 1 DRG

{10, -6, 3, -1} 0 96 918 3 6 3 0 Q123

(Continued on next page.
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1% spectrum Ly L, L3 #
56 {27, 3 %, -12%, 97 1016 0 1610 1 0 1 0O 1 2(Schlafli+l)
{27, -3, -1, 9) 1610 1 1016 0 1 0 O R and R, DRG
{1 -, 1, -1} 027 0 27 00 00O @123, (@321
60 {15, 3%, 0% 5% 2 8 4 8 8 8 4 8 8 >1 hyperbolic quadric
in  PG3,5)
{24, 0, -6, 4} 555 5 810 510 5
{20, -4, 5, 0} 36 6 612 6 6 6 7
60 {21, 3 %2, 424 .73 6 6 8 6 08 88 8 2
{14, -1, -1, 14} 9 012 013 0 12 012
{24, -3, 4, -8} 777 707 7709
63 {6, 321, .12 3 1 4 0 4 416 01616 2 GH(E22)
{24, 0, -4, 6} 11 4 11012 41216 DRG, R SRG
{32, -4, 4, -4 0 33 3 912 31216
63 {24, 4 %", 38 4?2} 912 2 1216 4 2 4 0 >1 SRG(63,30,13,15)
\spread [40]
{32, -4, -4, 4} 912 3 1216 3 3 3 0 R SRG
{6 -1, 6, -1} 816 0 1616 0 0 0 5
63 {24, 5 %, 3% 4% 10 310 3 0 5 10 515 ? SRG(63,32,16,16)
\spread
{8 -1, -1, 8} 9 015 0 7 0 15 015 R SRG
{30, -5, 3, -5} 8 412 0 4 12 413
64 {7, 3%, 1% 57 06 0 6 015 01520 1 Folded 7-cube
{21, 1, -3, 9} 2 05 01010 51020 R and R, DRG, Ry SRG
{35, -5, 3, -5} 0 3 4 3 612 41218 Q123, Q312
64 {9, 5° 1% 3%} 2 6 0 612 9 0 918 2  H34), Doob
{27, 3, 5 3} 2 4 3 41012 31212 DRG, R SRG
{27, -9, 3, -1} 0 3 6 31212 612 8 Q123
64 {14, 2 *, 27 6 012 1 1224 6 1 6 0 =1 de Caen, Van Dam
{42, -2, -6, 6} 4 8 2 828 5 2 5 0
{7, -1, 7, -1} 212 0 1230 0 0 0 6
64 {15, 3 ° -1 518 212 0 1230 3 0 3 0 >5 SRG(64,18,2,6)
\spread [50]
{45, -3, -3, 5} 410 1 1032 2 1 2 0 DRG, R, SRG
{3 -1, 3, -1} 015 0 1530 0 0 0 2
64 {18, 6 ¥, 2% 3% 7 5 5 5 010 51015 0 linked designs
{15, -1, -1, 15} 6 012 014 0 12 018
{30, -6, 2, -10} 36 9 609 9 911 Q123
64 {30, 6 ®, 2% .10°% 14 9 6 9 0 6 6 6 6 12 SRG(64,453230)
\spread, 3 linked
2-(16,6,2) designs [53]
{15, -1, -1, 15} 18 012 014 0 12 0 6 Ry SRG
{18, -6, 2, 6} 101010 10 0 5 10 5 2 Q123
65 {10, 5 ¥, 0%, 3%} 3 6 0 61212 01212 1 Locally Petersen
{30, 0, -5, 4} 2 4 4 41312 412 8 DRG
{24, -6, 4, -2} 0 55 51510 510 8

