Unipotent Brauer Character Values of $GL(n, \mathbb{F}_q)$ and the Forgotten Basis of the Hall Algebra

Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222, U.S.A.

JONATHAN BRUNDAN*

brundan@darkwing.uoregon.edu

Received July 29, 1999; Revised May 2, 2000

Abstract. We give a formula for the values of irreducible unipotent *p*-modular Brauer characters of $GL(n, \mathbb{F}_q)$ at unipotent elements, where *p* is a prime not dividing *q*, in terms of (unknown!) weight multiplicities of quantum GL_n and certain generic polynomials $S_{\lambda,\mu}(q)$. These polynomials arise as entries of the transition matrix between the renormalized Hall-Littlewood symmetric functions and the forgotten symmetric functions. We also provide an alternative combinatorial algorithm working in the Hall algebra for computing $S_{\lambda,\mu}(q)$.

Keywords: symmetric function, general linear group, unipotent representation, Brauer character

1. Introduction

In the character theory of the finite general linear group $G_n = GL(n, \mathbb{F}_q)$, the *Gelfand-Graev* character Γ_n plays a fundamental role. By definition [5], Γ_n is the character obtained by inducing a "general position" linear character from a maximal unipotent subgroup. It has support in the set of unipotent elements of G_n and for a unipotent element u of type λ (i.e. the block sizes of the Jordan normal form of u are the parts of the partition λ) Kawanaka [7, 3.2.24] has shown that

$$\Gamma_n(u) = (-1)^n (1-q)(1-q^2) \dots (1-q^{h(\lambda)}), \tag{1.1}$$

where $h(\lambda)$ is the number of non-zero parts of λ . The starting point for this article is the problem of calculating the operator determined by Harish-Chandra multiplication by Γ_n .

We have restricted our attention throughout to character values at unipotent elements, when it is convenient to work in terms of the *Hall algebra*, that is [13, Section 10.1], the vector space $\mathfrak{g} = \bigoplus_{n\geq 0} \mathfrak{g}_n$, where \mathfrak{g}_n denotes the set of unipotent-supported \mathbb{C} -valued class functions on G_n , with multiplication coming from the Harish-Chandra induction operator. For a partition λ of n, let $\pi_{\lambda} \in \mathfrak{g}_n$ denote the class function which is 1 on unipotent elements of type λ and zero on all other conjugacy classes of G_n . Then, $\{\pi_{\lambda}\}$ is a basis for the Hall algebra labelled by all partitions. Let $\gamma_n : \mathfrak{g} \to \mathfrak{g}$ be the linear operator determined by multiplication in \mathfrak{g} by Γ_n . We describe in Section 2 an explicit recursive algorithm, involving the combinatorics of addable and removable nodes, for calculating the effect of γ_n on the

*Partially supported by NSF grant no. DMS-9801442.

basis $\{\pi_{\lambda}\}$. As an illustration of the algorithm, we rederive Kawanaka's formula (1.1) in 2.12.

Now recall from [13] that \mathfrak{g} is isomorphic to the algebra $\Lambda_{\mathbb{C}}$ of symmetric functions over \mathbb{C} , the isomorphism sending the basis element π_{λ} of \mathfrak{g} to the Hall-Littlewood symmetric function $\tilde{P}_{\lambda} \in \Lambda_{\mathbb{C}}$ (renormalized as in [9, section II.3, ex. 2]). Consider instead the element $\vartheta_{\lambda} \in \mathfrak{g}$ which maps under this isomorphism to the *forgotten symmetric function* $f_{\lambda} \in \Lambda_{\mathbb{C}}$ (see [9, section I.2]). Introduce the renormalized Gelfand-Graev operator $\hat{\gamma}_n = \delta \circ \gamma_n$, where $\delta : \mathfrak{g} \to \mathfrak{g}$ is the linear map with $\delta(\pi_{\lambda}) = \frac{1}{q^{h(\lambda)}-1}\pi_{\lambda}$ for all partitions λ . We show in Theorem 3.5 that

$$\vartheta_{\lambda} = \sum_{(n_1,\dots,n_h)} \hat{\gamma}_{n_1} \circ \hat{\gamma}_{n_2} \circ \dots \circ \hat{\gamma}_{n_h} \big(\pi_{(0)} \big), \tag{1.2}$$

summing over all (n_1, \ldots, n_h) obtained by reordering the non-zero parts $\lambda_1, \ldots, \lambda_h$ of λ in all possible ways. Thus, we obtain a direct combinatorial construction of the 'forgotten basis' $\{\vartheta_{\lambda}\}$ of the Hall algebra.

Let $K = (K_{\lambda,\mu})$ denote the matrix of Kostka numbers [9, I, (6.4)], $\tilde{K} = (\tilde{K}_{\lambda,\mu}(q))$ denote the matrix of Kostka-Foulkes polynomials (renormalized as in [9, III, (7.11)]) and $J = (J_{\lambda,\mu})$ denote the matrix with $J_{\lambda,\mu} = 0$ unless $\mu = \lambda'$ when it is 1, where λ' is the conjugate partition to λ . Consulting [9, section I.6, section III.6], the transition matrix between the bases $\{\pi_{\lambda}\}$ and $\{\vartheta_{\lambda}\}$, i.e. the matrix $S = (S_{\lambda,\mu}(q))$ of coefficients such that

$$\vartheta_{\lambda} = \sum_{\mu} S_{\lambda,\mu}(q) \pi_{\mu}, \tag{1.3}$$

is then given by the formula $S = K^{-1}J\tilde{K}$; in particular, this implies that $S_{\lambda,\mu}(q)$ is a polynomial in q with integer coefficients. Our alternative approach to computing ϑ_{λ} using (1.2) allows explicit computation of the polynomials $S_{\lambda,\mu}(q)$ in some extra cases (e.g. when $\mu = (1^n)$) not easily deduced from the matrix product $K^{-1}J\tilde{K}$.

