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Abstract. We present a set of algebraic relations among Schur functions which are a multi-time generalization
of the “discrete Hirota relations” known to hold among the Schur functions of rectangular partitions. We prove
the relations as an application of a technique for turning Pl¨ucker relations into statements about Schur functions
and other objects with similar definitions as determinants. We also give a quantum analogue of the relations which
incorporates spectral parameters. Our proofs are mostly algebraic, but the relations have a clear combinatorial
side, which we discuss.
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1. Introduction

Consider the following relationship among the Schur functionssλ whereλ is a rectangular
partition:

s〈m`〉s〈m`〉 = s〈m+1`〉s〈m−1`〉 + s〈m`+1〉s〈m`−1〉. (1)

Here〈m`〉 is the partition with̀ parts each of sizem, whose Young diagram is aǹ×m
rectangle. A. N. Kirillov noticed this fact as a relation among the characters of finite-
dimensional representations of while studying the Bethe Ansatz for a one-dimensional
system called the generalized Heisenberg magnet [3].

In later work, Kirillov and Reshetikhin observed that the relations could be viewed as a
discrete version of a classical and well-studied dynamical system known to mathematical
physics as the discrete Hirota relations [4]. The initial conditions are the characters of the
fundamental representations of , and expressing the solutions in terms of the initial
conditions is precisely the Jacobi-Trudi formula fors〈m`〉.

In this paper, we present the natural extension of this set of relations to Schur functions
of arbitrary partitions. The relations are all of the form

sλsλ = sλ+ω`sλ−ω` + other terms. (2)

Here we borrow notation from Lie theory: ifλ is a partition, then we writeλ ± ω` for the
partition obtained by adding or removing a column of height` from the Young diagram of
λ; this corresponds to taking the highest weightλ and adding or subtracting the fundamental
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weightω`. We have one such relation for every choice of a partitionλ and column height̀
such thatλ has a column of height̀to begin with (otherwiseλ−ω` does not make sense).
The various choices of̀ should be thought of as independent time directions in which we
can evolve the dynamical system.

The “other terms” in Eq. (2) are also each products of two Schur functions, and all
have coefficients±1. The partitions that appear never have more columns or more outside
corners thanλ does. Thus we get a hierarchy of systems of relations for partitions with
up to k corners; whenk = 1 we are restricted to rectangular partitions, and we recover
Eq. (1).

We prove the relations by reducing them to the Pl¨ucker relations among minors of a
certain matrix, whose construction we define in Section 2. The construction applies not
only to Schur functions, which we now view as determinants of the Jacobi-Trudi ma-
trices, but to the determinants of any family of matrices with a similar type of defini-
tion. We formalize this notion, giving several other examples and a general version of the
construction.

In Section 3 we state and prove the relations. We also prove a generalization of the
relations to ones which include “shifts” or “spectral parameters.” The generalizations of
Schur functions that satisfy this version of the equations are the quantum analogues of
characters for finite-dimensional representations forUq( ), and the generalized version
may be related to the representation theory of quantum affine algebras, which is not yet well
understood.

Finally, while most of the earlier proofs are algebraic, in Section 4 we offer a combinatorial
interpretation for the relations in terms of the Littlewood-Richardson rule, in which the
coefficients of±1 in the other terms mentioned above arise from an inclusion-exclusion
argument. We give a completely bijective proof for Eq. (1), the rectangular Young diagram
version, and we conjecture the existence of bijections with certain properties that would
lead to a fully combinatorial proof of Eq. (2) as well.

The author is grateful to S. Fomin and N. Reshetikhin for helpful discussions of the
subject, and to W. Brockman and S. Billey for comments on an earlier draft of this
work.

2. Generalized Jacobi-Trudi sets

We will describe a scheme for translating the Pl¨ucker relations among minors of a ma-
trix into identities of objects defined by a Jacobi-Trudi style determinantal formula. This
general concept is a well-established source for algebraic relations involving Schur func-
tions; see e.g. [7, 8]. A special case of the particular construction we give here was
used implicitly in [9] to prove some relations among quantum transfer matrices. Our
applications will include Schur functions (characters of representations ofSLn), skew
Schur functions, and Schur functions with spectral parameters (quantum characters of
Uq( )).

