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Abstract. We introduce a notion of lexicographic shellability for pure, balanced boolean cell complexes, mod-
elled after the CL-shellability criterion of Björner and Wachs (Adv. in Math. 43 (1982), 87–100) for posets and
its generalization by Kozlov (Ann. of Comp. 1(1) (1997), 67–90) called CC-shellability. We give a lexicographic
shelling for the quotient of the order complex of a Boolean algebra of rank 2n by the action of the wreath product
S2 � Sn of symmetric groups, and we provide a partitioning for the quotient complex �(�n)/Sn .

Stanley asked for a description of the symmetric group representation βS on the homology of the rank-selected
partition lattice �S

n in Stanley (J. Combin. Theory Ser. A 32(2) (1982), 132–161), and in particular he asked when
the multiplicity bS(n) of the trivial representation in βS is 0. One consequence of the partitioning for �(�n)/Sn is a
(fairly complicated) combinatorial interpretation for bS(n); another is a simple proof of Hanlon’s result (European
J. Combin. 4(2) (1983), 137–141) that b1,...,i (n) = 0. Using a result of Garsia and Stanton from (Adv. in Math. 51(2)
(1984), 107–201), we deduce from our shelling for �(B2n)/S2 � Sn that the ring of invariants k[x1, . . . , x2n]S2�Sn

is Cohen-Macaulay over any field k.
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1. Introduction

Let Bn denote the Boolean algebra of subsets of {1, . . . , n} ordered by inclusion and let
�n be the lattice of unordered partitions of {1, . . . , n} ordered by refinement. The natural
symmetric group action on {1, . . . , n} induces an action on each of these posets. Like-
wise, the wreath product S2 � Sn acts on the elements of the Booolean algebra B2n . Any
rank-preserving group action on a finite, ranked poset P with minimal and maximal el-
ements 0̂ and 1̂ induces an action on the order complex �(P), that is, on the simplicial
complex consisting of an (i − 1)-face for each i-chain 0̂ < u1 < · · · < ui < 1̂ in P;
the group action on poset elements induces an action on chains. This gives rise to a quo-
tient cell complex, denoted �(P)/G, which is comprised of the G-orbits of order complex
faces.

Note that �(P)/G need not coincide with the order complex of the quotient poset P/G
because there may be covering relations u < v and u′ < v′ in P belonging to distinct orbits
despite having u′ = gu and v′ = g′v for some g, g′ ∈ G. Babson and Kozlov give conditions
under which �(P)/G = �(P/G) in [1]. Equality does not hold for P = �n, G = Sn and
for P = Bkn, G = Sk � Sn , so the quotient complexes �(�n)/Sn and �(B2n)/S2 � Sn that
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we will consider are not simplicial complexes and in particular are not order complexes of
posets.

We shall give a lexicographic shelling for the quotient complex �(B2n)/S2 � Sn and
a partitioning for �(�n)/Sn , using a generalized notion of chain-labelling for balanced
complexes. By way of comparison, Ziegler showed in [26] that the quotient poset �(�n/Sn)
is not Cohen-Macaulay for n ≥ 19. We will verify in Section 3 that �(B6)/S3 � S2 is
not shellable. It was shown in [8, 19, 21] that shellings and partitionings for quotient
complexes �(P)/G yield information about sub-rings of invariant polynomials and about
G-representations on the homology of �(P). Our approach is to extend poset lexicographic
shelling methods to a general enough class of complexes to include quotient complexes
�(P)/G, taking advantage of properties quotient complexes have in common with posets.

To this end, we introduce a notion of CC-labelling for pure, balanced boolean cell com-
plexes in Section 2 and confirm that it induces a lexicographic shelling. We require three
conditions for a chain-labelling to be a CC-labelling. The first of these is a direct translation
of the poset requirement that each interval must have a unique (topologically) increasing
chain and that this be lexicographically smallest on the interval. The second condition,
which we call the “crossing condition”, is automatic for posets, and we verify that it also
holds for all quotient complexes. The third condition, the “multiple-face-overlap” condition,
is vacuous for simplicial complexes. In the quotient complex �(B2n)/S2 � Sn this technical
condition follows readily from the increasing chain condition because of the nature of the
ascents that occur in the labelling for �(B2n)/S2 � Sn . A virtually identical argument isolates
exactly where our lexicographic order on facets in �(�n)/Sn fails to satisfy the multiple-
face-overlap condition. It also helps us find a face whose link is the real projective plane,
implying �(�n)/Sn is not Cohen-Macaulay over ZZ/2ZZ, and hence is not shellable.

Section 3 provides a CC-labelling for �(B2n)/S2 � Sn while Section 4 gives a chain-
labelling for �(�n)/Sn that satisfies the increasing chain condition. Section 4 constructs
from this labelling a partitioning for �(�n)/Sn . In Section 6, we express the multiplicity
bS(n) of the trivial representation in the Sn-representation on the homology of the rank-
selected complex �(�S

n ) in terms of the flag h-vector for the quotient complex �(�n)/Sn .
This gives a combinatorial interpretation for bS(n), since hS(�(�n)/Sn) is the number of
facets contributing minimal new faces of support S. In any lexicographic shelling (or a
partitioning which uses descents in a similar spirit), this support S is the set of topological
descents in each facet. One may use this to show that bS(n) > 0 for a particular S by showing
that the descent set S arises in some lexicographic shelling (or partitioning) step (cf. [10]
for more results of this nature). In Section 7, an analysis of which S arise as minimal new
faces in a partitioning yields a simple proof of Hanlon’s result that b1,...,i (n) = 0. Finally,
Section 8 gives an application to subrings of invariant polynomials by applying a result of
Garsia and Stanton in [8].

The remainder of our introduction will review the notion of boolean cell complex, lex-
icographic shellability for posets and related terminology. Boolean cell complexes were
introduced by Björner and by Garsia and Stanton in [8]. Stanley studied their face posets,
namely simplicial posets, in [22]. He defined the face ring (also called Stanley-Reisner ring)
of a boolean cell complex and then showed that a boolean cell complex is Cohen-Macaulay
if and only if its face ring is Cohen-Macaulay. Duval studied free resolutions of face rings
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of boolean cell complexes in [7]. Reiner developed a theory of P-partitions for Coxeter
groups in order to shell (or in some cases partition) quotients of Coxeter complexes in [19].
Our interest is in lexicographic shelling for balanced, boolean cell complexes.

Definition 1.1 (Björner, Garsia-Stanton) A regular cell complex is boolean if every inter-
val in its face poset is a boolean algebra.

A boolean cell complex is much like a simplicial complex, except that more than one face
may have the same set of vertices. We note that boolean cell complexes may alternatively
be defined quite naturally in terms of simplicial sets. We find it convenient to refer to i-cells
as i-faces, 0-cells as vertices, and in the same vein to call cells of top dimension facets. A
boolean cell complex is pure of dimension n if all the maximal cells have dimension n, and
then it is balanced if the vertices may be colored with n + 1 colors so that no two vertices
in a face have the same color. We refer to the set of colors for the vertices in a face as the
support of the face and say a face has disconnected support if the support includes i, k for
i < k and does not include some j for i < j < k.

Björner established the following notion of shellability (phrased slightly differently) for
boolean cell complexes in [3].

Definition 1.2 (Björner) A boolean cell complex is shellable if the facets may be ordered
F1, . . . , Fk so that Fj ∩ (

⋃ j−1
i=1 Fi ) is pure of codimension one for each 1 < j ≤ k.

Recall that the order complex of a finite, ranked poset is a balanced simplicial complex
in which vertices are colored by poset rank. This will allow us to translate poset notions of
lexicographic shellability to conditions on the order complex which may then be extended
to give shelling criteria for more general balanced complexes.

One may conclude from the existence of a shelling that a boolean complex has the
homotopy type of a wedge of spheres of top dimension and is Cohen-Macaulay (cf. [3]).
The arguments are similar (though slightly more subtle) to those for simplicial complexes.

Proposition 1.1 (Björner) If a pure boolean cell complex is shellable, then it has the
homotopy type of a wedge of spheres of top dimension.

In a shelling, each facet either attaches along its entire boundary, “closing off” a sphere,
or its overlap with the union of earlier facets is a simplicial complex with a cone point,
implying the homotopy type is unchanged by the facet’s insertion.

Proposition 1.2 (Björner) If a pure boolean cell complex is shellable, then it is Cohen-
Macaulay.

This may be shown by shelling its barycentric subdivision (cf. [2], p. 173), which is a
simplicial complex, then invoking Munkres’ classical result [[18], p. 117, 121–123] that
Cohen-Macaulayness does not depend on choice of triangulation.
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Definition 1.3 (Björner) An integer labelling of the covering relations in a finite poset with
0̂ and 1̂ is an EL-labelling if it has the following two properties, which together constitute
the increasing chain condition.

1. Every interval has a unique saturated chain with (weakly) increasing edge labels.
2. The increasing chain is the lexicographically smallest chain of labels on an interval.

A chain-labelling is a labelling of poset covering relations such that the label assigned
to a covering relation u ≺ v may depend on the choice of root, namely on the saturated
chain 0̂ ≺ u1 ≺ · · · ≺ uk = u as well as on u and v. Recall from Björner and Wachs
[5, 6] that a CL-labelling is any chain-labelling satisfying the increasing-chain condition.
An edge-labelling or chain-labelling induces a partial order on facets by lexicographically
ordering the sequences of labels assigned to saturated chains. It is shown in [3] (resp. [6])
that any total order extension of the lexicographic order given by an EL-labelling (resp.
CL-labelling) is a shelling order on facets.

Kozlov generalized poset EL-shellability (resp. CL-shellability) in [16] to a criterion he
called EC-shellability (resp. CC-shellability) by relaxing the requirement that every poset
interval must have a unique increasing chain. In effect, he instead requires each interval
to have a unique saturated chain that behaves topologically like an increasing chain with
respect to the chosen lexicographic order. We rediscovered EC/CC-shellability in the course
of joint work with Kleinberg (see [12]); it will be convenient for the fairly involved shelling
arguments in later sections to use the notation and point of view taken in [12], so now let
us review terminology from [12].