To explain our interest in this, let χ_{λ} denote the irreducible unipotent character of G_n labelled by the partition λ , as constructed originally in [12], and let $\sigma_{\lambda} \in \mathfrak{g}$ denote its projection to unipotent-supported class functions. So, σ_{λ} is the element of \mathfrak{g} mapping to the Schur function s_{λ} under the isomorphism $\mathfrak{g} \to \Lambda_{\mathbb{C}}$ (see [13]). Since $\sigma_{\lambda'} = \sum_{\mu} K_{\lambda,\mu} \vartheta_{\mu}$ [9, section I.6], we deduce that the value of $\chi_{\lambda'}$ at a unipotent element *u* of type ν can be expressed in terms of the Kostka numbers $K_{\lambda,\mu}$ and the polynomials $S_{\mu,\nu}(q)$ as

$$\chi_{\lambda'}(u) = \sum_{\mu} K_{\lambda,\mu} S_{\mu,\nu}(q).$$
(1.4)

This is a rather clumsy way of expressing the unipotent character values in the ordinary case, but this point of view turns out to be well-suited to describing the irreducible unipotent *Brauer characters*.

So now suppose that p is a prime not dividing q, k is a field of characteristic p and let the multiplicative order of q modulo p be ℓ . In [6], James constructed for each partition λ of n an absolutely irreducible, unipotent kG_n -module D_{λ} (denoted $L(1, \lambda)$ in [1]), and showed

that the set of all D_{λ} gives the complete set of non-isomorphic irreducible modules that arise as constituents of the permutation representation of $\Bbbk G_n$ on cosets of a Borel subgroup. Let χ_{λ}^{p} denote the Brauer character of the module D_{λ} , and $\sigma_{\lambda}^{p} \in g$ denote the projection of χ_{λ}^{p} to unipotent-supported class functions. Then, as a direct consequence of the results of Dipper and James [3], we show in Theorem 4.6 that $\sigma_{\lambda'}^{p} = \sum_{\mu} K_{\lambda,\mu}^{p,\ell} \vartheta_{\mu}$ where $K_{\lambda,\mu}^{p,\ell}$ denotes the weight multiplicity of the μ -weight space in the irreducible high-weight module of high-weight λ for *quantum* GL_n , at an ℓ th root of unity over a field of characteristic p. In other words, for a unipotent element u of type v, we have the modular analogue of (1.4):

$$\chi^{p}_{\lambda'}(u) = \sum_{\mu} K^{p,\ell}_{\lambda,\mu} S_{\mu,\nu}(q)$$
(1.5)

This formula reduces the problem of calculating the values of the irreducible unipotent Brauer characters at unipotent elements to knowing the modular Kostka numbers $K_{\lambda,\mu}^{p,\ell}$ and the polynomials $S_{\mu,\nu}(q)$.

Most importantly, taking $v = (1^n)$ in (1.5), we obtain the degree formula:

$$\chi_{\lambda'}^{p}(1) = \sum_{\mu} K_{\lambda,\mu}^{p,\ell} S_{\mu,(1^{n})}(q)$$
(1.6)

where, as a consequence of (1.2) (see Example 3.7),

$$S_{\mu,(1^n)}(q) = \sum_{(n_1,\dots,n_h)} \left[\prod_{i=1}^n (q^i - 1) \middle/ \prod_{i=1}^h (q^{n_1 + \dots + n_i} - 1) \right]$$
(1.7)

summing over all (n_1, \ldots, n_h) obtained by reordering the non-zero parts μ_1, \ldots, μ_h of μ in all possible ways. This formula was first proved in [1, section 5.5], as a consequence of a result which can be regarded as the modular analogue of Zelevinsky's branching rule [13, section 13.5] involving the affine general linear group. The proof presented here is independent of [1] (excepting some self-contained results from [1, section 5.1]), appealing instead directly to the original characteristic 0 branching rule of Zelevinsky, together with the work of Dipper and James on decomposition matrices. We remark that since all of the integers $S_{\mu,(1^n)}(q)$ are positive, the formula (1.6) can be used to give quite powerful *lower bounds* for the degrees of the irreducible Brauer characters, by exploiting a *q*-analogue of the Premet-Suprunenko bound for the $K_{\lambda,\mu}^{p,\ell}$. The details can be found in [2].

To conclude this introduction, we list in the table below the polynomials $S_{\lambda,\mu}(q)$ for $n \leq 4$:

	4	31	2^{2}	21 ²	1^{4}
4	-1	q - 1	q - 1	$(1-q)(q^2-1)$	$(q^3 - 1)(q^2 - 1)(q - 1)$
31	2	2-q	(1-q)(q+2)	$(q^2 - 1)(q - 2)$	$(q^2 - 1)(q^3 + q^2 - 2)$
2^{2}	1	1 - q	$q^2 - q + 1$	1-q	$(q^3 - 1)(q - 1)$
21^{2}	-3	q - 3	q - 3	$q^2 + q - 3$	$q^3 + q^2 + q - 3$
1^{4}	1	1	1	1	1

Finally, I would like to thank Alexander Kleshchev for several helpful discussions about this work.