(Continued on next page.
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v spectrum Ly Ly L3 #
66 {15, 2 “, 31 7%}y 010 4 10 812 412 4 >1 block scheme
4-(11,5,1) design
{30, -1, -6, 8} 5 4 6 41510 610 4 R =~ T(12)
{20, -2, 8, -2} 3 93 915 6 3 610 @312
66 {20, 2 *, -21° 8%}y 216 1 1620 4 1 4 0 ?
{40, -2, -4, 8} 810 2 1026 3 2 3 0
{5 -1, 5 -1} 416 0 1624 0 0 0 4
66 {40, 2 *, -41° 8%y 2214 3 14 4 2 3 2 0 526915620 T(12) “\spread [29]
{20, -2, -2, 8 28 8 4 810 1 4 1 0 R SRG
{5 -1, 5 -1} 2416 0 16 4 0 0 0 4
68 {12, 4 Y, 0%, 5%} 110 0 102010 010 5 1 Doro, block scheme
of 3-(17,5,1)
{40, 0, -4, 6} 36 3 620 9 3 9 3 DRG
{15, -5, 3, -2} 0 8 4 824 8 4 8 2
70 {17, 3 %, 3% .71 o016 0 16 018 018 O >53387 IG(35,17,8) [68]
34, -1, -1, 34 8 09 033 0 9 0 9 R and R; DRG
d
{18, -3, 3, -18} 017 0 17 017 017 O @123, @213
70 {18, 2 4%, 36 7 ¥ 114 2 1421 7 2 7 0 >1 Merging example
{42, -2, -1, 7} 6 9 3 926 6 3 6 0
{9 -1, 9, -1} 414 0 1428 0 0 0 8
70 {18, 7 ¥, 2% 3¢ 8 2 7 20 7 7 728 ? SRG(70,27,12,9)
\spread
{9 -1, -1, 9} 4 014 0 8 0 14 028 R SRG
{42, -7, 2, -7} 3 312 3 0 6 12 623
70 {36, 3 %, 4° 6%} 1715 3 15 9 3 3 3 0 >1 SRG(70,42,23,28)
\spread [40]
{27, -3, -3, 6} 2012 4 1212 2 4 2 O R SRG
{6 -1, 6, -1} 1818 0 18 9 0 O 0 5
72 {15, 3 ¥, 3% 151 014 0 14 021 021 O >25634 1G(36,15,6)
[66, 67]
, -1, -1, q an 3
35, -1 1, 35 6 09 034 0 9 012 R and R; DRG
{21, -3, 3, -21} 015 0 15 020 020 O @123, @213
72 {35, 5 %, 1% 7%} 1618 0 1816 1 0 1 O >227 Taylor [67]
, O, -1, q an 2
35, -5 1 7 1816 1 1618 0 1 0 O R and R, DRG
{1, -1, 1, -1} 03 03 00 000 @123, @321
75 {24, 6 *, 1% 4%} 914 0 1432 2 0 2 0 ?
{48, -6, -2, 4} 716 1 1630 1 1 1 0 DRG
{2 -1, 2, -1} 024 0 2424 0 0 0 1
75 {28, 3 %, 21 .71y 818 1 1821 3 1 3 0 ? SRG(75,32,10,16)
\spread
{42, -3, -3, 77 1214 2 1425 2 2 2 0 R SRG
{4, -1, 4, -1} 721 0 2121 0 0 0 3

(Continued on next pagde.
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1% spectrum Ly L, L3 #
75 {28, 8 ¥ 2% 74 13 6 8 6 0 8 8 816 0 SRG(75,42,25,21)
\spread [40]
{14, 1, -1, 14y 12 016 013 0 16 016 R: SRG, linked designs
{32, -8, 2, -8 7 714 7 0 7 14 710 Q123
76 {18, 3 ¥ .11 1% 215 0 1536 3 0 3 0 0 SRG(76,21,2,7)
\spread [40]
{54, -3, -3, 6} 512 1 1239 2 1 2 0 DRG, R SRG
(does not exist)
{3 -1, 3, -1} 018 0 1836 0 0 0 2
78 {25, 5%, -1% 5% 816 0 1632 2 0 2 0 >1  3(Cycl(25)+1)
{50, -5, -2, 5} 816 1 1632 1 1 1 0 DRG
{2 -1, 2, -1} 025 0 2525 0 0 O 1
80 {13, 3 ¥, -3%.137'} 012 0 12 027 027 0 =930 /G(40,13,4) [68]
39, -1, -1, 39} 4 0 9 03 0 9 018 R and Ry SRG
{27, -3, 3, -27} 013 0 13 026 026 O Q123, Q213
80 {24, 2 % 64 81} 315 5 151510 510 O 1 system of 4 linked
2-(16,6,2)
designs [53]
{40, -2, -10, 8} 9 96 921 9 6 9 0
{15, -1, 15, -1} 816 0 1624 0 0 014 Q312
81 {10, 7', 1%, 2%} 5 4 0 4 610 01040 0 A =-2
{20, 2, 7, 2} 2 35 3 115 51530 DRG, R SRG
{50, -10, 5 -1} 0 2 2 612 81229 Q123
81 {16, 4 %, 2% 51 3 8 4 8 816 41612 ?
32, -1, -4, 8} 4 4 8 41512 81212 R SRG
{32, -4, 5 -4} 2 86 81212 61213
81 {20, 5%, 220 44 5 6 8 6 6 8 8 824 ?
{20, 2, 7, 2} 6 6 8 6 112 81220 R SRG (unique)
{40, -8, 4, 1} 4 412 4 610 12 10 17
81 {24, 3 %® 38 62 516 2 1626 6 2 6 0 ?
{48, -3, -6, 6} 813 3 1329 5 3 5 0
{8 -1, 8, -1} 618 0 1830 0 0 0 7
84 {18, 98 2?2 34}y 710 0 102510 01010 1 J(9,3)
{45, o0, -7, 3} 410 4 102212 412 4 DRG
{20, -10, 4, -1} 09 9 9279 9 9 1 Q123
84 {20, 4 %, 1% 5% 415 0 1542 3 0 3 0 ?
{60, -4, -3, 5} 514 1 1443 2 1 2 0 DRG
{3 -1, 3, -1} 020 0 2040 0 0 0 2
85 {16, 4 %, -1 .43} 312 0 1248 4 0 4 0 >2  GQ(4,4)\spread
{64, -4, -4, 4} 312 1 1248 3 1 3 0 DRG, R SRG
{4 -1 4, -1} 016 0 1648 0 0 0 3
85 {48, 5 ¥, -3%.124 261110 11 0 5 10 5 5 ? SRG(85,64,48,48)\spread
{16, -1, -1, 16} 33 015 015 0 15 0 5 R SRG