We classify ascents and descents in a poset chain-labelling (or edge-labelling) λ as
follows: let us say that a pair of edges u ≺ v and v ≺ w constitute a topological ascent
if the word consisting of two consecutive labels λ(u, v) and λ(v, w) is lexicographically
smallest on the interval from u to w and let us say that the pair of covering relations u ≺ v

and v ≺ w comprise a topological descent otherwise. We may further distinguish between
topological ascents with increasing or decreasing consecutive labels by calling the former
honest ascents and the latter swap descents. Similarly, we call topological descents with
decreasing labels honest descents and all others swap ascents. In this language, a poset
is EC-shellable (resp. CC-shellable) if each interval (resp. rooted interval) has a unique
topologically increasing chain (namely a chain consisting entirely of topological ascents)
and this is the lexicographically smallest chain on the interval. It is shown in [16] that
these labellings induce lexicographic shellings, for the same reason that EL-labellings and
CL-labellings do.

2. A lexicographic shelling condition for balanced boolean cell complexes

In this section, we extend CC-shellability to pure, balanced boolean cell complexes and
EL/CL/EC/CC-shellability to pure, balanced simplicial complexes. We always choose in-
dices so that Fi precedes Fj lexicographically for i < j . When the vertices v1, . . . , vt in a
face σ are colored c1, . . . , ct , then we call the set S = {c1, . . . , ct } the support of σ . It will
be convenient to represent an arbitrary color set as s0, . . . , r1, s1, . . . , r2, s2, . . . , rk, sk, . . . ,
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rk+1 for some s0 ≥ 1, rk+1 < n and with si − ri > 1 for all 1 ≤ i ≤ k. We use si , . . . , ri+1

to denote the collection of all possible colors from si to ri+1. Thus, the colors not in S are
those between ri and si for some i , and the colors that are smaller than s0 or larger than
rk+1.

Let us begin by translating the poset lexicographic shellability condition of Björner and
Wachs [5] to a condition on the order complex so as to make an analogous condition for pure,
balanced boolean cell complexes. Consider any finite, graded poset with unique minimal
and maximal elements 0̂ and 1̂. Notice that the increasing chain condition on the Hasse
diagram of a poset may be viewed as a condition on the order complex. We make the
following conventions:

1. The label assigned to a poset covering relation from rank i to i + 1 is placed on the
consequent order complex edge colored i, i + 1 for 1 ≤ i ≤ n − 1.

2. The label of each poset edge involving 0̂ (resp. 1̂) is assigned to the corresponding vertex
colored 1 (resp. n − 1).

3. The interval from u to v in the poset is the collection of faces colored rk(u), rk(u) +
1, . . . , rk(v) − 1, rk(v) which include the vertices u and v.

4. Let i = rk(u) and j = rk(v). Then each poset saturated chain from u to v translates to
a walk on the resulting face colored i, i + 1, . . . , j − 1, j in the order complex. Such
a walk along edges colored i ′, i ′ + 1 for 1 ≤ i ′ < j passes through the vertex colors
sequentially.

The increasing-chain condition on an interval from rank i to j amounts to a condition on
all the faces in the order complex consisting of vertices colored i, . . . , j which include a
particular pair of vertices colored i and j . This requirement makes sense for arbitrary pure,
balanced simplicial complexes, using the balancing to play the role of poset rank. Any pure,
balanced simplicial complex will be lexicographically shellable if it satisfies this increasing
chain condition along with another requirement which we call the crossing condition. For
balanced boolean cell complexes, we must define the notion of interval a little bit more
carefully, but again the increasing chain condition will be a similar requirement on cells in
an interval; the increasing chain condition together with the crossing condition and a third
requirement called the multiple-face-overlap condition will imply that a pure, balanced
boolean cell complex is lexicographically shellable.

Let us generalize the notions of interval and rooted interval to balanced complexes, as
follows.

Definition 2.1 Let τ be a face colored 1, . . . , i, j for some i < j in a pure, balanced
boolean cell complex. The rooted interval specified by τ is the collection of faces colored
1, . . . , j that contain τ .

Notice that a cell complex which is not a simplicial complex might have several faces
comprised of the same vertex set of support 1, . . . , i, j . Each of these faces gives rise to a
different interval. For this reason, it does not seem wise to allow edge-labellings and un-
rooted intervals when workin with boolean cell complexes that are not simplicial complexes.
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Definition 2.2 Let u, v be a pair of vertices colored i, j for i < j in a pure, balanced
simplicial complex. Then (unrooted) interval specified by u and v is the collection of faces
colored i, . . . , j which contain the vertices u and v.

Next, we adapt the definition of topological ascent and descent to balanced boolean cell
complexes.

Definition 2.3 A facet Fj has a topological descent at the color r if there is a codimension
one face in Fj ∩ (

⋃
i< j Fi ) omitting only the vertex colored r . Otherwise, it has a topological

ascent at rank r .

In a poset, one may view the saturated chains as non-self-intersecting paths from 0̂ to
1̂ in the Hasse diagram, so then saturated chains intersect where two of these paths cross
each other. Notice that when two poset saturated chains cross c − 1 times in the proper
part of the poset, one obtains 2c distinct saturated chains by choosing which of the two
saturated chains to follow on each of the c segments between consecutive crossing points.
The existence of these poset chains implies for lexicographic orders that every maximal
face in Fj ∩ (

⋃
i< j Fi ) skips a single interval of consecutive ranks. The crossing condition

is designed to test for this behavior in arbitrary balanced complexes.
Notice in the case of boolean cell complexes that are not simplicial complexes that the

crossing condition, given next, does not always ensure that maximal faces in Fj ∩ (
⋃

i< j Fi )
have support skipping a single interval of consecutive colors. Specifically, it does not apply
to faces σ ∈ Fj ∩ Fi of support 1, . . . , r1, s1, . . . , r2, . . . , sk, . . . , rk+1 such that another
face in Fj ∩ Fi has support 1, . . . , r + 1. The multiple-face-overlap condition accounts for
these faces.

Definition 2.4 A balanced boolean cell complex is CC-shellable if there is a chain-
labelling satisfying the following three conditions.

1. Increasing chain condition. Each rooted edge-interval has a unique extension with topo-
logically increasing labels and this is the lexicographically smallest face in the interval
(i.e. its lexicographically earliest extension to a facet is lexicographically smallest among
facets that may be obtained from faces in the interval).

2. Crossing condition. Let σ be a face in the intersection of a facet Fk with a lexicographi-
cally earlier facet Fj . Suppose that (1) the support of σ includes 1, . . . , r while no other
face in Fj ∩ Fk includes support 1, . . . , r ′ for r ′ > r and (2) the complement of σ has
disjoint support. Then there is some facet Fi for i < k and some face τ ∈ Fi ∩ Fk

such that σ�τ and the complement of τ has connected support r + 1, . . . , s for some
s ≥ r + 1.

3. Multiple-face-overlap condition. Suppose the intersection of two facets Fi and Fj (with
i < j ) contains two faces σ, τ , such that σ is maximal in Fj ∩ (

⋃ j−1
i ′=1 Fi ′ ) and τ

is maximal in Fj ∩ Fi . Furthermore, assume that σ has support including the colors
1, . . . , r ′ for some 1, . . . , r ′ which is not a subset of the support of τ . Then τ must be
contained in a codimension one face γ of Fj such that γ ∈ Fj ∩ (

⋃ j−1
i ′=1 F ′

i ). Letting
1, . . . , r, s, . . . , n denote the support of τ , it suffices to check this for s ≤ r ′.
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The final remark in the multiple-face-overlap condition will be invaluable to our proofs
in later sections and is confirmed within the proof of Theorem 2.1. It allows us to assume
when some Fi ∩ Fj includes maximal faces σ and τ as above that the first covering relation
of Fj skipped in τ has larger label than the covering relation of the same rank in Fi (for
i < j). To prove such a face σ has codimension one, we may assume (to get a contradiction)
that the interval of Fj skipped by σ consists entirely of topological ascents.

Remark 2.1 The above criterion specializes to pure, balanced simplicial complexes, in
which case the multiple-face-overlap condition is vacuously true. For balanced simplicial
complexes, the above criterion is easily modified to give notions of EL/CL/EC-shellability
as follows. For EL/CL-shellability, we require increasing chains instead of merely topo-
logically increasing chains. For EL/EC-shellability, we label edges in a way that does not
depend on the root, and intervals are specified by pairs of vertices rather than also depending
on the entire root.

We call any ordering of the facets of a balanced complex which is induced by an
EL/CL/EC/CC-labelling a lexicographic shelling. Let us check that these do indeed give
shellings.

Theorem 2.1 If F1, . . . , Fr is a lexicographic shelling for a pure, balanced boolean cell
complex � of dimension n − 1, then Fl ∩ (

⋃l−1
k=1 Fk) is pure of codimension one for each l,

so F1, . . . , Fr is a shelling.

Proof: Let H be a maximal face in Fj ∩ (
⋃

i< j Fi ), so H ⊆ Fj ∩ Fi ′ for some i ′ < j . It
suffices to show that H has codimension one in Fj . Let S = {s0, . . . , r1, s1, . . . , rk+1} be the
support of H . The crossing condition implies that the complement of S is a single interval of
consecutive ranks, except in the following scenario. The crossing condition does not apply
if (1) the support of H includes 1, . . . , r but excludes r +1, and (2) there is some other face
H ′ ⊆ Fj ∩ Fi ′ has support including 1, . . . , r + 1. However, in this case the multiple-face-
overlap condition ensures that H has codimension one in Fj , as desired. Hence, we only
need to consider H of support S = {1, . . . , r, s, . . . , n} or S = {s0, . . . , n} for some s0 > 1
or S = {1, . . . , r1} for some r1 < n. Let us assume H has support 1, . . . , r, s, . . . , n, since
the other arguments are similar. The facet Fi ′ must be strictly smaller in lexicographic order
than Fj on the interval skipped by H , since Fj ∩ Fi ′ does not include any faces of support
1, . . . , r + 1. Thus, the increasing chain condition ensures that Fj must have a topological
descent on the rooted interval specified by H restricted to color set 1, . . . , r, s. Let Fi ′′ be the
facet in which one such topological descent is replaced by a topological ascent. Fi ′′ precedes
Fj in lexicographic order, and Fj ∩ Fi ′′ contains a face of codimension one in Fj which
contains H . Hence, H must be codimension one in Fj to be maximal in Fj ∩ (

⋃
i< j Fi ).