The heart of the construction is an operation(A,B)→ A2B, whereA andB aren× n
matrices andA2B is an(n+ 1)×(2n+ 2)matrix. The operation can be depicted graphically
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as:

A , B → A ∗

B∗

0 · · · 0 ±1
1 0 · · · 0

(3)

We will first define the operation for our motivating example, the set of Jacobi-Trudi ma-
trices:{

Mλ := (hλi−i+ j
)n

i, j=1 | n ∈ Z≥0, λ a partition withn parts
}
.

If hk is thekth homogeneous symmetric function (soh0 = 1 andhk = 0 for k < 0), then
det(Mλ) is the Schur functionsλ. We permitλ to end with zeros, so ifλ is a partition with
n parts then we can obtainsλ as the determinant of such anm×m matrix for anym≥ n.

Construction 2.1 Let λ andµ be partitions withn parts. We define the matrixM =
Mλ2Mµ, with n + 1 columns indexed by{1, . . . ,n + 1} and 2n + 2 rows indexed by
{L , R, 1, . . . ,n, 1′, . . . ,n′}, as follows:

ML j = δ( j, 1)
MRj = (− 1)nδ( j, n+ 1)
Mi j = hλi−i+ j , i = 1, . . . ,n
Mi ′ j = hµi−i+ j−1, i = 1, . . . ,n

We adopt the notation [r1r2 . . . rk]M for the determinant of thek× k sub-matrix of ak× n
matrix M consisting of rows with indicesr1, . . . , rk; when the choice ofM is clear from
context the subscript will be dropped. Then forM = Mλ2Mµ, we have [R12. . .n] = sλ
and [L1′ . . .n′] = sµ. (The sign ofMR,n+1 was chosen for convenience precisely to make
this happen.) Pl¨ucker relations onM will give us relations among Schur functions.

The construction relies on the following property of the set of Jacobi-Trudi matrices{Mλ}:
there is a unique way to fill in the “∗” regions in Eq. (3) so that anyn + 1-row nonzero
minor of Mλ2Mµ is det(Mν) for someν. To give a generalization of the construction, we
isolate the properties of{Mλ} which make this happen.

Definition 2.2 LetM be a set of square matrices. LetRn denote the set ofn-component
vectors that appear as rows in anyn× n matrix M ∈M, for eachn ∈ Z+. We sayM is a
generalized Jacobi-Trudi setif there exist equivalence relations∼n onRn such that:

1. Any two rows of ann× n matrix M ∈M are∼n related,
2. If M is ann × n matrix with nonzero determinant and all of its rows are pairwise∼n

related, then there is a matrixM ′ ∈Mwith the same rows asM (but possibly permuted).
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Consider the operatorsdL anddR, which respectively drop the left and right components
of a row vector.

3. Take any two rowsr1, r2 ∈ Rn such thatdL(r1), dL(r2) ∈ Rn−1. If r1 ∼n r2 then
dL(r1) ∼n−1 dL(r2). Furthermore,dL(r1) = dL(r2) only if r1 = r2. Thus we can talk
aboutdL acting on the equivalence classes. Likewise, all this must hold fordR as well.

4. If A and B are two∼n classes such thatdL(A) = dR(B) then there is a unique∼n+1

classC such thatdR(C) = A anddL(C) = B.

Our archetypical generalized Jacobi-Trudi set of matrices, of course, is the set of Jacobi-
Trudi matricesMλ defined above. In this case there is only one conjugacy class for each
∼n, and it consists of all rows of the form(hk, hk+1, . . . , hk+n−1) for k+n−1 nonnegative.
Other examples of generalized Jacobi-Trudi sets include:

Example 1 The matricesMλ/µ := (hλi−µ j−i+ j )
n
i, j=1. The determinants of these matrices

are the skew Schur functionssλ/µ corresponding to skew Young diagramsλ/µ, withµ ⊂ λ
(i.e. µi ≤ λi for all i ). In this case, for eachn there are infinitely many∼n classes, one
for each choice ofµ: given a row vector(ha1, ha2, . . . , han), it can appear in matricesMλ/µ

whereµi − µi+1 = ai+1− ai − 1.
The operatordL (resp.dR) takes the∼n class associated withµ to the∼n−1 class ofµ

with µ1 (resp.µn−1) removed. (Without loss of generality we assume thatµn = 0.)