{20, -5, 3, -5} 241212 12 0 4 12 4 3

(Continued on next page.
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1% spectrum Ly L, L3 #
88 {12, 4 #, 1% 4%} 110 0 104010 010 5 ?
{60, o, -6, 4 2 8 2 84011 211 2 DRG
{15, -5, 4, -1} 0 8 4 844 8 4 8 2
90 {12, 3 %, 3% .21 011 0 11 033 033 0 >2285 IG(45,12,3) [55]
{44, -1, -1, 44 3 0 9 043 0 9 024 R and R DRG
33, 3, 3 33} 012 0 12 032 032 0 Q123, Q213
9 {44, 4 %3, -1%.-11'} 1825 0 2518 1 0 1 O 0 Taylor
{44, -4, -1, 11} 2518 1 1825 0 1 0 O R and R, DRG
{1 -, 1, -1} 044 0 4 00 0 0 O Q123, @321
91 {20, 7 2, 0%, -8} 312 4 12 612 41224 ?
80, 4, -3, 9 8 4 8 41312 81220
{40,-12, 2, 2} 2 612 6 915 121512 Q123
91 {60, 2 %, 51,10} 3718 4 18 4 2 4 2 0 ~113 %x10"® T(14) “\spread [29]
{24, -2, -2, 10} 4510 5 1012 1 5 1 0 R SRG
{6, -1, 6 -1} 4020 0 20 4 0 0 0 5
95 {36, 3 5, 28 919 1024 1 2427 3 1 3 0 ? SRG(95,40,12,20)
\spread
{54, -3, -3, 9} 1618 2 1833 2 2 2 O R SRG
{4 -, 4 -1} 927 02727 0 0 0 3
9% {15 5 %, -1, 3% 410 0 1060 5 0 5 0 >1 GQ(5,3)\spread
{75, 5, 5, 3} 212 1 1258 4 1 4 0 DRG, R SRG
{514, 5 -1} 015 0 1560 0 0 0 4
9% {15, 7 ' 1%, 3% 6 8 0 83616 016 4 0 [10, p. 6]
{60, -4, -4, 6 2 9 4 93812 412 4 DRG, R and R SRG
{20, 4, 4, -4 012 3 123612 312 4
9% {19, 7%, -1%, 5% 612 0 123015 015 4 0 Neumaier
[10, corrections
and additions]
(57, -3, -3, 9} 410 5 103610 510 4 DRG, R and R SRG
{19, -5, 3, -5} 015 4 153012 412 2 Q123
9% {25, 5%, 1%, 7%} 4 812 8 4 8 12 830 ?
{20, 4, -4, 4 10 510 5 410 101030 R and R SRG
{50,-10, 2, 2} 6 415 4 412 151222
9% {30, 2 7 -6°-10™} 420 5 202010 510 0 1 system of 5 linked
2-(16,6,2)
designs [53]
{50, -2, -10, 10} 1212 6 1228 9 6 9 O
{15, -1, 15, -1} 1020 0 2030 0 0 014 Q312
9% {30, 4 %, 21 6% 820 1 203 4 1 40 ? SRG(96,35,10,14)
\spread
{60, 4, -4, 6} 1018 2 1838 3 2 3 0 R SRG
{5 -1, 5 -1} 624 02436 0 0 0 4
96 {30, 6 %, 2% 620} 1015 4 151812 412 4 ?
45, -3, -3, 9} 1012 8 1224 8 8 8 4 R and R SRG
{20, 4, 4, -4 618 6 1818 9 6 9 4

(Continued on next page.
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(Continued.

v spectrum Ly L, Ls #

96 {30, 10 ®, 2 6°% 14 510 5 010 10 10 30 0 SRG(96,45,24,18)
\spread [40]

{15, -1, -1, 15} 10 020 014 0O 20 0 30 R; SRG, linked designs
{50, -10, 2, -10} 6 618 6 0 9 18 922 Q123

96 {60, 4 %, 44,125 361112 11 0 4 12 4 4 >1 GQ(5,3) ‘\spread
{15, -1, -1, 15} 44 016 014 0 16 0 4 Ry SRG

{20, -4, 4, -4 36 1212 12 0 3 12 3 4

96 {38, 6 °, 2% 63} 14 914 9 4 6 14 618 ?
{19, 3, -5, 3} 18 812 8 2 8 12 818 R and R, SRG
{38, -10, 2, 2} 14 618 6 4 9 18 910

96 {45, 3 60 315 920y 1824 2 2418 3 2 3 0 ?  SRG(96,50,22,30)\spread
{45, -3, -3, 9} 2418 3 1824 2 3 2 O R SRG
{5, -1, 5 -1} 1827 0 2718 0 0 0 4

96 {45, 7 ¥, 3% 95 22 814 8 0 7 14 714 ? SRG(96,60,38,36)\spread
{15, -1, -1, 15} 24 021 014 0 21 014 R, SRG
35, -7, 3, -7} 18 918 9 0 6 18 610

99 {28, 3 % 52 g% 51012 10 315 12 1515 ?