2. An algorithm for computing γ_n

We will write $\lambda \vdash n$ to indicate that λ is a partition of n, that is, a sequence $\lambda = (\lambda_1 \ge \lambda_2 \ge \ldots)$ of non-negative integers summing to n. Given $\lambda \vdash n$, we denote its *Young diagram* by $[\lambda]$; this is the set of *nodes*

$$[\lambda] = \{(i, j) \in \mathbb{N} \times \mathbb{N} \mid 1 \le j \le \lambda_i\}.$$

By an *addable node* (for λ), we mean a node $A \in \mathbb{N} \times \mathbb{N}$ such that $[\lambda] \cup \{A\}$ is the diagram of a partition; we denote the new partition obtained by adding the node A to λ by $\lambda \cup A$. By a *removable node* (for λ) we mean a node $B \in [\lambda]$ such that $[\lambda] \setminus \{B\}$ is the diagram of a partition; we denote the new partition obtained by removing B from λ by $\lambda \setminus B$. The *depth* d(B) of the node $B = (i, j) \in \mathbb{N} \times \mathbb{N}$ is the row number *i*. If B is removable for λ , it will also be convenient to define e(B) (depending also on λ !) to be the depth of the next removable node above B in the partition λ , or 0 if no such node exists. For example consider the partition $\lambda = (4, 4, 2, 1)$, and let A, B, C be the removable nodes in order of increasing depth:

Then, e(A) = 0, e(B) = d(A) = 2, e(C) = d(B) = 3, d(C) = 4.

Now fix a prime power q and let G_n denote the finite general linear group $GL(n, \mathbb{F}_q)$ as in the introduction. Let $V_n = \mathbb{F}_q^n$ denote the natural *n*-dimensional left G_n -module, with standard basis v_1, \ldots, v_n . Let H_n denote the *affine general linear group* $AGL(n, \mathbb{F}_q)$. This is the semidirect product $H_n = V_n G_n$ of G_n acting on the elementary Abelian group V_n . We always work with the standard embedding $H_n \hookrightarrow G_{n+1}$ that identifies H_n with the subgroup of G_{n+1} consisting of all matrices of the form:

Thus, we have a chain of subgroups $1 = H_0 \subset G_1 \subset H_1 \subset G_2 \subset H_2 \subset ...$ (by convention, we allow the notations G_0 , H_0 and V_0 , all of which denote groups with one element.)

For $\lambda \vdash n$, let $u_{\lambda} \in G_n \subset H_n$ denote the upper uni-triangular matrix consisting of Jordan blocks of sizes $\lambda_1, \lambda_2, \ldots$ down the diagonal. As is well-known, $\{u_{\lambda} \mid \lambda \vdash n\}$ is a set of representatives of the unipotent conjugacy classes in G_n . We wish to describe instead the unipotent classes in H_n . These were determined in [10, section 1], but the notation here will be somewhat different. For $\lambda \vdash n$ and an addable node A for λ , define the upper uni-triangular $(n + 1) \times (n + 1)$ matrix $u_{\lambda,A} \in H_n \subset G_{n+1}$ by

$$u_{\lambda,A} = \begin{cases} u_{\lambda} & \text{if } A \text{ is the deepest addable node,} \\ v_{\lambda_1 + \dots + \lambda_{d(A)}} u_{\lambda} & \text{otherwise.} \end{cases}$$

If instead $\lambda \vdash (n + 1)$ and *B* is removable for λ (hence addable for $\lambda \setminus B$) define $u_{\lambda,B}$ to be a shorthand for $u_{\lambda \setminus B,B} \in H_n$. To aid translation between our notation and that of [10], we note that $u_{\lambda,B}$ is conjugate to the element denoted $c_{n+1}(1^{(k)}, \mu)$ there, where $k = \lambda_{d(B)}$ and μ is the partition obtained from λ by removing the d(B)th row. Then:

Lemma 2.1

(i) The set

 $\{u_{\lambda,A} \mid \lambda \vdash n, A \text{ addable for } \lambda\} = \{u_{\lambda,B} \mid \lambda \vdash (n+1), B \text{ removable for } \lambda\}$

is a set of representatives of the unipotent conjugacy classes of H_n .

(ii) For $\lambda \vdash (n+1)$ and a removable node B, $|C_{G_{n+1}}(u_{\lambda})|/|C_{H_n}(u_{\lambda,B})| = q^{d(B)} - q^{e(B)}$.

Proof: Part (i) is a special case of [10, 1.3(i)], where all conjugacy classes of the group H_n are described. For (ii), combine the formula for $|C_{G_{n+1}}(u_{\lambda})|$ from [12, 2.2] with [10, 1.3(ii)], or calculate directly.