Example 2 The set of matricesTλ(u+ c), whereλ is a partition,u is a formal variable,
andc ∈ Z is called the shift. We will take the following as a formal definition:

Tλ(u) := (tλi−i+ j (u+ λ1− λi + i + j − n− 1))ni, j=1

whereλ hasn parts, some of which may be zero. Defines(u)λ := det(Tλ(u)). Thetk(u) can
optionally be specialized tot0(u) = 1, tk(u) = 0 for k < 0, as we do with thehk to get
Schur functions.

We will treat thes(u)λ as formal symbols, but see the remarks following Theorem 3.4 for
comments and references on the mathematical physics origins of the objects. Essentially,
s(u)λ can be regarded as quantum analogues of characters of representations ofUq( ). If we
send the entrytk(u + c) to hk and therefore ignore the shift (this is lettingu→ ∞ in the
mathematical physics literature) we recover the Jacobi-Trudi matricesMλ and plain Schur
functionssλ.

To understand the equivalence classes here, note that the rows of any matrixTλ(u + c)
are of the form

(ta(u+ b), ta+1(u+ b+ 1), . . . , ta+n−1(u+ b+ n− 1))

for some choice of integersa andb. The main diagonal ofTλ(u) has entriestλ1( ∗ ), tλ2( ∗ )
, . . . , tλn( ∗ ), while the anti-diagonal hast∗(u), t∗(u+ λ1− λ2), . . . , t∗(u+ λ1− λn). It is
therefore easy to see that if the row beginning withta(u+b) appears in the matrixTλ(u+c),
we must havea+ b = λ1− n+ 1. Therefore each∼n class contains all rows which share
a common valuea+ b.
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We remark that given a partitionλ with n parts and an∼n classA, there is a unique
integerc such that the rows ofTλ(u+ c) are inA.

Now we give a version of Construction 2.1 for any generalized Jacobi-Trudi set of
matrices, which we will apply to the examples above. WhenM = {Mλ} this reduces to
Construction 2.1.

Construction 2.3 LetM be a generalized Jacobi-Trudi set of matrices, and take two
n× n matricesA, B ∈M. Let Ã, B̃ denote the∼n classes of their respective rows.

We sayA andB are compatible ifdL(Ã) = dR(B̃). For compatibleA, B we can define
the (n + 1) × (2n + 2) matrix A2B. Let C̃ be the∼n+1 class such thatdR(C̃) = Ã and
dL(C̃) = B̃, whose existence and uniqueness is guaranteed by Definition 2.2. The rows of
A2B are indexed by{L , R, 1, . . . ,n, 1′, . . . ,n′}.

• Row L is (1, 0, . . . ,0),
• Row R is (0, . . . ,0, (− 1)n),
• Row i for i = 1, . . . ,n is the (unique) rowri ∈ C̃ such thatdR(ri ) is thei th row of A,
• Row i ′ for i = 1, . . . ,n is the (unique) rowri ′ ∈ C̃ such thatdL(ri ′) is thei th row of B.

We will examine Pl¨ucker relations for the matricesA2B. To fix notation, recall the
Plücker relations for then× n minors of ann× 2n matrix whose 2n rows are indexed by
1, . . . ,n, 1′, . . . ,n′. Pick some integerk, 1≤ k ≤ n, and then pick 1≤ r1 < · · · < rk ≤ n.
The relations state that

[12 . . .n][1′2′ . . .n′] =
∑

1≤s1<···<sk≤n

σRS([1, 2, . . . ,n][1′, 2′ . . . ,n′])

whereσRS exchanges rowsri with s′i for i = 1, . . . , k before evaluating the determinants.
We say the rows with labels 1, . . . ,n other thanr1, . . . , rk arefixed.

We are interested in Pl¨ucker relations onA2B in which one of the terms is [R12. . .n]
[L1′ . . .n′] = det(A) det(B). To specify an example of this type, we choose matricesA
andB from a generalized Jacobi-Trudi set, and we pick some subset of the rows of either
A or B (recall that the2 operation is not symmetric) to be the fixed rows in the identity.