Next, we verify the remark in the multiple-face-overlap condition, recalling that τ ⊆
Fi ∩ Fj for some Fi preceding Fj in lexicographic order. Since τ is assumed to have support
1, . . . , r, s, . . . , n, the increasing chain condition implies that either τ has a topological
descent on the interval from color r to s, or τ is lexicographically smallest on this interval.
In the former case, we argue as above. In the latter case, Fi ∩ Fj must agree up to color
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s, namely there must be a face σ ⊆ Fi ∩ Fj whose support includes 1, . . . , s, just as
asserted.

Remark 2.2 Just as in a poset lexicographic shelling, the topologically decreasing chains
give rise to facets attaching along their entire boundaries, and the homotopy type of a
lexicographically shellable balanced boolean cell complex is a wedge of spheres of top
dimension, indexed by the topologically decreasing chains.

One could define C L-shellability for balanced complexes by requiring all of the topo-
logical ascents (resp. topological descents) in a CC-shelling to be actual ascents (resp.
descents). This, however, would give a more restrictive notion of CL-shellability than the
one very recently introduced by Hultman in [14].

We conclude this section by confirming that quotient complexes always satisfy the cross-
ing condition. Later sections will give a lexicographic shelling for the quotient complex
�(B2n)/S2 � Sn and use lexicographic shelling ideas in a partitioning for �(�n)/Sn . Lexi-
cographic shellability for another class of balanced boolean cell complexes, the nerves of
ranked, loop-free small categories, is discussed in [12].

Proposition 2.1 Quotient complexes �(P)/G satisfy the crossing condition.

Proof: Suppose that two saturated chain orbits Fj , Fk (with j < k) share a maximal
face σ of support S = {s0, . . . , r, s1, . . . , r2, s2, . . . , rk+1}. We may assume s0 = 1, by
assumption (1) of the crossing condition. Then there must be poset saturated chains C j , Ck

belonging to the orbits Fj , Fk , respectively, such that C j , Ck also share a face of support
S. Now consider the saturated chain Ci in P which agrees with C j on ranks 1, . . . , s1 and
agrees with Ck on ranks s1, . . . , n. Denote the orbit of Ci by Fi . We may assume that Fj and
Fk do not share a face colored {1, . . . , r + 1}, by assumption (1) of the crossing condition.
Thus, Fj already has a strictly earlier labelling than Fk on the interval up to the color s1.
Since Fi agrees with Fj on color set 1, . . . , s1, Fi also must precede Fk lexicographically.
Restricting Fi to color set 1, . . . , r, s1, . . . , n gives the desired face τ .

3. A lexicographic shelling for ∆(B2n)/S2 � Sn

An edge-labelling for the lattice B2n of subsets of {1, . . . , 2n} ordered by inclusion comes
from labelling each covering relation {σ1, . . . , σi−1} ⊆ {σ1, . . . , σi−1, σi } with the number
σi ∈ {1, . . . , 2n} being inserted. This labelling assigns the permutation σ1σ2 · · · σ2n ∈ S2n to
the saturated chain ∅ ≺ {σ1} ≺ · · · ≺ {σ1, . . . , σ2n}. If the numbers 1, . . . , 2n are placed in
a table, as in figure 1, then each element of S2 � Sn may be viewed as the composition of some

1 2

3 4

5 6

Figure 1. Labelled boxes acted upon by S2 � S3.
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π1 ∈ S2n permuting the elements of each row with a permutation π2 permuting the rows.
Thus, π1 = (12)e1 (34)e2 · · · (2n−1, 2n)en for some choice of ei ∈ {0, 1} for each 1 ≤ i ≤ n,
and there is some π ∈ Sn , such that π2(2i) = 2π (i) and π2(2i−1) = 2π (i)−1 for 1 ≤ i ≤ n.

The action of S2 �Sn on {1, . . . , 2n} induces an action on the saturated chains in B2n . Let us
denote orbit representatives of this action by the permutations in S2n , written in one-line no-
tation, which label the chosen saturated chains in B2n . We choose the saturated chain labelled
by the lexicographically smallest possible permutation in an orbit as the orbit representative.
The permutations in S2n occurring as labels are the ones with the property that 2i − 1 comes
before both 2i and 2i + 1 for 1 ≤ i < n − 1 and that 2n − 1 comes before 2n. The labelling
for orbits is a chain-labelling using the labels assigned to the orbit representative.

Example 3.1 The orbit representatives for �(B6)/S2 � S3, listed in lexicographic order,
are 123456, 1235 • 46, 123 ◦ 56 • 4, 13 • 2456, 13 • 25 • 46, 13 • 256 • 4, 1 ◦ 34 • 256,
1◦345•26, 1◦3456•2, 135•246, 13◦5•26•4, 1◦35•4•26, 1◦35•46•2, 13◦56•24,
and 1 ◦ 3 ◦ 56 • 4 • 2. Hollow dots denote swap ascents while filled-in dots indicate descent
locations. For instance, the swap ascent in 1 ◦ 3456 • 2 comes from a codimension one
face skipping rank 1 in the intersection of 134562 with 132564, resulting from the fact that
312564 is in the same orbit as 134562.

In the shelling argument for �(B2n)/S2 � Sn , we refer to the i th row as being empty at the
element u in a saturated chain 0̂ ≺ {σ1} ≺ · · · ≺ {σ1 · · · σk} = u if 2i−1, 2i �∈ {σ1, . . . , σk}.
Similarly we call row i half-full at u if 2i − 1 ∈ {σ1, . . . , σk} but 2i �∈ {σ1, . . . , σk}, and we
refer to row i as full at u if 2i − 1, 2i ∈ {σ1, . . . , σk}.

All the saturated chain orbits belonging to the same rooted edge-interval 0̂ ≺ u1 ≺ · · · ≺
uk = u < v must agree in the following three ways:

1. The same collection of half-full rows of u must be full in v

2. The same number of rows must switch from empty in u to full in v.
3. The same number of rows must switch from empty in u to half-full in v.

The first of these three conditions depends on our use of edge-intervals which are rooted,
since any two half-full rows in u are equivalent, but they are distinguishable within the
context of a saturated chain orbit from 0̂ to u . In order to verify the increasing-chain
condition below, we will show that there cannot be two (topologically) increasing chains
that agree in all three ways.

Theorem 3.1 The labelling of saturated chains with minimal orbit representatives gives
a lexicographic shelling. More specifically, it is a CC-shelling.

Proof: The crossing condition follows from Proposition 2.1. Next we classify topological
ascents and descents in order to verify the increasing chain condition.

We claim that every descent is an honest descent. Replacing a descent σiσi+1 by the
ascent σi+1σi yields a lexicographically smaller permutation, thus a member of a different
orbit (since the orbit representative was already the lexicographically smallest member of
its orbit). In fact, the permutation obtained by this swap is the orbit representative of a new
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orbit since no new ascents have been introduced by swapping σi and σi+1, which means
that the requirement that 2 j − 1 come before 2 j and 2 j + 1 for all j is still satisfied.

Whenever an orbit representative Fj has 2i − 1 immediately preceding 2i + 1 and then
later has 2i + 2 before 2i , there is a swap ascent at the node between 2i − 1 and 2i + 1.
This is because the facet Fi with 2i + 2 and 2i swapped is lexicographically earlier, and
the facets Fi , Fj share a codimension one face which omits the node between 2i − 1 and
2i + 1. Notice that the characterization of this node as a swap ascent depends on later ranks
in the chain. This is not a problem, since the labels themselves, and thus the lexicographic
order on facets, only depends on the root of the chain. It is not hard to check that all other
ascents are honest ascents, and we have already shown that there are no swap descents.

Now we must verify that each rooted interval has a unique (topologically) increasing
chain. If two orbit representatives both had only topological ascents on a rooted interval
from u to v, each would have labels in increasing order and be free of swap ascents of the
type described above. To avoid descents, each increasing chain must begin by completing all
the requisite half-filled rows of u in increasing order, and then begin new rows, proceeding
sequentially. The lexicographically smallest chain in the rooted edge-interval proceeds
through all the empty rows of u to be filled in v before turning to empty rows of u to be half-
filled in v. Any lexicographically later orbit on the interval which is free of descents would
also first complete the set of half-full rows of u to be filled in v and then would proceed
to new rows. To differ from the lexicographically smallest orbit it would at some point
necessarily insert one element into a new row immediately before inserting two elements
to the next new row. This would yield a swap ascent, as discussed above. For example, the
orbit labelled 134 comes after the increasing chain labelled 123 in the interval (∅, {1, 2, 3})
in B4/S2 � S2, but 134 has a swap ascent at 13 since 4 comes before 2 in any orbit including
134. Thus, the lexicographically smallest orbit on the interval is the only topologically
increasing orbit, just as desired.

Finally, we must confirm the multiple-face-overlap condition. Suppose two faces σ and τ

are maximal in some Fi ∩ Fj and that σ is maximal in Fj ∩ (
⋃

i ′< j Fi ′ ). We may assume that
τ has support 1, . . . , r, s, . . . , 2n − 1, because we will show (in the last paragraph of our
proof) that for �(B2n)/S2 � Sn every maximal face in Fj ∩ (

⋃
i ′< j Fi ′ ) has support omitting

a single interval. Assume also that σ has support including 1, . . . , r ′ for some r ′ ≥ s such
that no face in Fi ∩ Fj has support 1, . . . , r ′ + 1. In particular, this means that Fj agrees
with Fi on the interval skipped by τ . Let u be the element of rank r ′ in Fj , let v be the
element of rank r ′ + 1 in Fj and let v′ be the element of rank r ′ + 1 in Fi . Notice that u ≺ v

is equivalent to u ≺ v′ in τ , but not in σ . This is only possible if two rows are equivalent
in τ but not in σ , i.e. if two different rows switch from empty to half-full on the interval
skipped by τ . Furthermore, the earlier of these rows (call it ρ ′) must be completed in the
step u ≺ v′ while the later row (denoted by ρ) is completed in the step u ≺ v. We may
assume that the interval skipped by τ has no topological descents, for otherwise τ would
be contained in a codimension one face of Fj ∩ (

⋃
i ′< j Fi ′ ), and we would be done.