{28, -1, 5, 10} 10 315 31212 151215 R SRG
{42, -3, 9, -3} 81010 10 810 10 10 21 Q312

99 {28, 6 %, 1% 6%} 7 614 6 2 6 14 636 ?
{14, 3, -4, 3} 12 412 4 1 8 12 836 R and R, SRG
{56, -10, 2, 2} 7 318 3 2 9 18 928

99 {32, 8 %, 1% 4%}y 1318 0 1844 2 0 2 O ?
{64, -8, -2, 4} 922 1 2240 1 1 1 0 DRG
{2 -1, 2, -1} 032 0 3232 0

0 1
99 {40, 5 %, 41° 5%y 1620 3 2025 5 3 5 0 >1 SRG(99,48,22,24)

\spread [40]
{50, -5, -5, 5} 1620 4 2025 4 4 4 0 R, SRG

{8 -1, 8 -1} 1525 0 2525 0 0 0 7

99 {40, 6 ¥, 4% 58 17 418 4 0 6 18 624 ?  SRG(99,50,25,25)\spread
{10, -1, -1, 10} 16 024 0 9 0 24 024 Ry SRG
48, 6, 4, 6} 15 520 5 0 5 20 522

100 {18, 3 %, 28 25 114 2 143514 214 2 ?
{63, -2, -7, 7 410 4 104012 412 2 R ~ L,(10)
{18, -2, 8, -2} 214 2 1442 7 2 7 8

100 {22, 7 ¢, 2% 4% 6 9 6 91212 61226 ?
{33, 3, -7, 3} 6 8 8 8 816 81620 R SRG
{44,-11, 4, 0} 3 613 61215 131515

100 {22, 8 %, 2% 32 9 6 6 6 918 61820 ?
{33, -3, -3, 8} 4 612 61412 121220 R, and Ry SRG
{44, -6, 4, -6} 3 910 9 915 10 1518

100 {48, 4 %0, 224 8%} 2125 1 2521 2 1
{48, -4, -2, 8 2521 2 2125 1 2
{3 -1, 3, -1} 1632 0 3216 0 O

1
0

100 {49, 7 %, 1%, 725} 2424 0 2424 1 0 0 >18 2( A49)+1) [15, 67]
0 R and R, DRG
0

Q123, ©321

{49, -7, -1, 7} 2424 1 2424 0 1
{1 -1, 1, -1 049 0 4 0 0 O
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Appendix C

Two integral eigenvalues; excluded here are association schemes generatedhy,SRG

1% spectrum Ly Ly L3 #
12 {5 -1 5 223 % 223 % 2 20 2 2 1 0 1 0 1 Icosahedron
{5 -1, -223, 223} 2 21 220 100 R ~ R, DRG
{1, 1, -1.000, ~-1.000f 0 50 5 0 0 0 0 O Q213, Q312
14 {3 -3 ' 1414 % -1414 %% 0 20 2 0 4 0 4 0 1 1G(7,3,1)
{6, 6 -1.000, -1.000f 1 02 050 20 2 R and R DRG
{4 -4 -1414, 14144 030 3 03 0 30 Q231, Q321
21 {4, -2 8 24145 0414 %% 1 20 2 2 4 0 4 4 1 L(IG(7,3,1))
{8 2 -058, -3414 1 12 1 2 4 2 DRG
{8 -1, -2828 2828 0 22 2 2 3
22 {5 -5 ' 17321 -1732 '} 0 40 406 06 0 1 IG1L52)
{to, 10, -1.000, -10000 2 03 0 9 0 3 0 3 R and R DRG
{6, 6 ~-1732, 1732} 0 50 5 05 0 50 Q231, Q321
24 {7,177, 2646 % 2646 %} 2 40 4 8 2 0 2 0 1 Klein
{14, -2, -2.646, 2646} 2 41 4 8 1 1 10 DRG
{2 2 -1000, -1.000} O 70 7 7 0 1
26 {4 -4 ' 17321 1732 ¥} 030 309 090 1 IGE1341)
{12, 12, -1.000, -1000f 1 03 011 0 3 0 6 R and R DRG
{9, 9 1732, 1732} 0 40 408 0 80 Q231, Q321
28 {13, -1 ', 3606 7, 3606 '} 6 60 6 6 1 0 1 0O 1 Taylor
{13, -1, -3.606, 3606} 6 61 6 6 0 1 0 O R ~ R, DRG
{1, 1, -1000, ~-1.000} 0130 13 0 O 0 0 O Q213, Q312
33 {10, -1 ', 3162 ', 3162 "} 3 60 612 2 0 2 0O O Hasse-Minkowski
{20, -2, -3162, 3162} 3 61 612 1 1 1 0 DRG
{2 2 -1000, ~-1000} 0100 1010 0 0 O 1
35 {6, -1 © 2449 ¥ 2449 ¥} 1 40 416 4 0 4 0 O Hasse-Minkowski,

PG2,6)