Example 3 Takeλ = 〈2, 1, 1〉andµ = 〈4, 3, 1〉, and considerTλ(u)2 Tµ(u) (Example 2).
Choosing the first two rows ofTµ(u) as our fixed rows gives us a 7-term Pl¨ucker relation.
Rearranging the order of the terms (as a precursor to Theorem 3.2), we get:

s(u−1)
〈3,2,1〉s

(u+1)
〈3,2,1〉 = s(u)〈4,3,1〉s

(u)
〈2,1,1〉 + s(u−1)

〈3,2,2〉s
(u+1)
〈3,1,1〉 + s(u−1)

〈3,3,3〉s
(u+3)
〈1,1,1〉

+ s(u)〈3,2,2,2〉s
(u)
〈3,0〉 + s(u)〈3,3,3,2〉s

(u+2)
〈1,0〉 − s(u)〈3,3,3,3〉s

(u+3)
〈0,0〉

If we ignore the spectral parameters, we get an identity on plain Schur functions:
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In the first version, the zero parts of the partitions are necessary if the identity is to work
without settingt0(u)= 1, tk(u)= 0 for k< 0. If we are willing to make that specialization,
we can drop the zero parts, but we must adjust the shifts at the same time:s(u)〈λ1...λn,0〉 =
s(u−1)
〈λ1...λn〉. In the second version we have already dropped the information about the zero

parts.

3. Main theorem

In this section we present a set of recurrence relations, essentially a discrete dynamical
system, to which the Schur functions are a solution. These relations are a generalization
of Eq. (1), a system of relations which hold for the Schur functions of partitions with
rectangular Young diagrams. We also present the quantum analogue of the relations, in
Theorem 3.4 and following comments; this generalizes the relation

s(u−1)
〈m`〉 s(u+1)

〈m`〉 = s(u)〈m+1`〉s
(u)
〈m−1`〉 + s(u)〈m`+1〉s

(u)
〈m`−1〉 (4)

We prove the relations by reducing them to Pl¨ucker relations onMλ2Mµ, defined in
Section 2. The simple forms in Eqs. (1) and (4) come from the 3-term Pl¨ucker relation
[12][34] = [13][24]+ [14][32].

To state the relations, we first need to define some operations on the partitionλ, which
we associate with its Young diagramY = Y(λ). Let Y be a Young diagram withn outside
corners. That is, we taken points(x1, y1), . . . , (xn, yn) in Z≥0 × Z≥0 with x1 > · · · > xn

andy1 < · · · < yn, and the points inY are those less than any of the(xi , yi ) in the product
ordering. We identifyY with the partitionλ = 〈xy1

1 , xy2−y1
2 , . . . , xyn−yn−1

n 〉. We also say that
Y hasn+ 1 inside corners, numbered from 0 ton; the i th one has coordinates(xi+1, yi ),
wherey0 = xn+1 = 0.

Definition 3.1 Let Y be a Young diagram withn outside corners as above, and pick two
integersi, j such that 1≤ i ≤ j ≤ n. We define two Young diagrams by the coordinates
of their corners:

π i
j (Y) : take the corners ofY, add 1 to each ofxi+1, . . . , xj , yi , . . . , yj

µi
j (Y) : take the corners ofY, add−1 to each ofxi+1, . . . , xj , yi , . . . , yj

These operations respectively add and remove a border strip which reaches from thei th
outside corner to thej th inside corner.
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We will also want to add or remove several nested border strips. Given integers 1≤
i1< · · ·< i r ≤ jr < · · · < j1 ≤ n, we further define

π
i1···i r
j1··· jr = π i r

jr
◦ · · · ◦ π i1

j1

µ
i1···i r
j1··· jr = µi r

jr
◦ · · · ◦ µi1

j1

Thus we add or remove border strips reaching from outside corneri s to inside cornerjs
for 1≤ s ≤ r .

We apply these definitions ofπ i1···i r
j1··· jr andµi1···i r

j1··· jr only considering the coordinates of
corners, so the variousπ i

j andµi
j commute. Note that applyingπ i

j , for example, might
decrease the number of visible corners ofY (by makingyj the same asyj+1), but we ignore
this effect in the latter definitions above. Since the intervals [i s, js] are nested, we will never
end up withxi < xi+1 or yi > yi+1.

