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Abstract. Schubert polynomials were introduced in the context of the geometry of flag varieties. This paper
investigates some of the connections not yet understood between several combinatorial structures for the construc-
tion of Schubert polynomials; we also present simplifications in some of the existing approaches to this area. We
designate certain line diagrams for permutations known as rc-graphs as the main structure. The other structures in
the literature we study include: semistandard Young tableaux, Kohnert diagrams, and balanced labelings of the di-
agram of a permutation. The main tools in our investigation are certain operations on rc-graphs, which correspond
to the coplactic operations on tableaux, and thus define a crystal graph structure on rc-graphs; a new definition of
these operations is presented. One application of these operations is a straightforward, purely combinatorial proof
of a recent formula (due to Buch, Kresch, Tamvakis, and Yong), which expresses Schubert polynomials in terms
of products of Schur polynomials. In spite of the fact that it refers to many objects and results related to them, the
paper is mostly self-contained.
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1. Introduction

Schubert polynomials are relevant to the geometry of flag varieties, and their study leads to
some subtle combinatorics, generalizing the combinatorics of semistandard Young tableaux
(SSYT) related to Schur polynomials (which are special cases). Schubert polynomials were
defined and investigated by Lascoux and Schützenberger in a series of papers, including [14,
22–26]. The combinatorics related to Schubert polynomials attracted the interest of many
people in algebraic combinatorics (see the references). Several combinatorial constructions
of Schubert polynomials appeared in the literature in the last decade, together with many
generalizations of them (such as generalizations to other Lie groups, to the K -theory and the
quantum cohomology of flag varieties etc.). While all these generalizations appeared, the
connections between the existing structures for the construction of Schubert polynomials
themselves were not fully understood. In this paper we attempt to elucidate some of the
connections not yet understood, and to present simplifications in some of the existing
approaches to this area.

∗Most of this work was done while the author was supported by Max-Planck-Institut für Mathematik.
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We start with a brief introduction to the theory of Schubert polynomials; for more in-
formation, we refer the reader to [13, 31, 32]. Let Fln be the variety of complete flags
(0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ Vn = Cn) in Cn . This is an irreducible algebraic va-
riety of complex dimension ( n

2 ). Its integral cohomology ring H∗(Fln) is isomorphic to
Z[x1, . . . , xn]/In , where In is the ideal generated by symmetric polynomials in x1, . . . , xn

with constant term 0; the elements xi are identified here with the Chern classes of the dual
line bundles L∗

i , where Li := Vi/Vi−1 are tautological line bundles. The variety Fln is a
disjoint union of cells indexed by permutations w in the symmetric group Sn . Their closures
are the Schubert varieties Xw, of complex dimension l(w); here l(w) denotes the length
of w, that is, the number of its inversions. The Schubert polynomial Sw(X ) (defined be-
low) is a certain polynomial representative for the cohomology class corresponding to Xw.
It is a homogeneous polynomial in x1, . . . , xn−1 of degree l(w) with nonnegative integer
coefficients.

Note that the above structure theorem for H∗(Fln) holds, more generally, for flag bundles
Fl(V ) corresponding to a vector bundle V of finite rank n on a variety X . In this case,
H∗(Fl(V )) is a free module over H∗(X ) with basis given by Schubert polynomials.

The construction of Schubert polynomials is based on divided difference operators ∂i ,
which were originally introduced in the context of generalized flag varieties [4, 19]. As
operators on Z[x1, x2, . . .], these are defined as follows:

∂i := 1 − si

xi − xi+1
; (1.1)

here si is the adjacent transposition ti,i+1 acting in the obvious way on the polynomial
algebra, 1 is the identity on this algebra, and xi denotes multiplication by this variable.

Schubert polynomials are defined inductively for each w in Sn by setting Swn
0
(X ) :=

xn−1
1 xn−2

2 . . . xn−1 for wn
0 := n(n − 1) . . . 1 the longest permutation in Sn (we use the

one-line notation for permutations throughout, unless otherwise specified), and by letting

Swsi (X ) := ∂i (Sw(X )), if l(wsi ) = l(w) − 1 . (1.2)

The definition of Schubert polynomials does not depend on the chosen chain in the weak
order on Sn from wn

0 to w because the operators ∂i satisfy the braid relations

∂i∂ j = ∂ j∂i if |i − j | ≥ 2 ,

∂i∂i+1∂i = ∂i+1∂i∂i+1 .

In addition, we have ∂2
i = 0. Also note that Schubert polynomials have a stability property,

in the sense that their definition does not depend on n; this allows one to define them for w

in S∞ := ⋃
n Sn , where Sn ↪→ Sn+1 is the usual inclusion. In fact, the Schubert polynomials

Sw(X ) for w in S∞ form a basis of Z[x1, x2, . . .].
As we mentioned above, there are several combinatorial constructions of Schubert poly-

nomials. We designate certain line diagrams for permutations introduced in [11] and called
rc-graphs in [2] (see Section 2) as the main combinatorial structure for the construction of
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Schubert polynomials. The other structures in the literature we study include: semistandard
Young tableaux [14, 25, 26, 34] (Sections 3.5), Kohnert diagrams [18, 36, 37] (Section 6),
and balanced labelings of the diagram of a permutation [10] (Section 7). We do not men-
tion here the construction of Schubert polynomials in terms of certain increasing labeled
chains in Bruhat order on the symmetric group [3]; the connection between these chains
and rc-graphs is explored in [27]. The main tools in our investigation are certain operations
on rc-graphs, which correspond to the coplactic operations on tableaux, and thus define a
crystal graph structure on rc-graphs. A new definition of these operations is presented, and
their properties are studied in Section 3. Among the several applications of these operations
is a straightforward, purely combinatorial proof (in Section 5) of a recent formula [7], which
expresses Schubert polynomials in terms of products of Schur polynomials.

2. RC-graphs

RC-graphs are combinatorial objects associated to permutations w = w1 . . . wn in the
symmetric group Sn . We let n and w be fixed throughout, unless otherwise specified. RC-
graphs can be defined as certain subsets of

{(i, j) ∈ Z>0 × Z>0 : i + j ≤ n} .

Given an arbitrary such subset of pairs R, we can define a linear order on it by setting

(i, j) ≤ (i ′, j ′) ⇔ (i < i ′) or (i = i ′ and j ≥ j ′) . (2.1)

Let (ik, jk) be the kth pair in this linear order, and let ak := ik + jk − 1. Consider the
sequences (words)

red(R) := a1a2 . . . , comp(R) := i1i2 . . . .