For any group *G*, we write C(G) for the set of \mathbb{C} -valued class functions on *G*. Let $\mathfrak{g} = \bigoplus_{n\geq 0} \mathfrak{g}_n \subset \bigoplus_{n\geq 0} C(G_n)$ denote the Hall algebra as in the introduction. We recall that \mathfrak{g} is a graded Hopf algebra in the sense of [13], with multiplication $\diamond : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ arising from Harish-Chandra induction and comultiplication $\Delta : \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}$ arising from Harish-Chandra induction 10.1] for fuller details. Also defined in the introduction, \mathfrak{g} has the natural 'characteristic function' basis $\{\pi_{\lambda}\}$ labelled by all partitions.

By analogy, we introduce an extended version of the Hall algebra corresponding to the affine general linear group. This is the vector space $\mathfrak{h} = \bigoplus_{n\geq 0} \mathfrak{h}_n$ where \mathfrak{h}_n is the subspace of $C(H_n)$ consisting of all class functions with support in the set of unipotent elements of H_n , with algebra structure to be explained below. To describe a basis for \mathfrak{h} , given $\lambda \vdash n$ and an addable node A, define $\pi_{\lambda,A} \in C(H_n)$ to be the class function which takes value 1 on $u_{\lambda,A}$ and is zero on all other conjugacy classes of H_n . Given $\lambda \vdash (n + 1)$ and a removable B, set $\pi_{\lambda,B} = \pi_{\lambda\setminus B,B}$. Then, in view of Lemma 2.1(i), $\{\pi_{\lambda,A} \mid \lambda \text{ a partition}, A \text{ addable for } \lambda\} = \{\pi_{\lambda,B} \mid \lambda \text{ a partition}, B \text{ removable for } \lambda\}$ is a basis for \mathfrak{h} .

Now we introduce various operators as in [13, section 13.1] (but take notation instead from [1, section 5.1]). First, for $n \ge 0$, we have the inflation operator

$$e_0^n: C(G_n) \to C(H_n)$$

defined by $(e_0^n \chi)(vg) = \chi(g)$ for $\chi \in C(G_n)$, $v \in V_n$, $g \in G_n$. Next, fix a non-trivial additive character $\chi : \mathbb{F}_q \to \mathbb{C}^{\times}$ and let $\chi_n : V_n \to \mathbb{C}^{\times}$ be the character defined by $\chi_n(\sum_{i=1}^n c_i v_i) = \chi(c_n)$. The group G_n acts naturally on the characters $C(V_n)$ and one easily checks that the subgroup $H_{n-1} < G_n$ centralizes χ_n . In view of this, it makes sense to define for each $n \ge 1$ the operator

$$e_+^n: C(H_{n-1}) \to C(H_n),$$

namely, the composite of inflation from H_{n-1} to $V_n H_{n-1}$ with the action of V_n being via the character χ_n , followed by ordinary induction from $V_n H_{n-1}$ to H_n . Finally, for $n \ge 1$ and $1 \le i \le n$, we have the operator

$$e_i^n : C(G_{n-i}) \to C(H_n)$$

defined inductively by $e_i^n = e_+^n \circ e_{i-1}^{n-1}$. The significance of these operators is due to the following lemma [13, section 13.2]:

Lemma 2.2 The operator $e_0^n \oplus e_1^n \oplus \cdots \oplus e_n^n : C(G_n) \oplus C(G_{n-1}) \oplus \cdots \oplus C(G_0) \to C(H_n)$ is an isometry.

We also have the usual restriction and induction operators

$$\operatorname{res}_{H_{n-1}}^{G_n} : C(G_n) \to C(H_{n-1}) \qquad \operatorname{ind}_{H_{n-1}}^{G_n} : C(H_{n-1}) \to C(G_n)$$

One checks that all of the operators e_0^n , e_+^n , $\operatorname{res}_{H_{n-1}}^{G_n}$ and $\operatorname{ind}_{H_{n-1}}^{G_n}$ send class functions with unipotent support to class functions with unipotent support. So, we can define the following operators between \mathfrak{g} and \mathfrak{h} , by restricting the operators listed to unipotent-supported class functions:

$$e_+:\mathfrak{h}\to\mathfrak{h}, \quad e_+=\bigoplus_{n\geq 1}e_+^n;$$
(2.3)

$$e_i:\mathfrak{g}\to\mathfrak{h}, \quad e_i=\bigoplus_{n\geq i}e_i^n=(e_+)^i\circ e_0;$$

$$(2.4)$$

$$\operatorname{ind}:\mathfrak{h}\to\mathfrak{g}, \quad \operatorname{ind}=\bigoplus_{n\geq 1}\operatorname{ind}_{H_{n-1}}^{G_n};$$

$$(2.5)$$

$$\operatorname{res}:\mathfrak{g}\to\mathfrak{h},\quad\operatorname{res}=\bigoplus_{n\geq 0}\operatorname{res}_{H_{n-1}}^{G_n}\tag{2.6}$$

where for the last definition, $\operatorname{res}_{H_{-1}}^{G_0}$ should be interpreted as the zero map.