Finally, we borrow notation from Lie theory: given a partitionλ, we letλ ± ω` denote
the partition obtained fromλ by adding or removing a column of height` to Y(λ). If
λ = 〈λ1, . . . , λm〉 andµ = λ± ω`, thenµi = λi ± 1 for 1≤ i ≤ ` andµi = λi for i > `.
Of course, we cannot takeλ− ω` if λ` = λ`+1, that is, ifY(λ) does not have a column of
height` to begin with.

Theorem 3.2(Main Theorem) Take a partitionλwhose Young diagram Y(λ)has n outside
corners. Pick an integer k, 1≤ k ≤ n, and let` be the kth-shortest column height in Y(λ),
so` = yk in the coordinates above. Then

sλsλ = sλ+ω`sλ−ω` +
min(k,n−k+1)∑

r=1

∑
1≤i1<···<i r≤k
k≤ jr<···< j1≤n

(− 1)r−1s
π

i1···ir
j1··· jr (λ)

s
µ

i1···ir
j1··· jr (λ)

That is, we take a signed double sum over all chains of properly nested intervals [i1, j1] ⊃
· · · ⊃ [i r , jr ] 3 k. For each such chain we have the product of two Schur functions, obtained
by adding or removing all the corresponding border strips.

Remark 3.3 The recurrence relations can be viewed as defining the multi-time flow of a
discrete dynamical system. We think ofsλ as being associated with the lattice point whose
i th coordinate is the numberof columns inλ of heighti . If we allow arbitrary partitionsλ,
the system is infinite-dimensional; if we restrict ourselves to representations ofn+1 it has
dimensionn.

First, we note that that no partition appearing in Theorem 3.2 has more outside corners
thanλ does. Second, we observe that the only partition with more columns thanλ isλ+ω`.
Therefore we can solve forsλ+ω` to get a recurrence relationsλ+ω` = (s2

λ−
∑±sπsµ)/sλ−ω` ,

expressingsλ+ω` in terms of Schur functions of partition with strictly fewer columns and
no more corners. The only initial conditions that need to be specified are forsλ whenλ has
no two columns of the same height.
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Example 4 Takeλ to be the staircase partition〈3, 2, 1〉 with n = 3 corners, and pick
k = 2. This instance of Theorem 3.2 is the Schur function part of Example 3. The order in
which the terms appear there corresponds to taking the double sum over all sets of nested
intervals in the order:

{[2, 2]} {[1, 2]} {[2, 3]} {[1, 3]}︸ ︷︷ ︸
r=1

{[1, 3] ⊃ [2, 2]}︸ ︷︷ ︸
r=2

We will address the version with spectral parameters in Theorem 3.4.

Proof: The formula is the Pl¨ucker relation onMλ−ω`2Mλ+ω` in which we fix rows
1′, . . . , `′. We index the rows by{L , R, 1, . . . ,m, 1′, . . . ,m′} as in Construction 2.1, where
m is the number of parts ofλ. The fixed rows are therefore those corresponding to rows of
λ+ ω` which got longer when the column of height` was added.

First we locate the two pieces of Theorem 3.2 outside the double sum. The termsλ−ω`sλ+ω` ,
of course, is the Pl¨ucker term [R12. . .m][ L1′2′ . . .m′], as we have pointed out several times
before. Thesλsλ term is obtained from the Pl¨ucker term [L1 . . . `(`+ 1)′ . . .m′][ R1′ . . . `′

(` + 1) . . .m], in which we swapL with R and every row ofMλ+ω` other than the fixed
ones with the corresponding row ofMλ−ω` . This leaves rows̀ + 1 throughm of the two
partitions unchanged in length. The exchange ofL and R increases by one the lengths of
rows 1 through̀ of λ−ω` and decreases by one the lengths of rows 1′ through`′ of λ+ω`,
giving λ in both cases.

All other Plücker terms can be obtained from thesλsλ term by exchanging some sub-
set of {1, . . . , `} from the first determinant with a subset of the same size drawn from
{R, (`+ 1), . . . ,m} from the second determinant. What is the effect of exchanginga for b,
with 1≤ a ≤ ` < b ≤ m?