We call R an rc-graph associated to w if red(R) is a reduced word for w; in this case,
comp(R) is called a compatible sequence with red(R). We denote the collection of rc-
graphs associated to a permutation w by R(w), and the permutation corresponding to a
given rc-graph R by w(R).

An alternative way to define R(w) is to consider all reduced words a1 . . . al(w) for w,
and for each such word to consider all weakly increasing sequences i1 . . . il(w) of positive
integers satisfying the “compatibility” conditions:

ak < ak+1 implies ik < ik+1 for all 1 ≤ k < l(w) ; (2.2)

ik ≤ ak for all 1 ≤ k ≤ l(w). (2.3)

Note that some reduced words may have no compatible sequences associated to them.
We can represent an rc-graph R graphically as a planar history of the inversions of w (see

Example 2.5). To this end, we draw n lines going up and to the right, such that the i th line
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starts at position (i, 1) and ends at position (1, wi ); here the positions are numbered as in
a matrix, whence the first index is the row index, and the second one is the column index.
The rule for constructing the line diagram is the following: two lines meeting at position
(i, j) cross if (i, j) is in R; otherwise, they avoid each other at that position. Throughout
this paper, we will use interchangeably the three representations of an rc-graph mentioned
above (that is, as a subset of Z>0 × Z>0, as a pair of a reduced word and a compatible
sequence, and as a line diagram).

Given an rc-graph R, we define

x R :=
∏

(i, j)∈R

xi .

According to [2, 6, 11, 12, 23], the Schubert polynomial Sw(X ) indexed by w can be
expressed as

Sw(X ) =
∑

R∈R(w)

x R . (2.4)

Note that this formula was recently recovered in [15] in the algebraic and geometric context
of determinantal ideals specified by rank conditions, based on the combinatorics of initial
ideals for certain natural term orders.

Bergeron and Billey [2] defined certain moves on rc-graphs, which they called ladder
and chute moves. These are the moves Li j and Ci j of the following type:

Note that Li j moves the cross in position (i, j) to some position (i − m, j + 1); we will
denote it by (i, j) → (i − m, j + 1).

Recall that a permutation w is determined by its code, denoted code(w), which is the
sequence (c1, . . . , cn−1) defined by ci = |{ j : j > i and w j < wi }|. Let us also recall the
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rc-graphs Rbot(w) and Rtop(w) defined by

Rbot(w) := {(i, j) : j ≤ ci (w)} , Rtop(w) := {(i, j) : i ≤ c j (w−1)} .

Bergeron and Billey showed that R(w) is the transitive closure of {Rbot(w)} under ladder
moves Li j which move the rightmost cross in a row (i.e., (i, l) is not in the rc-graph to which
Li j is applied if l > j); we call these moves, simply, L-moves. There is a dual property,
namely that R(w) is the transitive closure of {Rtop(w)} under chute moves Ci j which move
the bottom cross in a row (i.e., (k, j) is not in the rc-graph to which Ci j is applied if
k > i).

Example 2.5 Here are two rc-graphs associated to the permutation w = 215463; the first
is just Rbot(w).

It is useful to have a standard way of constructing a given rc-graph R for w from Rbot(w)
via L-moves. This can be done by applying the algorithm below, based on the Proposition
following it.

Algorithm 2.6

set R′ := Rbot(w);
for i from 1 to n − 1 do

for j from n − i downto 1 do
if (i, j) ∈ R \ R′ then

find the position (k, l) where the lines of R′ avoiding each other at (i, j) cross;
set R′ := R′ ∪ {(i, j)} \ {(k, l)};

fi;
od;

od.
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Proposition 2.7 In the above algorithm, each cross in position (k, l) is moved into position
(i, j) by a sequence of L-moves.

Proof: Assume that the assertion is true for all previous moves. This implies that all
crosses are left justified in the part of the rc-graph consisting of positions (p, q) > (i, j) in
the order (2.1), that is, the unshaded region in the figure below.

It is not hard to check, based on this observation, that the two lines avoiding each other at
position (i, j) must follow a route of the form indicated in the figure above. Furthermore,
there are no crosses to the right of the positions (p, q) > (i, j) where the two lines avoid
each other (if any). �

Example 2.8 The standard sequence of L-moves for the second rc-graph in Example 2.5
is (4, 1) → (2, 2), (2, 2) → (1, 3), (3, 2) → (2, 3), (5, 1) → (4, 2), (4, 2) → (3, 3).

The main feature of this construction is that the sequence of “final” positions of the
crosses which are moved is increasing in the order defined in (2.1). We can use this idea
to improve the algorithm of Bergeron and Billey based on L-moves, by constructing R(w)
such that each rc-graph is obtained precisely once. This procedure can be illustrated by
constructing a tree whose root corresponds to Rbot(w), and whose edges correspond to
applying L-moves. For each rc-graph R (corresponding to a given vertex in the tree), we
use the variable last(R) to record the position of the last cross moved to a “final” position.
We also use the variable current(R) to record the position of the last moved cross, possibly
to a “temporary” position. This cross might or might not be moved by a subsequent L-move;
if it is not moved, then it becomes the last cross moved to a “final” position. For Rbot(w),
these two variables are undefined. We can now describe the branching rule at an rc-graph
R in our tree; the order on pairs used is the one defined in (2.1).

Algorithm 2.9
for all L-moves P → Q in R do

if P = current(R) then
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if last(R) is undefined or Q > last(R) then
construct R′ by applying the move P → Q to R;
let current(R′) := Q, last(R′) := last(R);

fi;
else

if current(R) is defined then
if Q > current(R) then

construct R′ by applying the move P → Q to R;
let current(R′) := Q, last(R′) := current(R);

fi;
else

construct R′ by applying the move P → Q to R;
let current(R′) := Q;

fi;
fi;

od.

We believe this algorithm to be the most efficient one for constructing R(w) for w in
Sn . Its complexity is clearly O(nc), where c is the cardinality of R(w). Other algorithms
for constructing R(w), and thus the multiset of monomials in Sw(X ), appeared in [27] and
[33]. As discussed in [27], their complexity is O(nlc), where l := l(wn

0 ) − l(w) = ( n
2 )

− l(w).