Thus, all the letters inserted into rows to be half-filled in the interval of Fj skipped by τ

are inserted by progressing through these rows sequentially. If ρ ′ is half-filled immediately
before ρ, then there is a codimension one face within Fj that contains τ and belongs to
Fi ∩ Fj . This face is obtained by half-filling ρ ′ and ρ in a single step. Otherwise, let
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ρ ′ = ρ1, ρ2, . . . , ρk = ρ be the sequence of consecutive rows that are half filled between
ρ ′ and ρ in Fj . There must be some ρm−1, ρm for 1 < m ≤ k such that ρm is complete
before ρm−1 in Fj , since ρ is completed before ρ ′ in Fj . There also must be an Fi ′ which
agrees with Fj except that it reverses the order in which the second elements of rows ρm−1

and ρm are inserted. This Fi ′ comes before Fj lexicographically. There is a codimension
one face of Fj that contains τ and is contained in Fj ∩ Fi ′ . It is obtained by half-filling
ρm−1 and ρm in a single step. Thus, τ is contained in a codimension one face belonging to
Fj ∩ (

⋃
i ′< j Fi ′ ), as desired.

There are no facets Fj such that Fj ∩ (
⋃

i< j Fi ) has a maximal face whose complement
has disjoint support because this would mean that skipping disjoint intervals allows two
covering relations to be identified that could not be identified by skipping a single interval.
Such identification could only come from making two rows interchangeable, but because
the rows have length two, it suffices to skip the single interval beginning where the first row
is half-filled and ending where the second row is half-filled. Thus, we have checked all the
necessary conditions for a lexicographic shelling.

The story is quite a bit different for �(Bkn)/Sk � Sn when k is greater than 2. The increas-
ing chain condition fails for the lexicographic order on orbit representatives chosen to be
lexicographically as small as possible. Consider the first four facets F1 = 123456, F2 =
124356, F3 = 124536, F4 = 124563 in �(B6)/S3 � S2. The intersection F4 ∩ (F1 ∪ F2 ∪ F3)
has two maximal faces σ, τ where σ is colored 1, 2, 3, 4 and τ is colored 4, 5, so τ has
codimension greater than 1. Here, σ ⊆ F4 ∩ F3 and τ ⊆ F4 ∩ F3.

Indeed, �(B6)/S3 � S2 cannot possibly be shellable. Molien’s Theorem (cf. [20]) together
with code given to us by Vic Reiner allowed us to determine the Hilbert series for the ring of
invariants k[�(B6)]S3�S2 with generators graded by poset rank; we obtained (1 + q2 + q3 +
2q4 +q5 +2q6 +q7 +q8)(1/((1−q)(1−q2)(1−q3)(1−q4)(1−q5)(1−q6))). However, if
�(B6)/S3 � S2 had a shelling, then Theorem 6.2 of [8] (stated in Section 8) would also yield
this Hilbert series as follows. The product 1/((1−q)(1−q2)(1−q3)(1−q4)(1−q5)) accounts
for polynomials in θ1, θ2, θ3, θ4 and θ5, as discussed in Section 8 while the numerator
1 + q2 + q3 + 2q4 + q5 + 2q6 + q7 + q8 accounts for elements of the basic set given by
a theorem of [8], described in Section 8. That is, each shelling step Fi with minimal new
face Gi of support Si contributes qdi to the numerator where di = ∑

x∈Si
x .

In the case of �(B6)/S3 � S2, there is no ordering on facets that would give rise to the
necessary collection of exponents 0, 2, 3, 4, 4, 5, 6, 6, 7, 8, so there cannot be a shelling. To
see this, let us represent facets by lexicographically smallest orbit representatives. Note that
whichever facet comes last among 142536, 142563, 145236 and 145263 will contribute a
minimal new face whose support includes ranks 1,3 and 5. This implies that the last step
among these four would contribute an exponent of at least 9 to the numerator of the Hilbert
series, a contradiction since q8 is the largest power of q present.

4. A lexicographic order on facets of ∆(Πn)/Sn

First we briefly describe which chains in �n are in the same orbit and then give a way
of representing chain orbits by trees. After this, we give a chain-labelling on �(�n)/Sn
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in terms of this tree-representation for the facets of �(�n)/Sn . We remark that a similar
tree-representation appears in [17].

4.1. Orbits of partition lattice chains

The Sn-orbit of a partition in �n is determined by the size of its blocks, i.e. by an integer
partition. Thus, vertices in �(�n)/Sn are given by unordered partitions of the integer n.
However, two edges u < v and u′ < v′ in �(�n) may belong to distinct Sn-orbits even
if u′ ∈ Orb(u) and v′ ∈ Orb(v), because this does not guarantee the existence of a single
permutation π ∈ Sn such that π (u) = u′ and π (v) = v′. If no such π exists, then u < v and
u′ < v′ give rise to distinct edges in �(�n)/Sn which have the same vertices. Thus, faces
in �(�n)/Sn are sequences of successively refined partitions of the integer n enriched with
some additional information.

Example 4.1 Consider a chain 22 ≺ 11|11 ≺ 3|8|11 with numbers denoting block sizes.
The orbit does not depend on which block of size 11 is split into blocks of size 3, 8. However,
there are two orbits of the form 22 ≺ 11|11 ≺ 3|8|11 ≺ 3|8|3|8 ≺ 3|4|4|3|8, because the
two blocks of size 8 are not interchangeable since they were created at different ranks. On
the other hand, the two blocks of size 8 are indistinguishable within the chain which skips
immediately from 11|11 to 3|8|3|8.

The orbit of a chain keeps track of what type of block is split into what types of pieces
at each rank in a chain. To be precise, the type of a block in uk will be its Sn-equivalence
class, relative to a chain 0̂ < u1 < · · · < uk < 1̂. Two blocks b1, b2 in uk are said to
be Sn-equivalent if (1) they have the same content, (2) they must be created in the same
refinement step ui < ui+1, and (3) they must be children of blocks B1 and B2, respectively,
which are themselves equivalent to each other. This includes the possibility that B1 = B2,
so b1, b2 come from a single parent. The point is that Sn may swap the elements of b1 with
the elements of b2 in a way that preserves the chain. Denote the orbit of a chain C by π (C).

4.2. Two encodings for faces in �(�n)/Sn

First we encode the orbit of a chain as a tree whose nodes are the partition blocks that occur
in the chain. The root is the single block appearing as 0̂ in any poset chain. The children of
a tree node B are the blocks obtained from B when it is refined in the chain. Each tree node
is labelled by its block content, and each parent is also labelled with the rank at which it is
refined. The equivalence class of a particular block relative to a chain orbit comes from the
tree built by that chain orbit. Two blocks are equivalent if there is a graph automorphism
that swaps the blocks and carries each tree block to one with identical labels. The orbit of
a saturated chain gives rise to a binary tree.

The labelling given next will depend on a choice of planar embedding for these trees.
We will define this embedding by specifying for each parent an ordering on its children.
Let us make a convention for choosing a planar embedding so as to assign a label λ(π (0̂ ≺
· · · ≺ u ≺ v)) to each covering relation orbit π (u ≺ v) based on the entire saturated chain
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orbit π (0̂ ≺ · · · ≺ u) to which π (u ≺ v) belongs. In the process of choosing the label,
we shall also choose a planar embedding for the tree given by π (0̂ ≺ · · · ≺ u ≺ v). In
particular, this embedding will give us an ordering on the blocks for each partition in the
chain, which depends only on the root of that chain. The chain-labelling, provided next,
uses this ordering on the blocks of a partition to be refined in a covering relation.

Sometimes, we will use a more compact encoding for a chain. Namely, we list n balls in a
row with n−1 bars separating them, and place numbers between 1 and n−1 below the bars.
The balls represent the n numbers being partitioned, since these are freely interchangeable.
The numbers below the bars record ranks at which bars are inserted while progressively
refining a partition. This representation for a chain often is not unique, but it completely
determines the chain orbit. We will order the blocks in the fashion described at the beginning
of Section 4.3, so this will determine our choice of representation. See figure 4 for an
example.

4.3. A chain-labelling which nearly satisfies the increasing chain condition

Let us assign labels to orbits π (0̂ ≺ u1 ≺ · · · ≺ uk = u ≺ v) of rooted covering
relations. The distinct π (u ≺ v) with a fixed root π (0̂ ≺ u1 ≺ · · · ≺ uk = u) are
specified by which type of block from u is split (recalling that type means equivalence
class) together with the content of its children. Assume by induction that a saturated chain
orbit π (0̂ ≺ u1 ≺ · · · ≺ uk = u) imposes an order on the blocks of u. We obtain from this
an ordering on the blocks of v for each u ≺ v as follows:

1. Split the leftmost block B in the ordered partition of u which belongs to the equivalence
class to be split by the covering relation u ≺ v.

2. Place the lexicographically smaller of the two blocks obtained from B to the left of an
inserted bar separating the two blocks resulting from B.

Thus, we get an ordering on the blocks of v from the ordering for u by replacing B by the
two blocks derived from it ordered lexicographically and otherwise preserving block order.
One may then use the position where the new bar is inserted to give a chain-labelling.

Remark 4.1 This labelling by bar position is motivated by a feature of �n (which is
related to the splitting basis for the partition lattice given in [25]). Each permutation π ∈ Sn

gives rise to a boolean sublattice Bn−1 of those partitions obtained by listing 1, . . . , n in the
order given by π (written in one-line notation). Each partition consistent with π is specified
by choosing a subset of the n − 1 possible bars to insert splitting the numbers into blocks.

The labelling by bar position does not always satisfy the increasing chain condition,
as indicated by Example 4.2. To transform this labelling into one which will satisfy the
increasing chain condition, we will introduce a block-sorting step next.