If λa = λa+1 or λb = λb−1, two identical rows (rowsa and(a + 1)′ or rows(b− 1)′

andb, respectively) now appear in the same determinant, and we get zero contribution.
Otherwise, reading down the main diagonals of the resulting matrices reveals that the effect
is precisely to change the two minors into those forµi

j (λ) andπ i
j (λ) respectively, where

Y(λ) has corner coordinatesyi = a andyj = b− 1, and to flip the sign, owing to the need
to reorder the rows. If instead ofb we swap the row labelledR, the exchange has the effect
of π i

n andµi
n.

Exchanging subsets larger than a single element is easily seen to mimic the definition of
π

i1···i r
j1··· jr andµi1···i r

j1··· jr ; the nesting of the intervals arises because the “push” ofY(λ) at outside
cornera and the “pull” at inside cornerb are completely independent. Each swap flips the
sign of the resulting term, explaining the coefficient(− 1)r−1. 2

There is a quantum analogue of Theorem 3.2 for the Schur functions with spectral
parameters defined in Example 2.

Theorem 3.4 For any partitionλ, we can add spectral parameters to the statement of
Theorem 3.2 to get

s(u−1)
λ s(u+1)

λ = s(u)λ+ω`s
(u)
λ−ω` +

∑∑
±s(u+∗)π(λ) s(u+∗)µ(λ)
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where the parameters inside the sum are as follows: given nested intervals1≤ i1 < · · · <
j1 ≤ n, setα = π i1···i r

j1··· jr (λ) andβ = µi1···i r
j1··· jr (λ). Then the corresponding term in the sum is

s(u)α s(u+λ1−β1)

β if j1 = n

s(u−1)
α s(u+λ1−β1+1)

β if j1 < n

The case whenk = n is the subject of [9], where it is proved, as here, by reducing to
Plücker relations. Note that fork = 1 or n, the double sum is actually a single sum and no
negative terms appear.

Proof: As pointed out in Example 2, by appropriate choice of a shiftc, we can lift
the matrix Mλ to a matrixTλ(u + c) whose rows are in whatever equivalence class we
choose. Thus all we will do is pick some equivalence class, lift rows 1, . . . ,m, 1′, . . . ,m′ of
Mλ−ω`2Mλ+ω` to that class, and read off the necessary shifts for each minor of our matrix
to appear in the Pl¨ucker relations. Our choice of equivalence class is almost irrelevant; a
different choice would just correspond to adding a constant tou in the final relation.

We follow convention by choosing our equivalence class so that we are dealing with
minors of the matrixMλ−ω`(u)2Mλ+ω`(u), whose 2m rows other thanL andR all look like

(tλ1−c(u−m+ c), tλ1+1−c(u−m+ 1+ c), . . . , tλ1+m−c(u+ c))

The row with label 1′ has this form withc = 0, while the row with label 1 hasc = 1. When
we drop the left or right components of these rows, respectively, we get the top rows of the
matricesMλ+ω`(u) andMλ−ω`(u), as desired.

Given a minor corresponding tos(u+c)
∗ , to identify the shiftc, recall that the top right entry

in the matrix ist∗(u + c). Thus we can easily see that the [R1′ . . . `′(` + 1) . . .m][ L1 . . .
`(`+ 1)′ . . .m′] term of the Plücker relation corresponds tos(u−1)

λ s(u+1)
λ , again by looking

at the rows 1 and 1′ examined above.
Using the same reasoning, we see that for anyα = π

i1···i r
j1··· jr (λ), the associated minor is

either [R1′ . . .] (if row R was not swapped away) or [1′ . . .] (if row R was traded). In the
first case, we again end up withs(u−1)

α ; in the second case, we gets(u)α . Row R is swapped
if and only if j1 = n, of course: this is the same as saying the partitionα has one more part
thanλ if and only if we added a border strip that reached the bottom row.