3. Double crystal graphs

In this section we study in more detail the double crystal graphs introduced in [14], with
an eye towards applications to the theory of Schubert polynomials; the results are then
used in Sections 4–6. More precisely, we study the main properties of the generalizations
of the coplactic operations on words to biwords in the cases of both the plactic and the
nilplactic monoid. We present a simple way of deducing these properties from those of
the classical coplactic operations. The nilplactic case is then easily reduced to the plac-
tic one via the plactification map defined in [35]. The main feature of our approach, as
opposed to the one in [14], is that it is centered around the concept of rc-graph (for in-
stance, we define coplactic operations directly on rc-graphs via r -pairing of crosses in two
consecutive rows). Indeed, the construction of Schubert polynomials in terms of rc-graphs
(2.4) is mentioned as a corollary in the above paper, whereas, for us, it is the starting
point.

We start by recalling the setup, and we refer to [8, 13, 14, 30] for more details, including the
standard facts about the combinatorics of Young tableaux. This combinatorics is underlied
by the plactic monoid, which is the monoid of words on a given alphabet modulo the Knuth
(or plactic) equivalence; this, in turn, is the transitive closure of the relations

. . . ik j . . . ∼K . . . ki j . . . for i ≤ j < k
(3.1)

. . . j ik . . . ∼K . . . jki . . . for i < j ≤ k .
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Let X and Y be two totally ordered alphabets; for convenience, we take X = Y := Z>0.
We consider biwords, that is, two-rowed arrays

w :=
(u

v

)
=

(
u1 . . . uk

v1 . . . vk

)
with ui in X and v j in Y . Recall that w is said to be in lexicographic order if its biletters
( ui

vi
) satisfy

(ui < ui+1) or (ui = ui+1 and vi ≤ vi+1) for i = 1, . . . , k − 1 .

On the other hand, w is said to be in antilexicographic order if its biletters satisfy

(ui > ui+1) or (ui = ui+1 and vi ≤ vi+1) for i = 1, . . . , k − 1 .

Given a biword w = ( u
v
), we let wrev := ( urev

vrev ) be the biword obtained by considering the
corresponding reverse words. Furthermore, we let w′ = ( v′

u′ ) be the unique biword obtained
by rearranging the biletters of ( v

u ) such that (w′)rev is in lexicographic order. From now on, we
will only consider words with no two identical biletters, so the corresponding lexicographic
and antilexicographic orders are strict.

Given a biword w = ( u
v
) with wrev in antilexicographic order, we can associate with it a

pair of SSYT of conjugate shapes (P(w), Q(w)); here P(w) is obtained by applying Schen-
sted insertion to the word v, while Q(w) is obtained by conjugate placing the corresponding
letters of u. This is a variation of the Robinson-Schensted-Knuth (RSK) correspondence,
which sets up a bijection between matrices of zeros and ones of finite support and pairs
of SSYT of conjugate shapes. On the other hand, we can associate a similar pair of SSYT
to w′, denoted by (P(w′), Q(w′)), with the only exception that Q(w′) is obtained by con-
jugate sliding the corresponding entries of v′. According to the symmetry property of the
mentioned variation of the RSK correspondence, we have that

P(w) = Q(w′) and P(w′) = Q(w) . (3.2)

For more information on the above constructions we refer to [13] Appendix A.4.3.
The concepts of left and right strings for biwords in lexicographic order were defined in

[14]; hence, we have the corresponding generalizations to biwords of the coplactic opera-
tions on words, which we denote by e−

r , f −
r , and e+

r , f +
r . We now define these operations

on biwords w = ( u
v
) with wrev in antilexicographic order. Write the word u in the form

1l1 . . . plp , where i l is the word with l letters equal to i , and v in the form col1(w) . . . colp(w),
where coli (w) are strictly decreasing sequences (columns) of lengths li . Given a pair of
columns (u, v), we can apply jeu de taquin or inverse jeu de taquin to produce two different
pairs of columns, which are denoted by jdt(u, v) and jdt−1(u, v), respectively (see below).
With this in mind, we define

e+
r (w) :=

(
u ↑
v↑

)
, f +

r (w) :=
(

u ↓
v↓

)
,
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where

u ↑ := 1l1 . . . rlr +1(r + 1)lr+1−1 . . . plp , u ↓:= 1l1 . . . rlr −1(r + 1)lr+1+1 . . . plp ,

and

v↑: = col1(w) . . . jdt(colr (w), colr+1(w)) . . . colp(w),

v↓: = col1(w) . . . jdt−1(colr (w), colr+1(w)) . . . colp(w).

Let us now define precisely what we mean by jeu de taquin and inverse jeu de taquin on
two columns

u := (us > us−1 > · · · > u1) and v := (vt > vt−1 > · · · > v1) .

We place the two columns side by side, in a skew tableau denoted T (u, v), such that
there is a maximum overlap between them. In other words, we find the unique i with
max(0, t − s) ≤ i ≤ t such that the following two conditions are satisfied (see the figure
below):

(1) u j ≤ vi+ j for 1 ≤ j ≤ t − i ;
(2) if i > max(0, t − s), then uk > vi+k−1 for some k with 1 ≤ k ≤ t − i + 1.

If i = 0, then we define jdt(u, v) := ∅, and if i = t − s, then we define jdt−1(u, v) := ∅. If
such a situation occurs, the result of applying e+

r or f +
r is defined to be the empty biword

∅.

Example 3.3 Here is an example of jeu de taquin on two columns.

The following result is implicitly used in [14].
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Lemma 3.4 There is at most one pair of columns of lengths s + 1 and t − 1 in the plactic
class of the word uv (the concatenation of u and v). If such a pair exists, then it is precisely
jdt(u, v). Similarly for jdt−1(u, v).

Proof: It is well-known (see e.g. Corollary 2 on p. 62 in [13]) that the number of skew
tableaux of a fixed shape in the plactic class of a given SSYT T ∗ depends only on the shape
of that tableau. Furthermore, this number is a Littlewood-Richardson coefficient; thus, we
get the same number if we transpose all tableaux involved. Now assume that jdt(u, v) �= ∅.
By jeu de taquin, T (u, v) is in the plactic class of a tableau of shape (s + i, t − i)T with
i > 0. Now let T ∗ := U (s + i, t − i), where U (λ) denotes the tableau of shape λ with
all entries in row i equal to i . It is easy to check that there is a unique skew tableau of
shape (s + t, t − 1)/(t − 1) in the plactic class of T ∗; indeed, all the entries in its first row
must be equal to 1. The case jdt(u, v) = ∅ is obvious. Hence the Lemma follows. A similar
reasoning works for the second part of the Lemma. �

Let us now recall the definition of e−
r and f −

r on biwords. In fact, this works for any
biword w, so no assumption on the order of the biletters of w is needed. We simply set

e−
r (w) :=

(
u

er (v)