{24, -4, -2.449, 2.449} 141 416 3 1 3 0 DRG
{4, 4, -1.000, -1.000} 0 60 618 0 0 0 3
36 {17, -1 Y, 4123 ° 4123 °} 8 80 8 81 010 1 2( A17)+1)
{17, -1, -4.123, 4,123} 8 81 8 8 0 1 00 R ~ R, DRG
{1, 1, -1.000, -1.000} 0170 17 0 0 0 0 O @213, Q312
38 {9 -9 ' 223 ¥ 223 ¥} 0 80 8 010 010 O 6 1G(19,9,4)
{18, -18, -1.000, -1.000} 4 05 017 0 5 0 5 R and R; DRG
{10, -10, -2.236, 2.236} 090 9 0 9 0 9 0 @231, Q321
40 {9, 1% 2162 1?2 4162 ?} 0 44 4 4 4 4 410 ?
{12, -4, 2.000, 2.000} 333 326 36 9 R SRG

{18, 2, -5.162, 1.162} 2 25 2 4 6 5 6 6

40 {18, -2 °, 3464 ® 3464 ¥} 8 81 8 82 120 0 Hasse-Minkowski
{18, -2, -3.464, 3.464} 8 82 881 2 10
{3 3, -1.000, -1.000} 6120 12 6 0 0 O

(Continued on next page.
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1% spectrum Ly L, L3 #
42 {183, -1 ¥, 3606 #, -3606 ¥} 4 80 816 2 0 2 O >1 3(Cycl(13)+1)
{26, -2, -3.606, 3606} 4 81 816 11 1 0 DRG
{2 2 -1.000, -1.0000 0130 1313 00 0 1
44 {7, -7 % 2236 %, 2236 %} 0 60 6 015 015 O 0 1G(22,7,2)
{21, 21, -1.000, -1.0000 2 05 020 0 5 010 R and Ry DRG
{15, -15, -2.236, 2236} 0 70 7 014 014 0 Q231, Q321
44 {21, -1 #, 4583 ' 4583 '} 10100 1010 1 0 1 O 0 Hasse-Minkowski
{21, -1, -4583, ~ 4583 10101 1010 0 1 0 O R ~ R, DRG
{1, 1, -1.000, -1.0000 021021 0 00 0 O Q213, Q312
45 {16, -2 ®, 4873 2 2873 ¥} 7 53 55 6 3 6 3 ?
{16, -2, 2873, 4873} 5 56 5 7 36 3 3 R SRG
{12, 3, -3.000, -3000f 4 84 8 4 4 4 4 3
46 {11, -11 %, 2449 22, 2449 2’} 0100 10 012 012 O 582  IG(23,11,5) [68]
{22, 22, -1.000, -1.0000 5 06 021 06 0 6 R and Ry DRG
{12, -12, -2.449, 2449} 0110 11 011 011 O Q231, Q231
50 {9, -9 ' 2449 % 2449 %} 0 80 8 016 016 O 50 1G(25,9,3) [28]
{24, 24, -1.000, -1.000f 3 06 023 0 6 010 R and Ry DRG
{16, -16, -2.449, 2449} 0 90 9 015 015 O Q231, Q321
52 {6 -2 2", 3732 ' 0268 '’} 2 30 3 6 90 918 1 L(IG(13,4,1)
{18, 2, 0.464, -6.464} 1 23 2 312 31212 DRG
{27, -1, -5.196, 5196} 0 24 2 8 8 4 814
54 {13, -13 !, 2646 %°, 2646 °} 0120 12 014 014 0 105041 IG(27,13,6) [68]
{26, 26, -1.000, -1.0000 6 07 025 07 0 7 R and R, DRG
{14, -14, -2.646, 2646} 0130 13 013 013 0 Q231, Q321
55 {18, -4 10 3854 ? .2854 *} 6 65 6 4 85 8 5 ?
{18, 7, -2.000, -2000f 6 48 4 9 48 4 6 R ~ T(11)
{18, -4, -2.854, 3854} 5 85 8 4 65 6 6
56 {5 -3 ' 2414 2 0414 ?°} 0 40 4 412 01218 0 Fon-der-Flaass [33]
{20, 4, 0.828, -4828 1 13 1 612 31215 DRG
{30, -2, -4243, 4243} 0 23 2 810 31016
57 {6 -3 % 2618 '8, 0382 ®} 0 50 51510 01010 >1 Perkel
{30, 3, 0.854, -5854} 1 32 31412 212 6 DRG
{20, -1, -4472, 4472} 0 33 318 93 9 7
58 {8, -8 ! 2449 %, 2449 ®} 0 70 7 021021 O 0 IG(29.8.2)
{28, 28, -1.000, -1.000} 2 06 027 0 6 015 R and Ry DRG
{21, -21, -2.449, 2449y 0 80 8 020 020 O @231, @321
60 {11, -1 ', 3317 %, 3317 %} 2 80 832 40 4 0 >1 Mathon
{44, -4, -3.317, 3317} 2 81 832 31 3 0 DRG
{4, 4, -1000, -1.000f 0110 1133 00 0 3
60 {19, -1 ', 4359 %, 4359 *} 6120 1224 20 2 0 >1 3(Cycl(19)+1)
{3, -2, -4359, 4359} 6121 1224 11 1 O DRG
{2 2 -1000, -1.000f 0190 1919 00 0 1
60 {29, -1 ?°, 5385 5, 5385 °} 14140 1414 10 1 O 6 2( P29)+1) [67]
{29, -1, -5.385, 5385} 14141 1414 0 0 0 0O R and R, DRG
{1, 1, -1000, -1.000f 0290 29 0 00 0 O @213, @312