Determining the shift ofβ = µi1···i r
j1··· jr (λ) is more difficult because its top row, other than

L and possiblyR, might be any of 1, 2, . . . , `, `+ 1. (Indeed, in Example 2, each of these
occurs.) To sidestep this difficulty, we note that the top row of the minor giving rise toβ

beginstβ1( ∗ ). Assume that rowR was not traded. Since we already know the top row must
look like (tλ1+1−c(∗ ), . . . , t∗(u+c)), we conclude thatβ1 = λ1+1−c, soc = λ1−β+1.
Likewise, if row R was traded, the top row is one term shorter and ends witht∗(u+ c− 1),
and the shift decreases by one, toλ1− β1. 2

We conclude this section with a few comments on the relevance of the quantum version
of the theorem.
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Remark 3.5 When we restrictλ to being a partition with one corner,i.e. a rectangle, we
are dealing with the 2-dimensional discrete dynamical system

Q`
m+1(u) =

Q`
m(u− 1)Q`

m(u+ 1)− Q`−1
m (u)Q`+1

m (u)

Q`
m−1(u)

(5)

for ` = 1, . . . ,n and m ∈ Z+. Theorem 3.4 states that this system has a solution in
which Q`

m(u) is set tos(u)〈m`〉, an object which reduces tos〈m`〉 if we ignore the spectral
parameter.

The objectss(u)λ themselves have a representation-theoretic interpretation. The body of
work on spectra of transfer matrices of certain integrable systems using the Bethe Ansatz
(from the mathematical physics point of view; seee.g.[1, 6, 9]) has given rise to a notion ofq-
deformed characters for finite-dimensional representations of Yangians and quantum affine
algebras [2]. In this picture, thes(u)λ we worked with here correspond to theq-characters
of evaluation models, and dropping the spectral parameter corresponds to throwing away
some of the structure ofUq( ) and retaining only the action of the embedded subalgebra
Uq( ).

Remark 3.6 Attempts to generalize this picture to Lie algebras of types other thanAn

began in [4, 6]. In these cases, it appears that the characters ofUq( ) do satisfy a generalized
version of Eq. (5). Dropping the spectral parameters, though, no longer gives statements
about the fundamental representations ofUq( ), but about certain non-irreducible represen-
tations which are solutions to the discrete Hirota equations. While [4] conjectured character
formulas for the analogs of rectangles in typesB, C, D, written as sums over “rigged
configurations,” further exploration is hard because there is currently no general character
formula for representations ofUq( ).

Remark 3.7 Recent work of the author ([5]) has shown a stronger result about the gen-
eralized discrete Hirota relations, in an attempt to sidestep the lack of aUq( ) character
formula. For each Lie algebra, there is auniquesolution to the recurrence relations in
which Q`

m is the character of a representation ofUq( ) all of whose weights lie undermω`
in the weight lattice. That is, we require thatQ`

m is a sum of irreducible characters whose
highest weights lie undermω`, each occurring with nonnegative integer coefficients. This
positivity constraint on all of the infinitely many charactersQ`

m is quite rigid.
Theorem 3.4 is the first step in extending this picture from the rectangular case to a

full n-dimensional system of relations among a much larger set ofUq( ) characters.
Generalizing these new recurrence relations to other Lie algebras may give us information
on irreducible characters ofUq( ) for which we do not yet even have conjectural values.

4. Combinatorial considerations

In this section, we look at the preceding formulas for Schur functions purely combinatorially.
We offer a simple combinatorial proof of the rectangle version of the formula, and indicate
why we believe that the subtraction that appears in Theorem 3.2 arises from inclusion-
exclusion of sets labeled by single intervals.
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We will multiply Schur functions using the following reformulation of the Littlewood-
Richardson rule, taken from [10], where the technology of crystal bases is used to give an
analogue for Lie algebras of typeB, C, D as well.

Construction 4.1 We wish to find the multisetSof partitions such thatsλsµ =
∑

ν∈S sν .
To do this, let SSYT(µ) be the set of all semi-standard Young tableaux of shapeµ. For
any tableauT ∈ SSYT(µ), we obtain its reverse column wordrcw(T) = i1i2 . . . im by
reading off the numbers inT , reading each column from top to bottom, beginning with the
rightmost column and ending with the leftmost.

Now we let the numberk act on the Young diagramY = Y(λ) by adding one box to the
kth row, providedλk < λk−1. If λk = λk−1 then the action is illegal. Denote the resulting
Young diagram byY← k. Then

S= {(((Y← i1)← i2) · · · ← im) | i1i2 . . . im = rcw(T)}

whereT ranges over all tableaux in SSYT(µ) such that each action is legal.