Now we indicate briefly how to make h into a graded Hopf algebra. In view of Lemma 2.2, there are unique linear maps $\diamond : \mathfrak{h} \otimes \mathfrak{h} \to \mathfrak{h}$ and $\Delta : \mathfrak{h} \to \mathfrak{h} \otimes \mathfrak{h}$ such that

$$(e_i\chi)\diamond(e_j\tau) = e_{i+j}(\chi\diamond\tau), \tag{2.7}$$

$$\Delta(e_k\psi) = \sum_{i+j=k} (e_i \otimes e_j) \Delta(\psi), \qquad (2.8)$$

for all i, j, $k \ge 0$ and $\chi, \tau, \psi \in \mathfrak{g}$. One can check, using Lemma 2.2 and the fact that \mathfrak{g} is a graded Hopf algebra, that these operations endow \mathfrak{h} with the structure of a graded Hopf algebra (the unit element is $e_0\pi_{(0)}$, and the counit is the map $e_i\chi \mapsto \delta_{i,0}\varepsilon(\chi)$ where $\varepsilon: \mathfrak{g} \to \mathbb{C}$ is the counit of \mathfrak{g}). Moreover, the map $e_0 : \mathfrak{g} \to \mathfrak{h}$ is a Hopf algebra embedding. Unlike for the operations of g, we do not know of a natural representation theoretic interpretation for these operations on \mathfrak{h} except in special cases, see [1, section 5.2].

The effect of the operators (2.3)-(2.6) on our characteristic function bases is described explicitly by the following lemma:

Lemma 2.9 Let $\lambda \vdash n$ and label the addable nodes (resp. removable nodes) of λ as A_1, A_2, \ldots, A_s (resp. $B_1, B_2, \ldots, B_{s-1}$) in order of increasing depth. Also let $B = B_r$ be some fixed removable node. Then,

- (i) $e_0 \pi_{\lambda} = \sum_{i=1}^{s} \pi_{\lambda, A_i};$ (ii) $e_+ \pi_{\lambda, B} = q^{d(B)} \sum_{i=r+1}^{s} \pi_{\lambda, A_i} q^{e(B)} \sum_{i=r}^{s} \pi_{\lambda, A_i}.$
- (iii) res $\pi_{\lambda} = \sum_{i=1}^{s-1} \pi_{\lambda, B_i};$

(iv) ind
$$\pi_{\lambda,B} = (q^{d(B)} - q^{e(B)})\pi$$

(iv) ind $\pi_{\lambda,B} = (q^{u(B)} - q^{e(B)})\pi_{\lambda};$ (v) ind \circ res $\pi_{\lambda} = (q^{h(\lambda)} - 1)\pi_{\lambda}.$

Proof:

- (i) For $\mu \vdash n$ and A addable, we have by definition that $(e_0 \pi_\lambda)(u_{\mu,A}) = \pi_\lambda(u_\mu) = \delta_{\lambda,\mu}$. Hence, $e_0 \pi_{\lambda} = \sum_A \pi_{\lambda,A}$, summing over all addable nodes A for λ .
- (ii) This is a special case of [10, 2.4] translated into our notation.
- (iii) For $\mu \vdash n$ and B removable, (res π_{λ}) $(u_{\mu,B})$ is zero unless $u_{\mu,B}$ is conjugate in G_n to u_{λ} , when it is one. So the result follows on observing that $u_{\mu,B}$ is conjugate in G_n to u_{λ} if and only if $\mu = \lambda$.
- (iv) We can write ind $\pi_{\lambda,B} = \sum_{\mu \vdash n} c_{\mu} \pi_{\mu}$. To calculate the coefficient c_{μ} for fixed $\mu \vdash n$, we use (iii), Lemma 2.1(ii) and Frobenius reciprocity.
- (v) This follows at once from (iii) and (iv) since $\sum_{B}^{1} (q^{d(B)} q^{e(B)}) = q^{h(\lambda)} 1$, summing over all removable nodes B for λ . П

Lemma 2.9(i), (ii) give explicit formulae for computing the operator $e_n = (e_+)^n \circ e_0$. The connection between e_n and the Gelfand-Graev operator γ_n defined in the introduction comes from the following result:

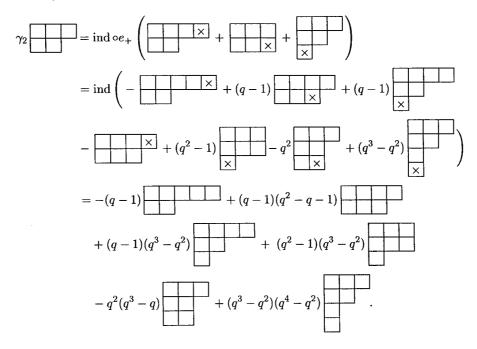
Theorem 2.10 For $n \ge 1$, $\gamma_n = \text{ind} \circ e_{n-1}$.

Proof: In [1, Theorem 5.1e], we showed directly from the definitions that for any $\chi \in C(G_m)$ and any $n \ge 1$, the class function $\chi . \Gamma_n \in C(G_{m+n})$ obtained by Harish-Chandra induction from $(\chi, \Gamma_n) \in C(G_m) \times C(G_n)$ is equal to $\operatorname{res}_{G_{m+n}}^{H_{m+n}}(e_n^{m+n}\chi)$. Moreover, by [1, Lemma 5.1c(iii)], we have that $\operatorname{res}_{G_{m+n}}^{H_{m+n}} \circ e_+^{m+n} = \operatorname{ind}_{H_{m+n-1}}^{G_{m+n}}$. Hence,

$$\chi \, . \, \Gamma_n = \operatorname{ind}_{H_{m+n-1}}^{G_{m+n}} \left(e_{n-1}^{m+n-1} \chi \right).$$

The theorem is just a restatement of this formula at the level of unipotent-supported class functions. $\hfill \Box$

Example 2.11 We show how to calculate $\gamma_2 \pi_{(3,2)}$ using Lemma 2.9 and the theorem. We omit the label π in denoting basis elements, and in the case of the intermediate basis elements of \mathfrak{h} , we mark removable nodes with \times .