)
, f −

r (w) :=
(

u

fr (v)

)
,

where er and fr are the usual coplactic operations on words, whose definition is based on
the concept of r-pairing. If er (v) = ∅ (resp. fr (v) = ∅), then we set e−

r (w) := ∅ (resp.
f −
r (w) := ∅).
Recall that the r -pairing of a word u is just a set of indexed pairs (called r -pairs) (ui , u j )

such that i < j , ui = r + 1, and u j = r . View each r + 1 (resp. r ) as a left (resp.
right) paranthesis, ignoring the other letters of u. The r -pairs of u are precisely the matched
parantheses. The subword of unpaired r ’s and r + 1’s is necessarily of the form r s(r + 1)t .
Define er (u) to be the word obtained by changing the leftmost unpaired r + 1 to r if t > 0;
otherwise, define it to be the empty word ∅. Similarly, fr (u) is defined by changing the
rightmost unpaired r to r + 1 if s > 0. The operations fr define a directed graph � on
words in X∗, whose edges are the ordered pairs (u, fr (u)), for fr (u) �= ∅; this is known as
a crystal graph.

Remark 3.5 Consider an arbitrary word u, and denote by ū its subword consisting of letters
r, r + 1. It is easy to check that there is at most one word u ↑ obtained from u by changing
precisely one letter r + 1 to r such that Q(u ↑) = Q(ū). If such a word exists, then it is
precisely er (u). Similarly for fr (u).

Let us also recall at this point the operation σr , where σr (u) is defined by replacing the
subword r s(r + 1)t with r t (r + 1)s . This gives an action of the symmetric group on words.
The main properties of the operations er , fr , σr are summarized below.

Theorem 3.6 ([21, 30]) Let h denote anyone of the operations er , fr , σr .
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(1) Let u the the row (resp. column) word of a skew tableau T . Then h(u) is the row (resp.
column) word of a skew tableau of the same shape; this will be denoted by h(T ).

(2) Let u and v be congruent words in the plactic monoid. Then h(u) is congruent to h(v).
In particular, P(h(u)) = h(P(u)).

(3) Let u be a word, and assume that h(u) �= ∅. Then Q(h(u)) = Q(u).
(4) The connected components of � are the coplactic classes in X∗. Two coplactic classes

are isomorphic as subgraphs of � if and only if they are indexed by standard tableaux
of the same shape.

Remarks 3.7 (1) The first property implies that if w or wrev are in lexicographic or antilex-
icographic order, the same is true for e−

r (w) and f −
r (w) (assuming they are nonempty).

(2) Clearly, we have

e+
r (w) = w̃ if and only if f +

r (w̃) = w,

and similarly for e−
r , f −

r .

We now present the relationship between the operations e−
r , f −

r on the one hand, and
e+

r , f +
r , on the other hand. This is mentioned in [14] in a slightly different context (of row

words, rather than column words). The author argues that the symmetry in the two alphabets
X and Y allows one to exchange the left and right strings. We make this argument explicit
in the case of column words.

Proposition 3.8 For any biword w with wrev in antilexicographic order, we have

e−
r (w′) = (e+

r (w))′,

and similarly for f −
r , f +

r .

Proof: Consider a biword w = ( u
v
) and its subword, denoted w̄, consisting of biletters

with top component equal to r or r + 1. Denote w̄ := ( ū
v̄
) and w̄′ := ( v̄′

ū′ ). Given a standard
tableau T with n entries and a word v = v1 . . . vn , we denote by evac(T ) the evacuation of
T , and by subs(v, T ) the array obtained by replacing each entry i in T by vi .

Assume that e−
r (w′) �= ∅, and let w̃ be the biword with w̃rev in antilexicographic order

satisfying w̃′ = e−
r (w̄′). According to (3.2) and Theorem 3.6 (3), we have

P(w̃) = Q(e−
r (w̄′)) = subs(v̄′, evac(QT (er (ū′))))

= subs(v̄′, evac(QT (ū′))) = Q(w̄′) = P(w̄) .

By Lemma 3.4, it follows that w̃ = e+
r (w̄), and thus the desired identity is proved. The

only thing we still need to prove is that e+
r (w) �= ∅ implies e−

r (w′) �= ∅. This follows using
similar ideas, except that we need Remark 3.5 instead of Lemma 3.4. �
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It turns out that it is convenient to identify in the obvious way a biword w = ( u
v
) for

which wrev is in antilexicographic order with a finite subset D of Z>0 × Z>0 (each biletter
( ui

vi
) corresponds to a pair (ui , vi )); this is called a diagram, and its elements are called cells.

We also write u = row(D) and v = col(D). Note that biwords are usually identified with
(0,1)-matrices of finite support, which is essentially the same thing, although our approach is
slightly more convenient. On the other hand, the matrix representation is sometimes useful,
so we will use all the above representations interchangeably.

It is not hard to see that upon the above identification, we can define operations er and fr

on a diagram D such that (er (D))′ = e−
r (D′), and similarly for fr . Indeed, given a diagram

D, we scan its cells in rows r and r + 1 columnwise from left to right and from top to
bottom. We mark every cell in row r (resp. r + 1) as a left (resp. right) paranthesis, and
match parantheses as usual. We define er (D) to be the diagram obtained by moving the
rightmost unpaired cell in row r + 1 up by one position, if such a cell exists; otherwise, we
define it to be the empty diagram ∅. Similarly, we define fr (D) to be the diagram obtained
by moving the leftmost unpaired cell in row r down by one position, if such a cell exists;
otherwise, we define it to be the empty diagram. Furthermore, we can also define σr (D) in
the obvious way. Note that we can now restate the identity in Proposition 3.8 simply as

e+
r (D) = er (D), (3.9)

and similarly for fr .

Example 3.10 Here is an example of r -pairing on two successive rows of a diagram. The
cells indicated with the same symbol except those marked with a circle are r -paired. The
moves corresponding to the operations er and fr are indicated by arrows.

We now list the properties of the operations er and fr on diagrams. Also note that they
define a directed graph �̂ on the set of all diagrams.