Now we will give a purely bijective proof of Eq. (1), the recurrence relation for rectangular
Young diagrams. A proof was given in [3] which did not mention the 3-term Pl¨ucker relation,
but which made use of information from Lie theory about the dimensions of associated
representations.

Theorem 4.2 s〈m`〉s〈m`〉 = s〈m`+1〉s〈m`−1〉 + s〈m+1`〉s〈m−1`〉

Proof: Consider a tableauT ∈ SSYT(〈m`〉) such that the action ofrcw(T) on the Young
diagram of shape〈m`〉, as in Construction 4.1, is legal. We consider two cases, based on
whether or not the leftmost column ofT consists exactly of the numbers 1, 2, . . . , `.

If so, consider the tableauT ′ obtained by removing the leftmost column ofT . Observe
thatT ′ ∈ SSYT(〈m− 1`〉), and the action ofrcw(T ′) on Y(〈m+ 1`〉) is legal and yields
the same Young diagram as the action ofrcw(T) on Y(〈m`〉). Furthermore, all elements
T ′ of SSYT(〈m− 1`〉) whose actions are legal arise in this way; we need only note that
rcw(T ′) never tries to build on columnm+ 1 of Y(〈m+ 1`〉).

Otherwise, the leftmost column ofT contains an entry strictlylarger thaǹ, and there-
fore so does every column, as rows ofT are weakly increasing. Now note that in any
column of T , the smallest number greater than` that appears must bè+ 1. This is
clear for the rightmost column, sincercw(T) acts legally onY(〈m`〉), and can be seen
inductively working to the left, again because rows weakly increase. Therefore we can
consider the tableauT ′ obtained by removing thè+ 1 from each column and pushing
up all the numbers below it; clearlyT ′ ∈ SSYT(〈m`−1〉). As in the first case, this op-
eration gives a bijection betweenT acting legally onY(〈m`〉) and T ′ acting legally on
Y(〈m`+1〉). 2

We are currently unable to provide a generalization of this argument to arbitrary partitions
λ, but we strongly believe that one does exist. Based on computational examples, we
conjecture the following form for a bijective proof of Theorem 3.2.
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Conjecture 4.3 Let λ be a partition withn outside corners, choose a cornerk and corre-
sponding weightω`, and retain the notions of Theorem 3.2. LetL be the set of SSYT(λ)
acting legally onY(λ).

1. The tableaux in SSYT(λ − ω`) which act legally onY(λ + ω`) can be put in bijection
with a subsetA of L.

2. There are subsetsBi
j ⊆ L\A, for each 1≤ i ≤ k ≤ j ≤ n, such thatBi

j is in bijection
with SSYT(µi

j (λ)) acting legally onY(π i
j (λ)).

3. L = A∪⋃ Bi
j .

4. The intersectionBi1
j1
∩ · · · ∩ Bir

jr
is nonempty if and only if we can reorder the terms to

get 1≤ i1 < · · · < i r ≤ k ≤ jr < · · · < j1 ≤ n, and in that case it is in bijection with
SSYT(µi1···i r

j1··· jr (λ)) acting legally onY(π i1···i r
j1··· jr (λ)).

All of the bijections between SSYT(λ) acting onY(λ) and SSYT(α) acting onY(β) should
respect the Young diagrams produced by the two actions.

The conjecture implies Theorem 3.2, using inclusion-exclusion to take the union
⋃

Bi
j .

We presently do not know the bijections or even how to identify the setsA, Bi
j in L.

Example 5 Taking the Schur function part of Example 3 once again, the only subtraction
that takes place is of the terms〈3,3,3,3〉s〈0,0〉, corresponding to the nested intervals [1, 3] ⊃
[2, 2]. There is one tableau (the empty tableau) whose shape is the partition of zero. To verify
this instance of the conjecture, we need to check that the Young diagramY(〈3, 3, 3, 3〉),
appears in the terms corresponding to intervals [1, 3] and [2, 2] once each.

This does happen: the element of SSYT(〈3, 1, 1〉) whose column word is 44234 acts
onY(〈3, 2, 2〉), and the element of SSYT(〈1, 0〉) whose column word is 4 acts onY(〈3, 3,
3, 2〉), both producingY(〈3, 3, 3, 3〉).
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