(Continued on next pagde.
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(Continued.
v spectrum Ly L, L3 #
62 {6, 6 % 2236 ¥ 2236 ¥} 050 502 025 0 1 IG(31,6,1)
{30, 30, -1.000, -1.000f 1 0 5 029 0 5 020 R and Ry DRG
{25, -25, -2.236, 2236} 0 6 0 6 024 024 0 Q231, @321
62 {10, -10 ', 2646 *, 2646 ¥} 0 9 0 9 021 021 O 82  IG(31,10,3)
[64, 65]

{30, 30, -1.000, -1.000} 30 029 0 7 014 R, and R; DRG

7
{21, -21, -2.646, 2646} 010 0 10 020 020 O @231, Q321
62 {15, -15 ', 2828 30, 2828 ¥} 014 0 14 016 016 0 =>633446 /G(31,15,7) [66]
{30, 30, -1.000, -1.000} 708 0290 8 0 8 R and R DRG
{16, -16, -2.828, 2.8288 015 0 15 015 015 O @231, Q321
63 {8, -1 8 2828 % 2828 %} 16 0 63 6 0 6 0 1 PG28)
{48, -6, -2.828,  2.828} 161 63 5 150 DRG
{6 6 -1.000, -1.000} 0 80 8400 00 5
64 {14, -2 7, 3464 8 3464 %} 3 9 1 927 6 1 6 0 ?
{42, -6, -3.464,  3.464} 392 9275 250
{7 7, -1.000, -1.000} 212 0 1230 0 0 0 6
64 {30, -2 5 4472 % 4472 ?*} 1414 1 1414 2 1 2 O ?
{30, -2, -4472, 4472} 1414 2 1414 1 2 1 0
{3 3 -1000, -1.000} 1020 0 2010 0 O O 2
68 {12, -12 !, 2828 ¥ 2828 ¥} 011 0 11 022 022 O 0 IG(34,12,4)
{33, 33, -1.000, -1.000f 4 0 8 032 0 8 014 R and R DRG
{22, 22, -2.828, 2828} 012 0 12 021 021 O @231, @321
68 {33, -1 ¥ 5745 Y 5745 '} 1616 0 1616 1 0 1 0O 0 Taylor,
Hasse-Minkowski
{33, -1, 5745, 5745} 1616 1 1616 0 1 0 O R and R, DRG
{1, 1, -1.000, -1.000} 03 03 00 000 @213, @312
69 {22, -1 22, 4690 %, -4690 2°} 714 0 1428 2 0 2 O 0 Hasse-Minkowski
{44, -2, -4690,  4.690} 714 1 1428 1 1 1 0 DRG
{2, 2 -1.000, -1.000} 022 0 2222 0 0 0 1
72 {17, -1 Y, 4123 %7, 4123 2} 412 0 1236 3 0 3 0 >1 Mathon
{51, -3, -4123, 4123} 412 1 1236 2 1 2 O DRG
{3, 3 -1.000, -1.000} 017 0 1734 0 0 0 2
74 {9, 9 ' 2646 %, 2646 %} 0 8 0 8 028 028 O 3 IG(37,9,2) [1]
{36, 36, -1.000, -1.000} 2 07 03 0 7 021 R and R; DRG
{28, -28, 2646, 2646} 0 9 0 9 027 027 O @231, @321
76 {37, -1 %, 6.083 ' -6083 ° 1818 0 1818 1 0 1 0 >11 Taylor [15, 67]
{37, -1, -6.083, 6083} 1818 1 1818 0 1 0 O R and R, DRG
{1, 1, -1.000, -1.000} 037 037 00 00O Q213, @312
78 {19, -19 ', 3162 *,6 -.3162 *¥} 018 0 18 020 020 0 >19 1G(39,19,9) [66]
{38, 38, -1.000, -1.000} 9 010 037 0 10 010 R and R; DRG
{20, -20, -3.162, 3162} 019 0 19 019 019 O @231, @321
81 {8 -1 % 3854 2, 2854 %} 2 5 0 51520 02012 0 [10, Prop. 1.2.1]
{40, -5, -0.854, 5.854} 1 3 4 32016 41612 DRG, R SRG
{32, 5, -4.000, -4.000} 0 53 52015 31513