Theorem 3.11 Let h denote anyone of the operations er , fr , σr , and let D be a diagram.
(1) Assuming that h(D) �= ∅, we have P(h(D)) = P(D).
(2) We have that Q(h(D)) = h(Q(D)).
(3) The connected components of �̂ consist of all the diagrams with a fixed P-tableau. Two

such components are isomorphic if and only if they are indexed by SSYT of the same
shape.
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Proof: The first property follows immediately from (3.9). The second property follows
by combining (3.2) and Theorem 3.6 (2). The third property follows from the previous ones
and Theorem 3.6 (4). �

We now turn to the case of the nilplactic monoid, defined by the Coxeter-Knuth (or
nilplactic) equivalence on reduced words for a permutation; this is the transitive closure of
the relations

. . . ik j . . . ∼C K . . . ki j . . .

. . . j ik . . . ∼C K . . . jki . . .

. . . i(i + 1)i . . . ∼C K . . . (i + 1)i(i + 1) . . .

where i < j < k. We again consider biwords w = ( u
v
) with wrev in antilexicographic

order, but now, throughout the remaining part of this section, v is a reduced word (for
some permutation). We can again associate with w a pair of SSYT of conjugate shapes
(P̃(w), Q̃(w)), with the only difference that P̃(w) is obtained by applying the Edelman-
Greene insertion procedure [8] to v. Recall that, in a similar way to Knuth equivalence, two
reduced words are Coxeter-Knuth equivalent if and only if they have the same Edelman-
Greene insertion tableau. As mentioned in [14], we can define the operations ẽ+

r and f̃ +
r by

using nilplactic jeu de taquin on two columns (denoted by j̃dt) and its inverse (denoted by

j̃dt
−1

). However, due to the lack of symmetry for the current type of biwords, the only way to
define an analog of the operations e−

r and f −
r is via an analog of the diagram representation

of a biword. The corresponding construction below is new.
We will identify the biword w = ( u

v
) = ( u1...uk

v1...vk
) considered above with a line diagram

R similar to an rc-graph, which we call stable rc-graph (for reasons having to do with
the theory of stable Schubert polynomials, also known as Stanley symmetric functions,
cf. e.g. [12, 32]). We construct this as follows. Let m be the last (largest) entry of u,
and let n − 1 be the largest entry of v (thus, v is a reduced word for some permutation
π1 . . . πn in Sn). The stable rc-graph R will be the subset of [m] × [n + m] consisting of
the pairs (ui , vi + m − ui + 1), called crosses, which correspond to the biletters ( ui

vi
) of

w (we let [n] := {1, . . . , n} throughout this paper). This construction is best understood
by considering the corresponding graphical representation, which is similar to that of an
rc-graph. We draw n lines going up and to the right, such that the i th line starts at position
(m, i) and ends at position (1, πi + m); as for rc-graphs, we use the matrix numbering of
the positions. The rule for constructing the line diagram is the same as for rc-graphs (see
the previous section). Given R identified with w = ( u

v
), we use the notation scomp(R) for

u, and red(R) for v. We call the former a semicompatible sequence, since it satisfies only
the first compatibility condition (2.2). We also denote by redi (R) the subword of red(R)
corresponding to the i th row of R, that is, to entries i in scomp(R). Note that when u is
a compatible sequence to v, namely ui ≤ vi for all i , cf. (2.3), then R is essentially an
rc-graph.
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Example 3.12 Here is an example of a stable rc-graph. It corresponds to the biword(
1 1 3 3 4 4 4 5 5 5

3 1 4 2 3 2 1 5 4 2

)
.

Thus m = 5, n = 6, and the corresponding permutation is 542613.

The analogs ẽr , f̃r of the operations e−
r , f −

r above are now defined for stable rc-graphs
R. We consider the crosses in rows r and r + 1 of R, and perform an r -pairing procedure
identical to the one for diagrams. In order to define ẽr (R), we perform an inverse chute
move to the rightmost unpaired cross in row r + 1, if such a cross exists. Similarly, we
define f̃r (R) by performing a chute move to the leftmost unpaired cross in row r , if such a
cross exists. Furthermore, one can also define σ̃r (R) by using a sequence of chute or inverse
chute moves. Note that different moves on rc-graphs of the same nature were defined and
studied recently in [33].

Remarks 3.13 (1) If crosses (r, a) and (r + 1, b) form an r -pair, then all crosses (r, c) and
(r + 1, c) with a < c < b are r -paired (with some other crosses in such positions). Hence
rows r and r + 1 in an rc-graph consist of a sequence of blocks of r -paired crosses shuffled
with a sequence of crosses in row r + 1 followed by a sequence of crosses in row r .

(2) The inverse chute move in the definition of ẽr is always possible if the corresponding
unpaired cross exists. Indeed, the only way in which there is no inverse chute move applied
to a cross (r + 1, a) is the one indicated in the figure below; namely, there is b such that the
rc-graph contains the crosses (r, c) for a < c < b, and (r + 1, c) for a ≤ c ≤ b, but does
not contain the cross (r, b).
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Now the cross (r + 1, b) must be r -paired with a cross (r, d), where d < a (indeed, the
cross (r + 1, a) is the righmost unpaired cross in row r + 1). But this is a contradiction
to the fact that the cross (r + 1, a) is unpaired, by the previous remark. There is a similar
argument involving the operation f̃r .

(3) Assuming that ẽr (R) �= ∅, it is not hard to see, based on the first remark, that R and
ẽr (R) have the same r -pairing. Similarly for f̃r and σ̃r .

Example 3.14 Assume that rows r and r + 1 in a stable rc-graph are as in the figure below.

The reduced word corresponding to the stable rc-graph contains the subword

(13, 12, 11, 10, 8, 4, 3, 1, 15, 14, 9, 8, 7, 6, 4) .

The crosses marked with the same symbol are r -paired. The matching of certain crosses
indicated by continuous lines is referred to in the proof of Proposition 3.18. The moves
corresponding to the operations ẽr and f̃r are indicated by arrows.

The properties of the operations ẽr , f̃r on stable rc-graphs/biwords are easily deduced
from those of er , fr on diagrams/biwords using the plactification map in [35]. This is a
map φ from reduced words to words which takes Coxeter-Knuth equivalence to Knuth
equivalence. It is defined recursively by

φ(∅) = ∅, φ(ru) = rσr (φ(u)) , (3.15)

where ru is a reduced word whose first entry is r . We summarize the properties of φ below.

Theorem 3.16 ([35]) (1) A reduced word u is the row (resp. column) word of some skew
tableau if and only if φ(u) is the row (resp. column) word of a skew tableau of the same
shape.