Example 4.2 Consider �(�22)/S22. Take the rooted interval 0̂ ≺ u < v with u = 11|11
and v = 1|1|9|2|2|7 where one block of size 11 splits into 1|1|9 and the other into 2|2|7. This
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2|9|1|10
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Figure 2. First approximation at a chain-labelling.

rooted interval includes the product of chains in figure 2 with chain-labels as shown. The left
half gives labels for saturated chains beginning with 11|11 ≺ 1|10|11 and the right half for
those beginning with 11|11 ≺ 2|9|11. The lexicographically smallest chain appears farthest
to the left and is labelled 1, 2, 13, 15. The rightmost chain in figure 2 consists entirely of
honest ascents, even in light of all the saturated chains in the interval rather than only those
depicted in figure 2. Thus, this chain-labelling violates the increasing chain condition on
the interval from 11|11 to 1|1|9|2|2|7. Figure 2 shows the chains in the interval in which
bars are inserted left to right. Covering relations are labelled by bar positions. However, the
labelling does not give a shelling because the intersection of the rightmost chain with those
coming earlier is not pure of codimension one.

4.4. A modified chain-labelling which satisfies the increasing chain condition

We will add a block sorting step just before bar position is recorded. This will yield the
labelling in figure 3 for the product of chains from figure 2. When we split a block of size
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1
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1

Figure 3. Revised chain-labelling which incorporates block sort.
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11 into blocks of size 2,9, and then break the other block of size 11 into blocks 1,10, we
sort the blocks of size 1,10 to the left of the blocks of size 2,9 before assigning the second
label.

Our chain-labelling assumes (by induction) that we have already assigned a label to the
orbit π (0̂ ≺ u1 ≺ · · · ≺ uk = u) and in the process have ordered the blocks of u. It then
specifies a label for u ≺ v as well as an ordering on the blocks of v.

1. Block refinement: Split the leftmost block B belonging to the equivalence class to be
split in u ≺ v into two blocks, the smaller of which is placed on the left. Thus, a block
B is replaced by two blocks derived from it with the smaller on the left, giving a more
refined ordered partition. Note that block equivalence in orbits of saturated chains only
comes from a single block splitting into two identical pieces.

2. Block sort: If B is equivalent to another block B ′ in ui for some i < k, let P(B) be the
common parent of B and B ′. Compare the subtree of descendents of B to the subtree
of descendents of B ′ to decide whether B or B ′ should be the left child of P(B) in the
block order for v. The left child is the block with the lexicographically smaller word
comprised of the positions at which bars occur within that block. Ties are broken using
the rank at which B and B ′ were first split (the block with earlier rank is sorted farther
to the left). Next, apply this sorting procedure to the successive ancestors of B.

3. Chain-labelling: The label assigned to π (0̂ ≺ · · · ≺ u ≺ v) is a 3-tuple with the
following components, listed in order of precedence:

(a) The post-sort position of the newly inserted bar.
(b) The word consisting of all the post-sort bar positions in v.
(c) The (ordered) list of ranks at which the successive ancestors of B were themselves

split, with P(B) given lowest precedence.

By Proposition 2.1, �(�n)/Sn satisfies the crossing condition, so let us turn our atten-
tion to the increasing chain condition and multiple-face-overlap condition. The proofs of
Theorems 4.1 and 4.2 adopt several ideas from [12].

Theorem 4.1 The above labelling satifies the increasing chain condition.

Proof: Denote the above labelling by λ. Notice that any topologically increasing chain
on a rooted interval 0̂ ≺ · · · ≺ u < v must insert bars from left to right (post-sort) into u in
such a way that each block of u is split into pieces which are nondecreasing in size from left
to right. There is at least one such increasing chain, obtained by greedily inserting bars from
left to right so that the children of each block are nondecreasing in size from left to right.
Whenever two equivalent blocks are to be refined, refine them in such a way that the second
one to be refined does not get sorted to the left of the first one refined. That is, refine the first
of these two blocks in the way that gives a smaller left child as soon as the two refinements
differ. What remains to show is that there is a unique topologically increasing chain on
each interval and that this chain is lexicographically earliest on the interval. To this end,
we will show that any saturated chain that is not lexicographically first on an interval has
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a topological descent. Our argument will repeatedly use the fact that sorting never moves
newly inserted bars to the right.

Suppose that the orbit π (C) of a saturated chain 0̂ ≺ u1 ≺ · · · ≺ uk ≺ · · · ≺ w is not
lexicographically smallest on a rooted edge-interval 0̂ ≺ u1 ≺ · · · ≺ uk < w. Consider
u ∈ π (C) of lowest rank such that the rooted edge π (0̂ ≺ · · · ≺ u ≺ v) in π (C) has
larger chain-label than π (0̂ ≺ · · · ≺ u ≺ v′) for some v′ �= v in a different saturated chain
orbit also belonging to the rooted edge-interval π (0̂ ≺ · · · ≺ uk < w). Choose v′ with the
minimal possible label among all such choices. Let B be the block from u that is split in the
step u ≺ v and let B ′ be the block (also from u) that is split in u ≺ v′. We consider three
cases, depending on whether the labels λ(u ≺ v), λ(u ≺ v′) first differ in the first, second
or third component of the label. We will sometimes abuse notation by not listing the root,
even though the labellings do depend on them.

Case I: Suppose the labels differ in the (post-sort) bar position. We further subdivide this
case, depending on whether the blocks B, B ′ being split by u ≺ v and u ≺ v′, respectively,
are equal or not.

Case Ia: If B = B ′, then we will show that π (C) must either have an honest descent or a
swap ascent within the interval. Let b′ be the smaller of the two blocks resulting from
splitting B ′ in u ≺ v′; note that b′ must eventually be derived from B or an equivalent
block later in π (C), within the interval (since u ≺ v′ belongs to the same interval).
Before this happens, there will be a descent or swap ascent since this later step will
have a lexicographically smaller label than any step before it in the interval. This is
because the block B (or an equivalent block from which b′ is obtained) is at this point
sorted at least as far to the left as it would be when the bar is inserted in u ≺ v′. Thus,
the bar splitting off b′ must be to the left of the bar insertion immediately before it (and
thus there must be a descent) unless there is another step splitting B into two larger
pieces earlier in π (C) such that b′ comes from the right component in this split block.
In this case, there must either be a swap ascent in B immediately before b′ is split
off on its own, or there must be a descent if there are steps splitting B, then splitting
another block, then later splitting a block derived from B to create b′.

Case Ib: If B �= B ′, then eventually we will split B ′. At this point, either we break off the
smallest piece of B ′, just as in v′, yielding the smallest label so far in π (C) restricted to
the interval and thus a descent, or else the preceding B = B ′ argument may be applied
to the remainder of π (C) within the interval to obtain a topological descent at a higher
rank.

Case II: Now suppose u ≺ v′ has the same post-sort bar position as u ≺ v, but that their
labels differ in the words made up of post-sort bar positions in v and v′. Then B �= B ′

when we let B, B ′ be the blocks which are split in u ≺ v, u ≺ v′, respectively. Eventually,
a bar must be inserted in π (C) into a block which is equivalent to B ′ to create a smallest
possible piece b′, as above. Note that equivalent blocks in a saturated chain orbit must be
adjacent regardless of how they are split and sorted, by virtue of the underlying binary
tree of blocks. Therefore, when b′ is derived from B ′ later in π (C), sorting will still
move the new bar to the position it would have achieved in v′, unless B ′ is split into two
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larger pieces and then b′ is derived later from the larger of these. When we are not in this
special case, then the bar position word when b′ is created will be smaller than that for
u ≺ v, and the bar to the right of b′ is placed at least as far to the left as it would be in
u ≺ v′. Thus, π (C) must have a descent on the interval. In the special case where b′ is
derived from a descendent of B ′ which is not the leftmost descendent, there still will be
a swap ascent or a descent. The former must occur if one of the steps splitting B ′ occurs
immediately before b′ is split off. The latter must occur if B ′ is split, then some B not
descending from B ′ is split and then later B ′ is further refined.

Case III: Now suppose that the first two coordinates agree, but that the earliest distinct
ancestor of B ′ is split at an earlier rank than that of B. This means B and B ′ are not
equivalent. Hence, blocks of both types must be split in any saturated chain orbit in
the interval, yielding a descent or swap ascent in π (C) eventually, since the block B ′

is sorted to the left of B when it is split. If B ′ is split immediately after u ≺ v, then
there is a lexicographically smaller chain with these two steps reversed, i.e. a topological
descent. Otherwise, any intermediate steps will have larger labels, and the chain must
have a descent (or swap ascent) by similar reasoning to above. Thus, we have verified
the increasing chain condition in all cases.

Corollary 4.1 The quotient complex �(�n)/Sn has lexicographic shelling steps at all
facet insertions except those which violate the multiple-face overlap condition.

Next we describe precisely where the multiple-face-overlap condition fails.

Theorem 4.2 The above labelling also satisfies the multiple-face-overlap condition, ex-
cept in the case of certain facets with identical blocks created in consecutive steps from a
single parent.

Proof: We will show that the multiple-face-overlap condition holds assuming that the
two blocks to be identified have the same parent block. Suppose Fj ∩ Fk has two maximal
faces σ, τ such that σ is maximal in Fk ∩ (∪i<k Fi ) and τ has support including 1, . . . , r ′

where no face in Fj ∩ Fk has support 1, . . . , r ′ + 1. We need only check the condition if
σ has support 1, . . . , r, s, . . . , n for some s < r ′. We may also assume Fk consists entirely
of topological ascents on the interval from rank r to s. Otherwise, σ has codimension one,
and we would be done. Thus, the post-sort positions of the bars inserted within Fk from
rank r to s are increasing left to right. Let u be the element of rank r in Fk . Then the bars
inserted into any particular block of u between rank r and s are also arranged so that blocks
are nondecreasing in size from left to right.