(Continued on next page.
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(Continued.
1% spectrum Ly L, Lj #
81 {10, 1 %, 2854 % 3854 °} 0 4 5 4 610 51035 ?
{20, -7, 2.000, 2.000} 2 35 3 115 51530 R SRG (unigue)
{50, 5, -5.854, 0.854} 12 7 2 612 71230
81 {16, -2 %%, 5243 ?* 3243 %} 5 6 4 61016 41612 ?
{32, -4, -2.243, 6.243} 3 58 51412 81212 R SRG
{32, 5, -4.000, -4.000} 2 86 81212 61213
81 {20, 2 %, 3243 % 55243 °} 3 610 6 6 8 10 822 ?
{20, -7, 2.000, 2.000} 6 6 8 6 112 81220 R SRG (unigue)
{40, 4, -6.243, 2.243} 5 411 4 610 111018
81 {24, -3 8 4243 %% 4243 %} 714 2 1428 6 2 6 O ?
{48, -6, -4.243, 4.243} 714 3 1428 5 3 5 0
{8 8 -1.000, -1.000} 618 0 1830 0 0 0 7
81 {28, 1 %, 3374 '2.10374 ?} 41211 12 6 6 11 611 ?
{24, -3, 6.000, 6000} 14 7 7 7 9 7 7 714 R SRG
{28, 1, -10.374, 3374} 11 611 6 612 1112 4
82 {16,-16 !, 3.162 *°, 3162 “°} 015 0 15 025 025 0 =>56000 /G(41,16,6) [66]
{40, 40, -1.000, -1.000} 6 010 039 0 10 015 R and Ry DRG
{25,-25, -3.162, 3.162} 016 0 16 024 024 0 Q231, Q321
84 {13, -1 3, 3606 °°, -3606 *°*} 210 0 1050 5 0 5 O >1 Mathon
{65, -5, -3.606, 3.606} 210 1 1050 4 1 4 0 DRG
{5 5 -1.000, -1.000} 013 0 1352 0 0 0 4
84 {41, -1 “*, 6.403 2, 6403 2!} 2020 0 2020 1 0 1 O >18 Taylor [15,67]
{41, -1, -6.403, 6403} 2020 1 2020 0 1 0 O R and R DRG
{1, 1, -1.000, -1.000} 041 041 0 0 0 0 O Q213, Q312
85 {12, -5 16, 3449 %, -1449 *} 1 6 4 6 216 41628 ?
{24, 7, 0.449,  -4.449} 3 18 1 814 81426
{48, -3, -4.899, 4.899} 1 4 7 4 713 71327
85 {32, -2 %°, 8325 ', 4325 '} 1511 5 111110 510 5 ?
{32, -2, -4.325, 8325} 111110 1115 5 10 5 5 R SRG
{20, 3, -5.000, -5.000} 816 8 16 8 8 8 8 3
85 {32, -2 © 4899 ** 4899 **} 1218 1 1827 3 1 3 0 0 Hasse-Minkowski
{48, -3, -4.899, 4899} 1218 2 1827 2 2 2 O
{4, 4, -1.000, -1.000} 824 0 2424 0 0 0 3
86 {7, -7 ', 2449 “2 2449 “} 0 6 0 6 036 036 O 0 IG(43,7,1)
{42, 42, -1.000, -1.000} 106 041 0 6 030 R and Ry DRG
{36,-36, -2.449, 2.449} 0 70 7 03 035 0 @231, Q321
86 {15,-15 !, 3.162 “?, -3.162 “} 014 0 14 028 028 O 0 IG(43,15,5)

{42, 42, -1.000, -1.000} 5 010 041 0 10 018 R and Ry DRG
{28,-28, -3.162, 3.162} 015 0 15 027 027 O @231, Q321
86 {21,-21 !, 3317 “, 3317 “} 020 0 20 022 022 0 >14 1G(43,21,10) [68]
{42, 42, -1.000, -1.000f 10 011 041 0 11 011 R and Ry DRG
{22,-22, -3.317, 3.317} 021 021 021 021 O @231, Q321