(2) If u and ũ are Coxeter-Knuth equivalent words, then φ(u) and φ(ũ) are Knuth
equivalent. In other words, φ(P̃(u)) = P(φ(u)). In fact, more is true; namely, given reduced
words u′uu′′ and u′ũu′′ with u and ũ Coxeter-Knuth equivalent, we have φ(u′uu′′) = v′vv′′

and φ(u′ũu′′) = v′ṽv′′, where v and ṽ are Knuth equivalent. In addition, the plactification
map preserves the lengths of the corresponding subwords.

(3) We have Q(φ(u)) = Q̃(u) for all reduced words u.
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Note that the second part of property (2) is not explicitly stated in [35], but easily follows
using the argument in the proof of Lemma 20 in that paper. In fact, this argument applies to
the special case when u and ũ are three letter subwords related by a Coxeter-Knuth trans-
formation; the general case then easily follows from here. We can now state the following
analog of Lemma 3.4; it is a straightforward consequence of this Lemma and of Theorem
3.16 (1)–(2).

Lemma 3.17 Given two columns (decreasing words) u, v of lengths s and t, there is at
most one pair of columns of lengths s + 1 and t − 1 in the nilplactic class of the word uv.

If such a pair exists, then it is precisely j̃dt(u, v). Similarly for j̃dt
−1

(u, v).

We now show that the two types of operations (giving left and right strings) on stable
rc-graphs coincide. To this end, we first show that the operations ẽr and f̃r preserve the
P̃-tableau.

Proposition 3.18 Let R be a stable rc-graph. If ẽr (R) �= ∅, then P̃(ẽr (R)) = P̃(R).
Otherwise, j̃dt(redr (R), redr+1(R)) = ∅. Similar statements hold for f̃r and σ̃r .

Proof: We can assume that R has crosses only in rows r and r + 1. We examine the
Edelman-Greene insertion procedure applied to the word (red(R))rev. It is well-known (cf.
[8] Corollary 7.22) that the result of the insertion is P̃T (R). Since the mentioned word is the
concatenation of two rows (increasing words) u, u′, the insertion procedure can be described
as follows. Scan the crosses in row r from left to right, and match each one with the first
(left-to-right) nonmatched cross in row r + 1 in the same or a greater column. The matched
crosses correspond to the pairs consisting of a letter in u′ to be inserted and the letter in u
it bumps; this still holds when the special bumping rule in the Edelman-Greene insertion
[8] applies. Hence, the second row of P̃T (R) consists of the letters of u corresponding to
the matched crosses in row r + 1. The first row can now be easily found, based only on
the permutation corresponding to R. Now let us perform the r -pairing procedure described
above. Based on Remark 3.13 (1), we deduce that the r -paired crosses in row r + 1 are
precisely the previously matched crosses in this row (see the figure referring to Example
3.14, where the matching is indicated by continuous lines). Hence P̃(R) is determined by
the r -paired crosses in row r + 1 and the permutation corresponding to R. The first part
of the Proposition now follows by Remark 3.13 (3). The second part also follows; indeed,
according to the remarks above, if all crosses in row r + 1 are r -paired, then red(R) is
precisely the column word of P̃(R). A similar argument holds for f̃r and σ̃r . �

Combining Proposition 3.18 with Lemma 3.17, we immediately deduce the analog of
(3.9), namely Proposition 3.19 below. Note that we could have used the same type of proof
in the plactic case. However, we preferred the more conceptual proof based on the symmetry
property of the RSK-correspondence, which does not work in the nilplactic case.

Proposition 3.19 For any stable rc-graph R, we have ẽ+
r (R) = ẽr (R).
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We now define φ on a stable rc-graph R to be the diagram identified with the biword

φ(R) :=
(

scomp(R)

φ(red(R))

)
. (3.20)

By Theorem 3.16 (1), we can see that the biword (φ(R))rev is in antilexicographic order. In
fact, more can be deduced using the same argument. To this end, let us first define the shape
of a biword w = ( u

v
) with wrev in antilexicographic order, which is denoted by shape(w); this

is the shape of the skew tableau obtained by placing the columns coli (w) side by side, with
a maximum overlap between every two consecutive columns, as indicated at the beginning
of the section. We can see that shape(φ(R)) = shape(R) for any stable rc-graph R.

The following result will be used several times below.

Proposition 3.21 For any stable rc-graph R, we have φ(ẽr (R)) = er (φ(R)); similarly for
f̃r and σ̃r .

Proof: This follows from Proposition 3.19, Lemma 3.17, and Theorem 3.16 (1)–(2). Note
that the strong form of Theorem 3.16 (2) is needed. Also note that ẽ+

r (R) = ∅ if and only if
ẽ+

r (φ(R)) = ∅ because of the fact that shape(φ(R)) = shape(R). A similar argument holds
for f̃r and σ̃r . �

Finally, we can prove the following analog of Theorem 3.11 (2).

Proposition 3.22 For any stable rc-graph R, we have Q̃(ẽr (R)) = er (Q̃(R)); similarly for
f̃r and σ̃r .

Proof: This is a consequence of the commutativity of the diagram below; hereSR denotes
the set of all stable rc-graphs, Diag the set of all diagrams, and Tab the set of SSYT.

The two triangles on the sides commute by Theorem 3.16 (3). The rectangle above
commutes by Proposition 3.21. The trapezoid below commutes by Theorem 3.11 (2). �
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4. Key polynomials

In this section we investigate in more detail the expression of a Schubert polynomial in
terms of key polynomials given in [25]. In particular, we relate the combinatorics of key
polynomials in terms of SSYT to the combinatorics of Schubert polynomials in terms of
rc-graphs.

Key polynomials (for the symmetric group) are certain polynomials in Z[x1, x2, . . .]
indexed by compositions α, which interpolate between monomials and Schur polynomials.
From a representation theoretic point of view, they are certain “partial” characters of the
irreducible representations of GLn(C). More precisely, the key polynomial κα(X ) is defined
by

κα(X ) := πu(α)
(
xλ(α)

)
.

Here xβ := xβ1
1 xβ2

2 . . . for any composition β = (β1, β2, . . .), and u(α) is the permutation
of minimum length which realizes the rearrangement λ(α) of α in weakly decreasing order
via the right action α w := (αw1 , αw2 , . . .). On the other hand, πw is the isobaric divided
difference operator on Z[x1, x2, . . .], defined by

πw := πa1 . . . πal(w) , πr := ∂r xr ;

here ∂r are the divided difference operators introduced in Section 1, a1 . . . al(w) is any
reduced word for w, xr denotes multiplication by this variable, and a permutation w acts
on Z[x1, x2, . . .] by w xr := xwr .