Note that the splitting step between ranks r ′ and r ′ + 1 in Fj must not be equivalent to
the splitting step in Fk . However, when we restrict to σ , these steps become equivalent
relative to the chain σ . Thus, the blocks being split must have the same content. Let us call
these blocks B j and Bk , respectively. If B j and Bk are created in consecutive steps in the
interval of Fk from rank r to s, then we get a codimension one face belonging to Fj ∩ Fk

which contains σ . This face is obtained by skipping the step immediately after B j is created
and immediately before Bk , so that these are created in a single step from the same block.
If B j and Bk are not created consecutively in Fk but do have the same parent, then there
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is some block Bk−1 created immediately before Bk in Fk which is also equivalent to Bk

in σ . Consider the facet Fj ′ with j ′ < k which agrees with Fk except that the roles of Bk

and Bk−1 are reversed from rank r ′ onward. Fj ′ comes before Fk lexicographically because
the covering relations where they first differ share the same first two coordinates of their
label. Because Bk−1 was created earlier, the third component of the label is smaller for Fj ′ .
Since Bk−1 and Bk are created in consecutive steps in Fk in the interval skipped by σ , the
codimension one face creating Bk−1 and Bk in a single step in Fk will be in the intersection
Fk ∩ (

⋃
k ′<k Fk ′ ) and will contain σ , as desired.

Section 4 will discuss what to do when B j and Bk come from distinct parent blocks.
It will use a partitioning for real projective space and some generalizatinos to incorporate
non-shelling steps into the partitioning. First, we give an example of a face in �(�8)/S8)
whose link is RP2, implying for n ≥ 8 that �(�n)/Sn is not Cohen-Macaulay over ZZ/2ZZ,
and hence is not shellable. The above analysis helped us find this example.

Example 4.3 Consider the chain

12345678 < 1234|5678 < 1|234|5|678 < 1|2|34|5|6|78 < 1|2|3|4|5|6|7|8

in �8. Its S8-orbit is a face in �(�8)/S8 whose link is the real projective plane. To see this,
notice that the link has three vertices: one at rank 1, one at rank 3 and one at rank 5, and it
has 6 edges and 4 2-simplices, all arranged as RP2. This is essentially the same construction
used in Proposition 3.1 of [11] to study �(Blm)/Sl � Sm , so more detail may be found there.

Notice that our labelling never gives any chains consisting entirely of topological descents.
This is just as one would expect, given that b1,...,n−2(n) vanishes [9], [21] and that �(�n)/Sn

is collapsible [15].

5. Partitioning ∆(Πn)/Sn

Theorem 4.1 showed that the only way a non-shelling step Fj may arise is when the multiple-
face-overlap condition is violated. More specifically, Theorem 4.2 showed that the facet Fj

must at some rank refine a block which in the context of a face F ⊆ Fj is equivalent to a
block to its left. For example, consider the face of support 2, 4 within the facet shown in
figure 4.

13 14 153 11 1256 78 9 10
21

4

Figure 4. Facet involving two equivalent blocks.
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Definition 5.1 A partitioning of a pure boolean cell complex � is an assignment to
each facet Fi of one of its faces Gi , so that the boolean upper intervals [Gi , Fi ] give a
partitioning of the faces in the complex, i.e., so that � may be written as a disjoint union
[G1, F1] ∪ · · · ∪ [Gs, Fs].

A partitioning of a pure, balanced boolean cell complex � gives a combinatorial inter-
pretation for each flag h-vector coordinate hS(�) as the number of facets Fi whose minimal
face Gi has support S. In this section, we give a partitioning for �(�n)/Sn as follows. We
show how to partition subcomplexes of links of faces coming from progressively more gen-
eral classes of non-shelling steps. Then we use the topological ascents and descents of the
lexicographic order of Section 4 to extend and merge these link subcomplex partitionings
into a partitioning for �(�n)/Sn .

En route to a partitioning for �(�n)/Sn , Section 5.1 will give partitionings for sub-
complexes of certain links. For example, consider the link of the face τ of nsupport
2, 4, 6, 8, 10, 11, 12, 13, 14, 15 contained in the facet depicted in figure 4. This facet will
contribute to our partitioning an interval [G j , Fj ] with G j of support 2, 5, 9.

5.1. Partitioning subcomplexes of links arising in non-shelling steps

Consider the face F comprised of the following elements. First it has a partition into m
blocks of size k + 1 along with a single block of size l for some l > k + 1. Then, for each
1 ≤ j ≤ k, the chain includes a partition in which the block of size l is unrefined and each
of the other m blocks is split into j singletons and a single block of size k + 1 − j . Finally,
the chain includes a partition whose only nontrivial nontrivial block is the block of size l,
and a saturated chain upward from this rank which sequentially splits off singletons from
the lone nontrivial block. Let � denote the subcomplex of the link of F consisting of those
chains which initially insert from left to right the bars separating the m equivalent blocks.

The facets in � correspond to (k + 1)-tuples (σ0, . . . , σk) of permutations in Sm with the
identity as the first permutation. Requiring σ0 to equal the identity reflects our requirement
that the m equivalent blocks of size k + 1 be created by inserting bars from left to right.
The permutation σi ∈ Sm for i > 0 specifies the order in which bars are inserted into the
i-th slot in the m blocks. By i-th slot, we mean the bar position separating i objects to its
left from k + 1 − i objects to its right. For example, the facet in figure 4 has permutations
12, 12, 21, 21, 12 and the facet of figure 5 is given by permutations 123, 123 and 321.

Definition 5.2 We refer to the k positions into which bars may be inserted in the m blocks
as the slots, and we call the ranks at which one of the m blocks is refined slot ranks. Let

13 144 5 6 789 10 11 12
1 2 3

Figure 5. Facet with slot permutations 123, 123, 321.
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us refer to the m − 1 bars inserted left to right initially to separate the m equivalent blocks
as the splitters. We say that a face includes a splitter if it includes the rank at which that
splitter is inserted.

The facet given by k + 1 copies of the identity permutation will have the empty set as its
partitioning minimal face. For other facets, we are interested in finding minimal rank sets
needed to differentiate them from this “identity facet”.

Remark 5.1 The effect of including a splitter in a face is to distinguish blocks to its left
from blocks to its right. Including slot ranks from two different slots may record the fact that
two blocks are split in opposite order in the two slots. For example, ranks 8,16 in figure 7
show that blocks 1 and 2 are filled in opposite orders in the first and third slots.

Figure 5 gives an example of a facet which does not have the same face of support 1,8 as
the identity facet. Now let us specify how to assign minimal faces Gi to the facets Fi , using
the representation of facets as (k + 1)-tuples of permutations σ0, . . . , σk ∈ Sm .

Partitioning Construction 5.1. First we construct permutations π0, . . . , πk from a facet Fi .
Let πi+1 be the permutation in two-line notation which has σi (written in one-line notation)
as the first line and σi+1 (again in one-line notation) as the second line. The “wrap-around”
permutation π0 is obtained by using σk as the first line and σ0 as the second line. The minimal
face Gi associated to Fi consists of the ranks lm + j such that π−1

l ( j) > π−1
l ( j + 1).

Example 5.1 Letting k = 2, m = 10, figure 6 depicts the facet Fi given by permuta-
tions σ0 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, σ1 = 1, 2, 3, 7, 8, 9, 10, 4, 5, 6 and σ2 = 1, 2, 3, 9,

10, 4, 5, 6, 7, 8. The minimal face assigned to Fi has support 8, 17, 28.

To ensure that our assignment of minimal faces to facets gives a partitioning, we must
check (1) that every face belongs to some interval [Gi , Fi ] and (2) that no face is included

0th (splitter) slot
1 2 3 4 5 6 7 98 10

11 12

21

13

22 23

29 30

14 15 16 17

18 19 20

282726

2524

Splitter

2nd slot

1st slot

Figure 6. Facet with minimal face of support 8, 17, 28.
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Figure 7. Face representation and extension.

in two different intervals. To verify (1), we describe how to extend any face F to a facet Fi

whose minimal face Gi is contained in F .

Proposition 5.1 Every face F is contained in at least one interval [Gi , Fi ].

Proof: First let us choose a representation for F , i.e. a specification of which blocks
(among equivalent choices) to split to what extent at each slot rank in F . Figure 7 depicts
our choice for a face of support 2, 3, 8, 16, 19. By convention, we split blocks in a single
slot as follows. First, we split equivalent blocks from left to right in the last slot. At this
first step, two blocks are equivalent if there are no splitters separating them. Now split each
set of equivalent blocks in the penultimate slot from left to right. At this second step, two
blocks must also have been split at the same rank in the last slot in order to be equivalent.
Proceed in this fashion through all the slots in reverse order to obtain a representation of
F . Thus, F is encoded as a choice of which actual blocks are split at each slot rank of F ,
along with the list of which splitter ranks belong to F .

Now F is extended to a facet F̄ by refining the order in which bars are inserted as follows:
extend each interval between ranks in the first slot by splitting blocks from left to right. This
choice determines the permutation σ1. Similarly refine slot s + 1, but instead of extending
each interval from left to right, proceed in the order that is increasing with respect to the
permutation σs . This ensures that π−1

s will not have any descents on the intervals between
consecutive slot ranks. We may, however, have some descents in π−1

0 at ranks that are not
splitter ranks.

These ranks may be eliminated by modifying our face representation as follows. When-
ever π−1

0 has a descent at a rank that is not a splitter rank, this means there must be a slot
rank at which two consecutive blocks separated by this splitter cease to be equivalent. We
reverse the roles of these two blocks in our modified face representation. The effect is to
change the descent in π−1

0 to an ascent, and instead to have a descent at the slot rank where
the blocks cease to be equivalent. Now taking the increasing extension of this new face
representation yields a facet Fi such that the support of Gi is contained in the support of
F , implying F ∈ [Gi , Fi ]. A very similar argument, with more detail included, is used to
partition �(Blm)/Sl � Sm in [11].



246 HERSH

Example 5.2 Consider the link subcomplex � specified by the face listed at the top in
figure 7. Below this is our representation for a face F of support 2, 3, 8, 16, 19 in � and then
its extension to a facet Fi . We list the ranks at which bars are inserted, using slight variation
in height to distinguish different slots. Observe from the descents in π−1

0 , π−1
1 , π−1

2 that the
minimal face Gi has support 3, 8, 16, 19.

Next we check that each face is included only once in the partitioning.

Proposition 5.2 There is no overlap among the intervals [Gi , Fi ].