Example 2.12 We apply Theorem 2.10 to rederive the explicit formula (1.1) for the Gelfand-Graev character Γ_n itself. Of course, by Theorem 2.10, $\Gamma_n = \text{ind} \circ e_{n-1}(\pi_{(0)})$. We will in fact prove that

$$e_{n-1}\pi_{(0)} = (-1)^{n-1} \sum_{\lambda \vdash n} \sum_{B \text{ removable}} (1-q)(1-q^2) \dots (1-q^{h(\lambda)-1})\pi_{\lambda,B}$$
(2.13)

Then (1.1) follows easily on applying ind using Lemma 2.9(iv) and the calculation in the proof of Lemma 2.9(v).

To prove (2.13), use induction on n, n = 1 being immediate from Lemma 2.9(i). For n > 1, fix some $\lambda \vdash n$, label the addable and removable nodes of λ as in Lemma 2.9 and take $1 \le r \le s$. Thanks to Lemma 2.9(ii), the π_{λ,A_r} -coefficient of $e_n(\pi_{(0)}) = e_+ \circ e_{n-1}(\pi_{(0)})$ only depends on the π_{λ,B_i} -coefficients of $e_{n-1}(\pi_{(0)})$ for $1 \le i \le \min(r, s - 1)$. So by the induction hypothesis the π_{λ,A_r} -coefficient of $e_n(\pi_{(0)})$ is the same as the π_{λ,A_r} -coefficient of

$$(-1)^{n-1}(1-q)\ldots(1-q^{h(\lambda)-1})\sum_{i=1}^{\min(r,s-1)}e_{+}\pi_{\lambda,B_{i}},$$

which using Lemma 2.9(ii) equals

$$(-1)^{n-1}(1-q)\ldots(1-q^{h(\lambda)-1})\sum_{i=1}^{\min(r,s-1)} (\delta_{r,i}q^{d(B_i)}-q^{e(B_i)}).$$

This simplifies to $(-1)^n(1-q)\dots(1-q^{h(\lambda)-1})$ if r < s and $(-1)^n(1-q)\dots(1-q^{h(\lambda)})$ if r = s, as required to prove the induction step.

3. The forgotten basis

Recall from the introduction that for $\lambda \vdash n$, $\chi_{\lambda} \in C(G_n)$ denotes the irreducible unipotent character parametrized by the partition λ , and $\sigma_{\lambda} \in \mathfrak{g}$ is its projection to unipotent-supported class functions. Also, $\{\vartheta_{\lambda}\}$ denotes the 'forgotten' basis of \mathfrak{g} , which can be *defined* as the unique basis of \mathfrak{g} such that for each *n* and each $\lambda \vdash n$,

$$\sigma_{\lambda'} = \sum_{\mu \vdash n} K_{\lambda,\mu} \vartheta_{\mu}. \tag{3.1}$$

Given $\lambda \vdash n$, we write $\mu \perp_j \lambda$ if $\mu \vdash (n - j)$ and $\lambda_{i+1} \leq \mu_i \leq \lambda_i$ for all i = 1, 2, ...This definition arises in the following well-known inductive formula for the Kostka number $K_{\lambda,\mu}$, i.e. the number of standard λ -tableaux of weight μ [9, section I(6.4)]:

Lemma 3.2 For $\lambda \vdash n$ and any composition $v \models n$, $K_{\lambda,v} = \sum_{\mu \perp_j \lambda} K_{\mu,\bar{v}}$, where *j* is the last non-zero part of *v* and \bar{v} is the composition obtained from *v* by replacing this last non-zero part by zero.

We will need the following special case of Zelevinsky's branching rule [13, section 13.5] (see also [1, Corollary 5.4d(ii)] for its modular analogue):

Theorem 3.3 (*Zelevinsky*) For $\lambda \vdash n$, res $_{H_{n-1}}^{G_n} \chi_{\lambda'} = \sum_{j \geq 1} \sum_{\mu \perp j \lambda} e_{j-1} \chi_{\mu'}$.

Now define the map $\delta : \mathfrak{g} \to \mathfrak{g}$ as in the introduction by setting $\delta(\pi_{\lambda}) = \frac{1}{q^{h(\lambda)}-1}\pi_{\lambda}$ for each partition λ and extending linearly to all of \mathfrak{g} . The significance of δ is that by Lemma 2.9(v),

 $\delta \circ \operatorname{ind} \circ \operatorname{res}(\pi_{\lambda}) = \pi_{\lambda}$ for all λ . Set $\hat{\gamma}_n = \delta \circ \gamma_n$ and for a partition λ , define

$$\hat{\gamma}_{\lambda} = \sum_{(n_1, \dots, n_h)} \hat{\gamma}_{n_h} \circ \dots \circ \hat{\gamma}_{n_2} \circ \hat{\gamma}_{n_1}$$
(3.4)

summing over all compositions $(n_1, ..., n_h)$ obtained by reordering the $h = h(\lambda)$ non-zero parts of λ in all possible ways.