In order to study the combinatorics of key polynomials, we need the concepts of left and
right keys of a tableau. The left key K−(T ) (resp. right key K +(T )) of a SSYT T (cf. [26])
is the tableau of the same shape as T whose j th column is the first (resp. last) column of
any skew tableau in the plactic class of T with the following properties: (1) its sequence of
column lengths is a rearrangement of the corresponding sequence for T ; (2) its first (resp.
last) column has the same length as the j th column of T . It is not obvious that this is a correct
definition. An easy way to find the j th column of K−(T ) is to perform the reverse column
insertion procedure to the entries in the j th column of T , successively. Alternatively, we
can use jeu de taquin on pairs of successive columns to interchange the lengths of columns
in T . Similar procedures apply to K+(T ). On the other hand, by working in the nilplactic
monoid instead of the plactic one, we can define the left nil key K̃−(T ) (resp. right nil key
K̃ +(T )) of a SSYT T whose row (or column) word is a reduced word. All four types of
tableaux defined above have the property that the entries in any column except the first form
a subset of the entries in the previous column. Such a tableau is called a key. There is an
obvious bijection between compositions and keys given by α �→ key(α), where key(α) is
the SSYT of shape λ(α) whose first α j columns contain the letter j , for all j . The inverse
map is given by T �→ content(T ), where content(T ) is the composition whose j th part is
the number of entries equal to j in T . Given a composition α, we will use the following
notation

Tab(α) := { T SSYT of shape λ(α) , K+(T ) ≤ key(α) };
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here the inequality means entrywise comparison. We can now state the following combi-
natorial construction of key polynomials in [26].

Theorem 4.1 ([26]) For any composition α, we have

κα(X ) =
∑

T ∈Tab(α)

xT ,

where xT := xcontent(T ).

In order to prove this result, Lascoux introduced combinatorial versions of the operators
πr , which are set-valued maps from SSYT to SSYT. More precisely, given a tableau T , one
defines πr (T ) to be the set of tableaux {T, fr (T ), . . . , f s

r (T )} if the subword of unpaired r ’s
and r +1’s in the column word of T is of the form r s ; otherwise it is defined to be the empty
set. More generally, given a set-valued map f from a set X to X and a multiset M with
elements from X , one defines f (M) to be the multiset union of f (a) for each a in M , taken
with its corresponding multiplicity; in particular f (∅) = ∅. Given a finite sequence of such
set-valued maps, one can define the value of their composition on a multiset in the obvious
way, using the above definition. Note that, in general, the composition πa1 . . . πap (T ) gives
different results for different reduced words a1 . . . ap for a given permutation. We can now
state the following result, which is contained in the proof of Theorem 4.1 given in [26].
Recall the notation U (λ) for the tableau of shape λ with all entries in row i equal to i .

Theorem 4.2 ([26]) Let α be a composition, and let a1 . . . ap be any reduced word for
u(α). Then we have

Tab(α) = πa1 . . . πap (U (λ(α))) ;

here composition of set-valued maps is understood in the sense mentioned above.

Remark 4.3 Littelmann has a vast generalization of Theorem 4.2 [28, 29]. His paths can
be generated for any Demazure module (over a symmetrizable Kac-Moody algebra) in the
same kind of fashion. The idea of left and right key is a type A translation of the notion of
a canonical lift in the standard monomial theory of Lakshmibai, Musili, and Seshadri [20].
The initial direction of a Lakshmibai-Seshadri path (which is a special case of a Littelmann
path) is the extremal weight which gives the “right key” of the path; the final direction is
the “left key”.

Consider now the set R(w) of rc-graphs corresponding to a permutation w. We identify
an rc-graph R with the pair ( comp(R)

red(R) ). We associate to R the pair of SSYT of conjugate

shapes (P̃(R), Q̃(R)) (which determine R), as in Section 3; note that these tableaux were
already considered in [6]. We denote by P(w) the set of row and column strict tableaux
indexing the nilplactic classes of reduced words for w; more explicitly, the elements of
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P(w) correspond to those reduced words for w which are column (or row) words for a
tableau. We also use the following notation:

R(P) := {R ∈ R(w) : P̃(R) = P}, Q(P) := {Q̃(R) : R ∈ R(P)}.

The sets R(P) were called crystals in [14]. They partition the set of rc-graphs R(w) into
blocks indexed by the tableaux in P(w). The map R �→ Q̃(R) is a bijection between R(P)
and Q(P); furthermore, x R = x Q̃(R), so it makes sense to call the bijection monomial
preserving.

The question was raised in [6] to characterize the tableaux in Q(P). It can be proved
using the results and techniques in [34], cf. also [35], that a stable rc-graph R is an rc-graph
(that is, the second compatibility condition (2.3) is satisfied) if and only if

K+(Q̃(R)) ≤ K̃−(P̃T (R)) . (4.4)

Essentially, the proof is a careful examination of the way in which the mentioned keys
are constructed via reverse column insertion. This procedure allows one to translate the
compatibility condition (2.3) into the language of tableaux. It follows that

Q(P) = {Q : K+(Q) ≤ K̃−(PT )} = Tab(content(K̃−(PT ))) . (4.5)

Hence, the set Q(P), which is in a monomial preserving bijection with R(P), underlies the
combinatorial construction of a certain key polynomial (by Theorem 4.1). The following
results about key polynomials now immediately follow: (1) the expansion of a Schubert
polynomial as a positive sum of key polynomials; (2) a combinatorial formula for key
polynomials in terms of rc-graphs.

Theorem 4.6 ([25, 34]) We have that

Sw(X ) =
∑

P∈P(w)

κcontent(K̃−(PT ))(X ).

Thus, we have the following combinatorial formula for Schubert polynomials:

Sw(X ) =
∑

P∈P(w)

∑
Q∈Tab(content(K̃−(PT )))

x Q .

Theorem 4.7 ([34]) Given a composition α, and any SSYT P in P(w) for some permu-
tation w, with content(K̃−(PT )) = α, we have

κα(X ) =
∑

R∈R(P)

x R .

We conclude this section with an investigation of the structure of the crystals R(P). In
particular, we are interested in an efficient procedure to generate a crystal.
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Remark 4.8 According to Proposition 3.18, for every R in R(P), we have that ẽr (R) is in
R(P) too, unless it is ∅. Furthermore, according to Proposition 3.22, we have that er (Q̃(R))
is in Q(P), unless it is ∅, and, in fact, it coincides with Q̃(ẽr (R)). Hence, there is a perfect
correspondence between the action of ẽr on R(P) and that of the usual coplactic operations
on the tableaux in Q(P). On the other hand, it is possible that f̃r (R) �= ∅ is a stable rc-graph
which is not an rc-graph; indeed, assume, for instance, that R has only one cross in row r ,
in position (r, 1), and no crosses in row r + 1.