(Continued on next page.
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1% spectrum Ly Ly L3 #
87 {28, -1 2§ 5202 2° 5202 2} 918 0 1836 2 0 2 0 >1 3(PseudoCycl(28)+1)
{56, -2, -5.292, 5.292} 918 1 1836 1 1 1 0 DRG
{2 2 -1.000, -1.000} 028 02828 0 0 O 1
88 {42, -2 2%, 5292 ¥ 5292 ¥} 2020 12020 2 1 2 O 0 Hasse-Minkowski
{42, -2, -5.292, 5292} 2020 2 2020 1 2 1 0
{3 3 -1.000, -1.000f 1428 0 2814 0 0 0 2
92 {10, -10 !, 2828 “, 2828 %} 0 9 0 9 036 036 0 0 1G(46,10,2)
{45, 45, -1.000, -1.000f 2 0 8 044 0 8 028 R and R; DRG
{36, -36, -2.828, 2828} 010 0 10 035 035 0 @231, @321
92 {45, -1 5, 6708 8, 6708 %} 2222 02222 1 0 1 0 >80 Taylor [15, 67]
{45, -1, -6.708, 6708y 2222 12222 0 1 0 O R and R, DRG
{1, 1, -1.000, -1.000} 045 045 0 0O 0 0 O @213, Q312
93 {20, 5 %2,-1586 ° -4414 ¥} 5 8 6 8 816 61618 ?
{32, -1, -5.657, 5.657} 5 510 51115 101515
{40, -5, -6.243, 2243} 3 8 9 81212 91218
94 {23, 23 !, 3464 %5, 3464 %} 022 022 024 024 O >1 1G(47,23,11)
{46, 46, -1.000, -1.000} 11 012 045 0 12 012 R and R; DRG
{24, -24, -3.464, 3464} 023 0 23 023 023 0 @231, @321
96 {19, -5 19 4464 B, 2464 %%} 412 2 123015 215 2 ?
{57, 9, -3.000, -3.000} 410 5 103610 510 4 R, SRG
{19, -5, -2.464,  4.464} 215 2 153012 212 4
96 {30, -6 5, 4.472 % 4472 ®} 9 515 5 010 151025 ?
{15, 15, -1.000, -1.000} 10 020 014 0 20 0 30
{50, -10, -4.472, 4472} 9 615 6 0 9 15 925
9 {30, -2 %, 9708 '°, 3708 °} 14 8 7 8 814 71414 ?
{30, -2, -3.708, 9.708} 8 814 814 7 14 714 Ry SRG
{35, 3, -7.000, -7.000} 61212 12 612 1212 10
9 {31, -1 %, 5568 %, -5568 ¥’} 1020 0 2040 2 0 2 0 >1 3(Cycl(31)+1)
{62, -2, -5.568, 5568} 1020 1 2040 1 1 1 O DRG
{2 2 -1.000, -1000} 031 03131 0 0 0 1
96 {38, -2 57, 8928 19 -4928 19 1814 5 141410 510 4 ?
{38, -2, -4.928, 8928} 141410 1418 5 10 5 4 Ry SRG
{19, 3, -5.000, -5.000f 1020 8 2010 8 8 8 2
98 {16, -16 !, 3.317 “ 3317 %} 015 0 15 033 033 0 >6073 /G(49,16,5) [54]
{48, 48, -1.000, -1.000f 5 011 047 0 11 022 R and Ry DRG
{33, -33, -3317, 3317} 016 0 16 032 032 0 @231, Q321
99 {10, -1 10 3162 “, 3162 *} 1 8 0 864 8 0 8 0 0 PG2,10)
{80, -8, -3.162, 3.162} 181 864 7 17 0 DRG
{8 8 -1.000, -1.000} 010 0 1070 0 O O 7
99 {42, -2 %, 8374 2, 5374 22} 2017 4 1717 8 4 8 2 ?
{42, -2, -5.374, 8374} 1717 8 1720 4 8 4 2 Ry SRG
{14, 3, -4000, -4000} 1224 6 2412 6 6 6 1
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One integral eigenvalue.
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spectrum

~
N

~
N

13

19

28

31

37

43

49

52

61

67

73

76

79

{2
{2
{2
{ 4,
{4
{ 4,

{s
{6
{6
{9
{9
{9
{10,
{10,
{10,

{12,
{12,
{12,

{14,
{14,
{14,

{16,
{16,
{16,

a7,
{17,
a7,

{20,
{20,
{20,

{22,
{22,
{22,

{24,
{24,
{24,

{25,
{25,
{25,
{26,
{26,
{26,

1.247,
-0.445,
-1.802,

1.377,
0.274,
-2.651,

2.507,
-1.222,
-2.285,

2.604,
-0.110,
-3.494,

3.084,
-0.787,
-3.297,

2.187,
1.158,
-4.345,

2.888,
0.615,
-4.503,

4.296,
-2.137,
-3.159,

4.302,
-1.548,
-3.754,

4.230,
-0.445,
-4.786,

4.085,
0.230,
-5.316,

4.950,
-1.132,
-4.818,

3.570,
1.444,
-6.014,

3.122,
2.108,
-6.230,

-0.445,
-1.802,
1.247,

0.274,
-2.651,
1.377,

-1.222,
-2.285,
2.507,

-0.110,
-3.494,
2.604,

-0.787,
-3.297,
3.084,

1.158,
-4.345,
2.187,

0.615,
-4.503,
2.888,

-2.137,
-3.159,
4.296,

-1.548,
-3.754,
4.302,

-0.445,
-4.786,
4.230,

0.230,
-5.316,
4.085,

-1.132,
-4.818,
4.950,

1.444,
-6.014,
3.570,

2.108,
-6.230,
3.122,

-1.802}
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-2.651}
1.377}
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-0.110}
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2.888}
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-3.159}
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-3.754}
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1.444}

-6.230}
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>1 Cycl(31)

>1 Cycl(37)

>1 Cycl(43)

>1 Cycl(49)

>1 Cycl(61)

>1 Cycl(67)

>1 Cycl(73)

>1 Cycl(79)

(Continued on next pade.
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(Continued.

v

spectrum Ly L, Ls #

91

91

97

{30, 4.412, 0.960, -6.373} 8 12 9 12 9 9 9 9 12 ?
{30, 0.960, -6.373, 4.412} 12 9 9 9 8 12 9 12 9
{30, -6.373, 4.412, 0.960} 9 9 12 912 9 12 9 8

{30, 5.909, -2.404, -4506} 11 10 8 10 8 12 8 12 10 ?
{30, -2.404, -4.506, 5.909} 10 8 12 8 11 10 12 10 8
{30, -4.506, 5.909, -2.404} 8 12 10 12 10 8 10 8 11

{32, 6.207, -3.098, -4109} 12 10 9 10 9 13 9 13 10 >1  Cycl(97)

{32, -3.098, -4.109, 6.207} 10 9 13 9 12 10 13 10 9
{32, -4.109, 6.207, -3.098} 9 13 10 13 10 9 10 9 12
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