Theorem 3.5 For any $\lambda \vdash n$, $\vartheta_{\lambda} = \hat{\gamma}_{\lambda}(\pi_{(0)})$.

Proof: We will show by induction on *n* that

$$\sigma_{\lambda'} = \sum_{\mu \vdash n} K_{\lambda,\mu} \hat{\gamma}_{\mu} \big(\pi_{(0)} \big). \tag{3.6}$$

The theorem then follows immediately in view of the definition (3.1) of ϑ_{λ} . Our induction starts trivially with the case n = 0. So now suppose that n > 0 and that (3.6) holds for all smaller *n*. By Theorem 3.3,

$$\operatorname{res} \sigma_{\lambda'} = \sum_{j \ge 1} \sum_{\mu \perp_j \lambda} e_{j-1} \sigma_{\mu'}.$$

Applying the operator $\delta \circ$ ind to both sides, we deduce that

$$\sigma_{\lambda'} = \sum_{j \ge 1} \sum_{\mu \perp_j \lambda} \hat{\gamma}_j(\sigma_{\mu'}) = \sum_{j \ge 1} \sum_{\mu \perp_j \lambda} \sum_{\nu \vdash (n-j)} K_{\mu,\nu} \hat{\gamma}_j \circ \hat{\gamma}_\nu \big(\pi_{(0)} \big)$$

(we have applied the induction hypothesis)

$$=\sum_{j\geq 1}\sum_{\mu\perp_{j\lambda}}\sum_{\nu\vdash (n-j)}\sum_{(n_{1},\ldots,n_{h})}K_{\mu,(n_{1},\ldots,n_{h})}\hat{\gamma}_{j}\circ\hat{\gamma}_{n_{h}}\circ\cdots\circ\hat{\gamma}_{n_{2}}\circ\hat{\gamma}_{n_{1}}(\pi_{(0)})$$

(summing over (n_1, \ldots, n_h) obtained by reordering the non-zero parts ν in all possible ways)

$$=\sum_{j\geq 1}\sum_{\nu\vdash (n-j)}\sum_{(n_1,\ldots,n_h)}K_{\lambda,(n_1,\ldots,n_h,j)}\hat{\gamma}_j\circ\hat{\gamma}_{n_h}\circ\cdots\circ\hat{\gamma}_{n_2}\circ\hat{\gamma}_{n_1}(\pi_{(0)})$$

(we have applied Lemma 3.2)

$$=\sum_{\eta\vdash n}\sum_{(m_1,\ldots,m_k)}K_{\lambda,(m_1,\ldots,m_k)}\hat{\gamma}_{m_k}\circ\cdots\circ\hat{\gamma}_{m_2}\circ\hat{\gamma}_{m_1}(\pi_{(0)})$$

(now summing over (m_1, \ldots, m_k) obtained by reordering the non-zero parts of η in all possible ways)

$$=\sum_{\eta\vdash n}K_{\lambda,\eta}\hat{\gamma}_{\eta}\big(\pi_{(0)}\big)$$

which completes the proof.

Example 3.7 For $\chi \in \mathfrak{g}_n$, write deg χ for its value at the identity element of G_n . We wish to derive the formula (1.7) for deg $\vartheta_{\lambda} = S_{\lambda,(1^n)}(q)$ using Theorem 3.5. So, fix $\lambda \vdash n$. Then, by Theorem 3.5,

$$\deg \vartheta_{\lambda} = \sum_{(n_1, \dots, n_h)} \deg \left[\hat{\gamma}_{n_h} \circ \dots \circ \hat{\gamma}_{n_1} \big(\pi_{(0)} \big) \right].$$
(3.8)

We will show that given $\chi \in \mathfrak{g}_m$,

$$\deg \hat{\gamma}_n(\chi) = (q^{m+n-1} - 1)(q^{m+n-2} - 1)\dots(q^{m+1} - 1)\deg \chi;$$
(3.9)

then the formula (1.7) follows easily from (3.8). Now γ_n is Harish-Chandra multiplication by Γ_n , so

$$\deg \gamma_n(\chi) = \deg \Gamma_n \deg \chi \cdot \frac{(q^{m+n}-1)\dots(q^{m+1}-1)}{(q^n-1)\dots(q-1)},$$

the last term being the index in G_{m+n} of the standard parabolic subgroup with Levi factor $G_m \times G_n$. This simplifies using (1.1) to $(q^{m+n}-1) \dots (q^{m+1}-1) \deg \chi$. Finally, to calculate deg $\hat{\gamma}_n(\chi)$, we need to rescale using δ , which divides this expression by $(q^{m+n}-1)$.

4. Brauer character values

Finally, we derive the formula (1.5) for the unipotent Brauer character values. So let p be a prime not dividing q and χ_{λ}^{p} be the irreducible unipotent p-modular Brauer character labelled by λ as in the introduction. Writing $C^{p}(G_{n})$ for the \mathbb{C} -valued class functions on G_{n} with support in the set of p'-elements of G_{n} , we view χ_{λ}^{p} as an element of $C^{p}(G_{n})$. Let $\dot{\chi}_{\lambda}$ denote the projection of the ordinary unipotent character χ_{λ} to $C^{p}(G_{n})$. Then, by [6], we can write

$$\dot{\chi}_{\lambda} = \sum_{\mu \vdash n} D_{\lambda,\mu} \chi_{\mu}^{p}, \tag{4.1}$$

and the resulting matrix $D = (D_{\lambda,\mu})$ is the *unipotent part* of the *p*-modular decomposition matrix of G_n . One of the main achievements of the Dipper-James theory from [3] (see e.g. [1, (3.5a)]) relates these decomposition numbers to the decomposition numbers of quantum GL_n .