Proof: Each representation of a face F has a unique extension to a facet that avoids
descents between slot ranks in F . Only one of these representations will also avoid descents
from wrap-around at ranks that are not splitter ranks, making our choice unique. Thus, there
is only one extension of F to a facet Fj such that the support of F contains the support of
G j , as needed.

Question 5.1 Is the incidence matrix for this matching of minimal faces with facets
containing them nonsingular? If more generally this holds for a partitioning of �(�n)/Sn ,
then the partitioning will give a ring invariant basic set for k[�(�n)]Sn , by results of [8].

5.2. Partitioning subcomplexes of larger links

Next we generalize the partitioning of the previous section to allow for examples such as
the following:

Example 5.3 Let Fj , Fi ′ be the top and bottom facet in figure 8, respectively. Fj ∩
(
⋃

i< j Fi ) has a maximal face G of support 2, 6, 7, 8, 9, 10, 11, 12 since G ∈ Fi ′ Con-
sequently, Fj would need to contribute minimal faces of support {2, 3, 7}, {2, 4, 7} and
{2, 5, 7} in a lexicographic shelling. This is resolved in a partitioning by assigning the faces
of support {2, 3, 7} and {2, 5, 7} to lexicographically later facets.

Consider a face consisting of the following chain u1 < u2 ≺ u3 ≺ · · · ≺ ur of partitions.
Let u1 consist of m equivalent blocks of size k + 1 and one block of size l > k + 1. Let u2

have these m blocks refined to singletons and leave the block of size l unrefined. Finally,

vs.

4
1 2

5 78 63 9 10 11 12

1
83 4 5 67 9 10 11 12

2

Figure 8. Two facets intersecting in faces of codimension one and three.
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take a saturated chain u2 ≺ u3 ≺ · · · ≺ ur which at each stage splits off a singleton from its
unique nontrivial block. For example, take the face of support 2, 8, 9, 10, 11, 12 in either
facet of figure 8. Now we will consider the subcomplex of the link of such a face in which
we require that splitters be inserted strictly from left to right. Denote this subcomplex by �.

Each facet in � inserts splitters left to right, then refines the blocks B1, . . . , Bm en-
tirely. Our assignment of minimal faces G j to facets Fj will generalize the partitioning of
Section 5.1, but it will use a single evolving permutation to play the roles of the permuta-
tions σ0, . . . , σk and π0, . . . , πk . Denote by σ this new permutation which keeps track of
the order of our m blocks as they are progressively refined. We initialize σ to the identity
(so blocks are initially ordered left to right). Each time a block B is refined, B is shifted to
a later position in the evolving block order σ . Specifically, B is shifted to the last position
among blocks which are similar to B in the sense of the following interwoven definitions.

Definition 5.3 A series of consecutive covering relations u0 ≺ · · · ≺ ukm is called a
similarity series if there is some collection of blocks B1, . . . , Bm that are similar at u0 and
have each been split in the same fashion in the saturated chain from 0̂ to u0. We also require
for each 0 ≤ i < m that the covering relations uik ≺ · · · ≺ u(i+1)k split the block Bi+1 in a
fashion that avoids topological descents (and also avoid ranks that would be included in the
minimal face for a partitioning restricted to Bi+1). Furthermore, the blocks must be split in
identical fashion within a similarity series.

The requirement about avoiding ranks that would be included in a partitioning mini-
mal face is discussed more just prior to Theorem 5.1. By definition, similarity series’ are
non-overlapping.

Definition 5.4 Let us define similarity of blocks recursively as follows. When m consec-
utive ranks insert bars from left to right in a single block creating m left children of equal
size, these children are at this point all similar. A collection of blocks B1, . . . , Bt which are
similar at u will still be similar at v for u < v if every time any one of the blocks Bi appears
in the interval from u to v, it appears as part of a similarity series for B1, . . . , Bt (though
this similarity series might continue beyond v or begin prior to u).

Notice that a block Bi ∈ {B1, . . . , Bm} ceases to be similar to the other blocks when
two bars are inserted in consecutive steps in Bi as a topological descent. Similarity is also
broken at ranks which for some other reason are included in the minimal face assigned to
the facet restricted to Bi in the partitioning for the complex restricted to Bi .

As an example, each facet in figure 8 has two similar blocks at rank 2 which remain
similar at rank 6. This similarity would have been broken if bars were instead inserted from
right to left at ranks 3, 4 or 5, 6. Notice that when two similar blocks are split in identical
fashion, but there are intermediate steps splitting other blocks in other ways, then block
similarity is broken. Once Bi and B j cease to be similar, σ henceforth preserves the relative
order of Bi and B j .

At each refinement step, σ orders blocks within each similarity class according to the
order in which they have most recently been refined. The descents in σ−1

final determine which
splitters to include in the minimal face associated to a facet. At any particular rank, σ reflects
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the partial evolution based on block refinement up to this point. Now let us define what
it means for two consecutive refinements u ≺ v, v ≺ w to be increasing in the relative
transpose order.

Definition 5.5 Let us represent each of the km positions into which bars may be inserted
by a pair (B, s) consisting of the block B being split and the slot s within B. The relative
transpose order on bar positions (B, s) satisfies (B, s) < (B ′, s ′) if (1) s < s ′ or (2) s = s ′

and π (B) < π (B ′), evaluating π at u, i.e. just prior to both of the labels to be compared.

Descents in the relative transpose order indicate which ranks to include in assigning
minimal faces to facets in an analogous fashion to Section 5.1. As an example, the first facet
in figure 8 has a descent at rank 4 in the relative transpose order, but not at ranks 3 or 5,
leading us to assign the minimal face of support 1, 4, 7 to the first facet of figure 8.

When two bars are inserted in consecutive steps into a block Bi ∈ {B1, . . . , Bm}, we turn
to a partitioning for the quotient complex given by restriction to Bi to decide whether to
include the rank in the minimal face assigned to our facet. In particular, the rank is included
as topological descent unless the restriction gives a non-shelling step in the lexicographic
order on �(�|Bi |)/S|Bi |, in which case we turn to embedded instances of partitioning link
subcomplexes.

Theorem 5.1 The link subcomplex � defined in this section is partitionable.

Proof: The minimal face G j assigned to the facet Fj is obtained by restricting to the
following ranks of Fj .

• any slot rank separating consecutive bar insertions into distinct blocks Bi , B j ∈ {B1, . . . ,

Bm} which is a descent in the relative transpose order on bar positions.
• any slot rank separating consecutive bar insertions into a single block Bi ∈ {B1, . . . , Bm}

which would be included in the minimal face assigned to the facet restricted to �(�|Bi |)/
S|Bi | in the partitioning of the quotient complex �(�|Bi |)/S|Bi |.

• any splitter such that σ−1
final has a descent at the splitter location.

With these choices, the arguments of Section 5.1 generalize. Namely, each face F extends
by increasing chains in the relative transpose order to a unique facet Fi such that F ∈
[Gi , Fi ]. Begin by splitting the leftmost of equivalent blocks at each rank. Then extend to
a facet F̄ that is increasing in the relative transpose order on each interval, except perhaps
for descents from wrap-around. Next, permute the blocks in between consecutive splitters
included in F so that σfinal is increasing in between splitters. Now extend each interval in
the unique way that is increasing in the relative tranpose order to obtained the desired Fi

with the property that F ∈ [Gi , Fi ].

More generally, we will also need to account for non-shelling steps in which a set of
similar blocks is partially refined, then other blocks are refined before further refining the
set of equivalent blocks. Figure 9 gives an example of a face from such a non-shelling step.
Partitioning must accomodate any number of such alternations.
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7 7 7 77 168 151013 913 13 14

Figure 9. A face with nonconsecutive steps splitting equivalent blocks.

Remark 5.2 Partitioning link subcomplexes in which the similar blocks need not be
refined entirely in consecutive steps is done as in Theorem 5.1. That is, whenever, two
steps refining similar blocks are separated by a step refining an outside block B, there is a
topological descent either in departing from the collection of similar blocks or in returning
to it, because the similar blocks occur consecutively (as will be verified in Lemma 5.1).
This descent breaks the similarity of two blocks when one is refined before the refinement
of B and the other is refined afterwards. This is the only amendment to the argument of
Theorem 5.1 which is needed.

5.3. Extension to a partitioning for �(�n)/Sn

Let us now characterize all non-shelling steps and show how to merge the partitionings of
Section 5.2 into a partitioning for all of �(�n)/Sn . By Theorem 4.1, a non-shelling step
may only arise when skipping some minimal rank set i1, . . . , ik renders two blocks B, B ′

in a facet Fj equivalent, and the block B or B ′ which is farther to the right is split first by
Fj . By the increasing chain condition (cf. Theorem 4.1), the blocks B, B ′ must be created
within a sequence of consecutive refinement steps that create a set of identical blocks from
left to right from a single parent.

Lemma 5.1 Similar blocks are positioned consecutively.

Proof: Consecutiveness follows from the fact that the blocks must be created from a single
parent in consecutive steps with no topological descents; the one case requiring special care
is when the rightmost of similar blocks is larger than the other block created in the same
step, so then a smaller block comes in between m − 1 of the similar blocks and the last one,
but this gives a topological descent immediately before the bar splitting off the last of the
identical blocks, rendering this last block not equivalent to the others.

When the last two blocks created (in a single step) have equal size, then these two blocks
are not just similar, but actually equivalent. This implies that the bar between them cannot be
a splitter, in that the inclusion of this rank does not distinguish the two ranks. By convention,
we always must refine the left of these two equivalent blocks first, until their equivalence
is broken by the inclusion of a slot rank. When the last slot does not have this rightmost
block filled last, then this gives a descent in the inverse to the wraparound permutation. By
convention, we then include in the associated minimal face the rank in the first slot (rather
than the forbidden rightmost splitter in the 0-slot).

Because the set of m similar blocks appear consecutively, any two facets sharing a link of
the type considered in Section 5.2 will have the same topological descents among the ranks
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outside the link. This ensures that all faces in a particular link subcomplex will include
the same external ranks in their minimal faces both from descents and also from other
external partitionings. In conclusion, we get a partitioning for �(�n)/Sn , as confirmed
next.