To recall some definitions, let \Bbbk be a field of characteristic p and $v \in \Bbbk$ be a square root of the image of q in \mathbb{K} . Let U_n denote the divided power version of the quantized enveloping algebra $U_q(\mathfrak{gl}_n)$ specialized over \Bbbk at the parameter v, as defined originally by Lusztig [8] and Du [4, section 2] (who extended Lusztig's construction from \mathfrak{sl}_n to \mathfrak{gl}_n). For each partition $\lambda \vdash n$, there is an associated irreducible polynomial representation of U_n of high-weight λ , which we denote by $L(\lambda)$. Also let $V(\lambda)$ denote the standard (or Weyl)

BRUNDAN

module of high-weight λ . Write

$$\operatorname{ch} V(\lambda) = \sum_{\mu \vdash n} D'_{\lambda,\mu} \operatorname{ch} L(\mu), \tag{4.2}$$

so $D' = (D'_{\lambda,\mu})$ is the decomposition matrix for the polynomial representations of quantum GL_n of degree *n*. Then, by [3]:

Theorem 4.3 (*Dipper and James*) $D'_{\lambda,\mu} = D_{\lambda',\mu'}$.

Let σ_{λ}^{p} denote the projection of χ_{λ}^{p} to unipotent-supported class functions. The $\{\sigma_{\lambda}^{p}\}$ also give a basis for the Hall algebra \mathfrak{g} . Inverting (4.1) and using (3.1),

$$\sigma_{\lambda'}^{p} = \sum_{\mu \vdash n} D_{\lambda',\mu'}^{-1} \sigma_{\mu'} = \sum_{\mu,\nu \vdash n} D_{\lambda',\mu'}^{-1} K_{\mu,\nu} \vartheta_{\nu}$$

$$(4.4)$$

where $D^{-1} = (D_{\lambda,\mu}^{-1})$ is the inverse of the matrix *D*. On the other hand, writing $K_{\lambda,\mu}^{p,\ell}$ for the multiplicity of the μ -weight space of $L(\lambda)$, and recalling that $K_{\lambda,\mu}$ is the multiplicity of the μ -weight space of $V(\lambda)$, we have by (4.2) that

$$K_{\mu,\nu} = \sum_{\eta \vdash n} D'_{\mu,\eta} K^{p,\ell}_{\eta,\nu}.$$
(4.5)

Substituting (4.5) into (4.4) and applying Theorem 4.3, we deduce:

Theorem 4.6
$$\sigma_{\lambda'}^p = \sum_{\mu \vdash n} K_{\lambda,\mu}^{p,\ell} \vartheta_{\mu}.$$

Now (1.5) and (1.6) follow at once. This completes the proof of the formulae stated in the introduction.

References

- 1. J. Brundan, R. Dipper, and A. Kleshchev, "Quantum linear groups and representations of $GL_n(\mathbb{F}_q)$," *Mem. Amer. Math. Soc.* **706** (2001), 112.
- J. Brundan and A. Kleshchev, "Lower bounds for degrees of irreducible Brauer characters of finite general linear groups," J. Algebra 223 (2000), 615–629.
- 3. R. Dipper and G.D. James, "The q-Schur algebra," Proc. London Math. Soc. 59 (1989), 23–50.
- 4. J. Du, "A note on quantized Weyl reciprocity at roots of unity," Alg. Colloq. 2 (1995), 363–372.
- I.M. Gelfand and M.I. Graev, "The construction of irreducible representations of simple algebraic groups over a finite field," *Dokl. Akad. Nauk. USSR* 147 (1962), 529–532.
- 6. G.D. James, "Unipotent representations of the finite general linear groups," J. Algebra 74 (1982), 443-465.
- N. Kawanaka, "Generalized Gelfand-Graev representations and Ennola duality," Advanced Studies in Pure Math. 6 (1985), 175–206.
- G. Lusztig, "Finite dimensional Hopf algebras arising from quantized universal enveloping algebras," J. Am. Math. Soc. 3 (1990), 257–297.
- 9. I.G. Macdonald, *Symmetric Functions and Hall Polynomials*, Oxford Mathematical Monographs, 2nd edn., OUP, 1995.

- Y. Nakada and K.-I. Shinoda, "The characters of a maximal parabolic subgroup of GL_n(F_q)," Tokyo J. Math. 13(2) (1990), 289–300.
- T.A. Springer, "Characters of special groups," in *Seminar on Algebraic Groups and Related Finite Groups*, A. Borel et al. (Eds.), Springer, 1970, pp. 121–166. Lecture Notes in Math. Vol. 131.
- 12. R. Steinberg, "A geometric approach to the representations of the full linear group over a Galois field," *Trans. Amer. Math. Soc.* **71** (1951), 274–282.
- 13. A. Zelevinsky, *Representations of Finite Classical Groups*, Springer-Verlag, Berlin, 1981. Lecture Notes in Math. Vol. 869.