Theorem 5.2 The quotient complex �(�n)/Sn is partitionable.

Proof: For each facet Fj which is inserted as a lexicographic shelling step as in Section
4, let G j be the face comprised of the topological descents in Fj . By Theorem 4.2, every
nonshelling step Fj has at least one series of consecutive bar insertions creating similar
blocks by inserting splitters from left to right. For each such collection of similar blocks,
use the partitioning of the link subcomplex with the appropriate m, k and with the partial
refinements that reflect alternation between refining the m blocks and the blocks outside
the segment (cf. Remark 5.2) to determine which ranks to include in G j among the ranks
belonging to the link.

Among the ranks of Fj not belonging to any such link subcomplex, include in G j the
topological descents according to the lexicographic order on facets given in Section 4. To
be sure this this assignment of minimal faces to facets gives a partitioning, we need the
fact that facets involved in the same link the same topological descents outside of the link.
This follows from the characterization of non-shelling steps, and in particular from the fact
that equivalent blocks must occur consecutively. Thus, any fixed bar insertion outside the
collection of equivalent blocks will either be to the right of all possible bar positions within
the collection of equivalent blocks or to the left of them all. Thus, the non-shelling steps
collectively contribute exactly the faces needed to complement the lexicographic shelling
steps. This follows because for any non-shelling step, all the minimal faces that first appear
lexicographically in it are obtained by taking a minimal face in the partitioning of a link
subcomplex, as in Section 5.2, and adding the ranks outside the link which are topological
descents or are chosen in another link subcomplex partitioning.

6. Obtaining the multiplicity of the trivial representation from a quotient complex
shelling or partitioning

Following [21], denote by αS(�n) the symmetric group action on chains with rank set S.
Let βS(�n) be the symmetric group representation on top homology of the rank-selected
partition lattice with ranks belonging to S. Information about the flag f -vector and flag
h-vector may be found (for instance) in [23]. Recall,

βS =
∑

T ⊆S

(−1)|S−T |αT

where βS is the induced representation on rank-restricted homology, since �n is Cohen-
Macaulay. Note that the multiplicity 〈αT , 1〉 of the trivial representation in αT (�n) is the
number of orbits in the induced representation on chains with rank set T , namely 〈αT , 1〉 =
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fT (�(�n)/Sn). This together with inner product linearity yields

〈βS, 1〉 =
∑

T ⊆S

(−1)|S−T |〈αT , 1〉

=
∑

T ⊆S

(−1)|S−T | fS(�(�n)/Sn)

= hS(�(�n)/Sn)

where hS is the term indexed by S in the flag h-vector for �(�n)/Sn . Recall that hS(�)
counts the minimal new faces colored by S in any shelling (or partitioning) for a balanced
boolean cell complex. Thus, a shelling yields an interpretation for the multiplicity 〈βS, 1〉
of the trivial representation in βS(�n). Furthermore, the collection of colors in the minimal
new face in a lexicographic shelling step is the collection of ranks where (topological)
descents occur in the facet being inserted.

The above discussion applies to any rank-preserving group action on any finite, ranked
Cohen-Macaulay poset with a shelling or partitioning. Thus, we also get an interpretation
for the multiplicity of the trivial representation in the S2 � Sn action on the homology of the
rank-selected boolean lattice B2n from our shelling for �(B2n)/S2 � Sn .

7. Predicting when bS(n) = 0

The partitioning for �(�n)/Sn yields a combinatorial interpretation for bS as the number of
facets with minimal new face colored by S in the partitioning for �(�n)/Sn . The following
appeared as Conjecture 4.11 in [1].

Conjecture 7.1 [1] The rank-selected quotient complex �(�S
n )/Sn is contractible if and

only if bS(n) = 0.

Notice that bS(n) > 0 if and only if the partitioning for �(�n)/Sn has a minimal face of
support S. A shelling for �(�n)/Sn would resolve the conjecture affirmatively.

Next, we recover a result of Hanlon [9] (see [15, 24] for proofs by other methods). Our
argument is included to give a concrete example of how the partitioning for �(�n)/Sn may
lead to results about 〈βS, 1〉. More extensive results of this nature, including the confirma-
tion of two conjecture from [24], have recently been developed in a joint project with Phil
Hanlon [10].

Our proof below resembles the one given by Kozlov in [15] in the sense that we both
show that h1,...,i (�(�n)/Sn) = 0 and use the fact that hS(�(�n)/Sn) = 〈βS, 1〉. However,
Kozlov’s proof is topological and ours is combinatorial. More specifically, Kozlov uses the
interpretation of hS(�) as the reduced Euler characteristic for �S , deducing that it is 0 from
the fact that �(�1,...,i

n )/Sn is collapsible. We instead use the fact that hS(�) counts boolean
intervals with minimal element of support S in a partitioning for �.

To show bS(n) = 0 for a particular S, we will show that S never occurs as a descent set
in a shelling step or as the support of the minimal new face assigned to some non-shelling
step. We work in terms of the dual poset to the partition lattice as considered in [9] and
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Figure 10. The impossibility of descent set {n − i − 1, n − i, . . . , n − 1}.

[21]. To account for this, we must replace each i ∈ S by n − i − 1. Thus, the next theorem
requires that we show there are no shelling steps that begin with entirely (topological)
ascents and then consist entirely of (topological) descents as soon as the first (topological)
descent occurs; we must also check a similar condition for the non-shelling steps.

Theorem 7.1 The multiplicity bS(n) of the trivial representation in βS is 0 for S =
{1, . . . , i} and 1 ≤ i ≤ n − 2.

Proof: First consider the facets that are inserted as shelling steps. Recall our convention
of placing bars as far to the left as possible at each step. A facet with descent set n − i −
1, n − i, . . . , n − 3, n − 2 could only come from initially inserting bars left to right creating
blocks nondecreasing in size; after this, we would need to completely refine the rightmost
block using only topological descents and then proceed similarly through the remaining
blocks from right to left. If the initial insertion of bars left to right created any blocks of
size greater than 2, it would be impossible to later refine such a block with only topological
descents. Thus, we may assume bars are initially placed left to right creating blocks entirely
of size 1 followed by blocks entirely of size 2, as in figure 10. However, notice that the two
rightmost blocks of size 2 will be equivalent to each other, which means the left one must
be split first. This necessitates the existence of a (topological) ascent at some point after the
first (topological) descent, as in figure 10, so we are done with the shelling steps.

The non-shelling steps all have support including ranks other than only the final string
by virtue of creating equivalent blocks to be partitioned from left to right. A descent is
necessitated by the insertion of a bar creating the rightmost of the equivalent blocks farther
to the right than bars to be inserted within the equivalent blocks; there will be an ascent
at some point after this descent since the partitionings of link subcomplexes cannot have
facets with minimal faces of full support.

8. An application to sub-rings of invariant polynomials

Let us review notation from [8] needed to state a theorem of Garsia and Stanton (which
appears as Theorem 6.2 in [8] and is restated as Theorem 8.1 below). Let C be a balanced
boolean cell complex consisting of vertices x1, . . . , xn , ordered in a way that is compatible
with their colors; that is, we choose a vertex order such that xi is colored with a smaller
number than x j for all 1 ≤ i < j ≤ n. If c is a face of C consisting of vertices xi1 , . . . , xik ,
then denote by x(c) the monomial xi1 · · · xik . When a group H acts on C , let

RH (x(c)) = 1

|H |
∑

h∈H

hx(c) = 1

|H |
∑

h∈H

x(hc).
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Let θi = ∑
c(v)=i x(v), a sum over vertices in C of color i . A set of chain monomials

{x(b)|b ∈ B} given by a collection B of chains in a poset P is called a basic set if every
element Q of the Stanley-Reisner ring RP has a unique expression

Q =
∑

b∈B

x(b)Qb(θ1, . . . , θd )

where the coefficients Qb(θ1, . . . , θd ) are polynomials with rational coefficients in the vari-
ables θ1, . . . , θd . All Cohen-Macaulay posets have such basic sets, and [8] shows how a
quotient complex shelling gives an explicit basic set.

Theorem 8.1 [8] If C/H has a shelling F1, . . . , Fk where R(Fi ) is the minimal new face
in Fi and bi is a representative within C of the orbit of R(Fi ), then the orbit polynomials
RH x(bi ) form a basic set for RH RP .

Thus, our lexicographic shelling for �(B2n)/S2 � Sn yields a ring invariant basic set.
A simple description of which descent sets occur in the lexicographic shelling would be
desirable since it would yield a nice description of these ring invariant basic sets, according
to Theorem 8.1. It would also be interesting to determine whether the incidence matrix
given by our partitioning for �(�n)/Sn is nonsingular, since that would imply a basic set
for k[�(�n)]Sn , by another result of [8].

Stanley showed in [20] that the face ring of a Cohen-Macaulay simplicial poset is a
Cohen-Macaulay ring. According to Proposition 1.2, our shelling for �(B2n)/S2 � Sn im-
plies that the face ring k[�(B2n)/S2 � Sn] is Cohen-Macaulay (over the integers). However,
Reiner constructed an isomorphism in [19] between the face ring k[�(P)/G] and the ring
of invariants k[�(P)]G . Reiner’s result allows us to conclude that the invariant subring
k[B2n]S2�Sn is Cohen-Macaulay over the integers.

Furthermore, Reiner showed that in the case of quotients of the Boolean algebra by a
permutation subgroup G of Sn , the invariant subring of the polynomial ring k[x1, . . . , xn]
under the action of G is Cohen-Macaulay over R whenever the same is true for the invariant
subring R[Bn]G of the Boolean algebra’s face ring over R; this appears as an appendix by
Reiner in [11]. Since S2 � Sn is such a permutation subgroup of S2n , we may conclude the
following from our shelling for �(B2n)/S2 � Sn .

Theorem 8.2 The subring of invariant polynomials k[x1, . . . , x2n]S2�Sn is Cohen-Macaulay
for any field k.

When k is the field of complex numbers, this is a special case of a result from [13], but
the shelling gives the Cohen-Macaulay property also for fields of finite characteristic, or
equivalently for integer coefficients.
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