The set Q(P) has a natural partial order by reverse entrywise comparison: Q � Q′ if and
only if Q ≥ Q′. This can be transferred to R(P) via the bijection R �→ Q̃(R). We have the
following result.

Proposition 4.9 (1) The poset (R(P), �) has a maximum Rtop(P) and a minimum Rbot(P).
These are determined by

Q̃(Rtop(P)) = U (shape(PT )), Q̃(Rbot(P)) = K̃−(PT ).

(2) We have that R ≺ ẽr (R) whenever ẽr (R) �= ∅. Furthermore, any rc-graph in R(P)
can be obtained from Rtop(P) by successively applying operations f̃r , but not all rc-graphs
in this crystal can be obtained from Rbot(P) by applying operations ẽr .

Proof: Most of the proof relies on Remark 4.8. The first part of (2) is clear. Note that
it is possible to successively apply coplactic operations er to a SSYT of shape λ until we
reach U (λ). Since ẽr applied to an rc-graph always gives another rc-graph or ∅, while f̃r

might give a stable rc-graph which is not an rc-graph, the second part of (2) also follows
(in fact, it is easy to construct an example showing that Rbot(P) might not be reachable
from certain rc-graphs in the crystal via operations f̃r ). The assertion involving Rtop(P) in
(1) follows from the previous arguments. The assertion involving Rbot(P) follows from the
characterization (4.5) of Q(P) and the fact that K+(T ) ≥ T for any SSYT T (this can be
easily seen using one of the two constructions of the right key mentioned above). �

Clearly, the rc-graphs Rtop(w) and Rbot(w) are among the rc-graphs Rtop(P) and Rbot(P).
Notice that the second part of Proposition 4.9 gives an algorithm for generating the crystal
indexed by P , starting from Rtop(P). The similar algorithm based on nilplactic jeu de taquin
on two columns was illustrated in [14]. We will now present a more efficient algorithm, in
which each rc-graph in the crystal is obtained precisely once. To this end, we need to define
combinatorial versions of the operators πr for rc-graphs, which will be denoted by π̃r (to
make the notation consistent). This can be done in a similar way to the definition of such
operators on SSYT. Note that we set π̃r (R) := ∅ unless all the unpaired crosses in rows r
and r +1 of R lie in the the former row. We can now transfer the result of Theorem 4.2 from
Q(P) to R(P) via the bijection Q̃(R) �→ R. Indeed, due to Proposition 3.22, the action
of the operators π̃r on rc-graphs corresponds to that of πr on tableaux via the mentioned
bijection.
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Theorem 4.10 Let P be a tableau in P(w), and let a1 . . . ap be any reduced word for
u(content(K̃−(PT ))). Then we have

R(P) = π̃a1 . . . π̃ap (Rtop(P));

here composition of set-valued maps is understood in the sense mentioned before Theorem
4.2.

Theorem 4.10 gives an efficient algorithm for generating the crystal R(P). This can be
illustrated by constructing a tree whose root corresponds to Rtop(P), and whose edges corre-
spond to applying the operators π̃r on rc-graphs. Note that Rtop(P) can be easily constructed
by reverse Edelman-Greene insertion, using the fact that Q̃(Rtop(P)) = U (shape(PT )), cf.
Proposition 4.9 (1). To make things more explicit, we consider the example in [34].

Example 4.11 Let w = 21543. There are three crystals corresponding to this permutation.
We choose the one indexed by the tableau P indicated below, together with K̃−(PT ):

1 3 4 1 3

4 3

4

The composition α := content(K̃−(PT )) is (1, 0, 2, 1), and the permutation u(α) is 3142.
We consider the reduced word 213 for it. The construction of the crystal R(P) is indicated
in the appendix to the paper.

Remarks 4.12 (1) There is a version of Theorem 4.7 in terms of words rather than reduced
words (see [34] Theorem 5 (2) and Remark 6.4 (2)). This can be obtained by using the
plactification map mentioned in the previous section (cf. Remark 6.4 (2)).

(2) The permutations w for which there is a unique crystal are known as vexillary. The
corresponding Schubert polynomials, which thus coincide with certain key polynomials
κα(X ) (in fact, α = code(w)), are known to be flagged Schur polynomials (see [31, 32, 34]).
The flag condition is given by a certain sequence called the flag of w and denoted φ(w),
which is defined as the weakly increasing rearrangement of the numbers

di := min { j : j > i and w j < wi } − 1 .

The usual proof of this fact is based on algebraic manipulations with divided difference
operators. We are able to prove this fact bijectively, by showing that the map R �→ Q̃(R) is
a bijection from R(w) to the set of SSYT of shape λ(code(w)) satisfying the flag condition.
More precisely, we can show that the flag condition mentioned above is equivalent to the
general inequality condition (4.4) by using the combinatorics of vexillary permutations; in
particular, we need the characterization of their code, as well as the construction of code(w)
which inputs λ(code(w)) and φ(w), cf. [31] pp. 13–16. The proof is somewhat technical,
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and therefore we decided to omit it. However, we note that this approach emphasizes the
importance of condition (4.4), which will be mentioned later in this paper, as well (in
Remark 6.4 (2)).

(3) More generally, given a Schubert polynomial which is a flagged skew Schur polynomial
(see Theorem 26 in [34] for a sufficient condition), we can ask for a bijection, possibly
monomial preserving, between the corresponding rc-graphs and skew tableaux satisfying
the flag condition. See Remark 7.1 (3) for the case of 321-avoiding permutations.

(4) It is known that the crystal graph structure on tableaux is relevant to the representation
theory of GLn(C). On the other hand, it was shown in [34] that key polynomials are
characters of certain representations of the subgroup B of GLn(C) consisting of upper
triangular matrices. The corresponding modules were also constructed explicitly. The r -
pairings and the operations ẽr , f̃r , π̃r on rc-graphs considered above have a clear meaning
in this context, but this is not presented here.

5. Splitting Schubert polynomials

In this section, we use the operations f̃r on rc-graphs to give a straightforward, purely
combinatorial proof of a formula in [7], which expresses Schubert polynomials as linear
combinations of products of Schur polynomials in different sets of variables. This formula
is one of the main results in [7], and is derived in connection with quiver varieties. More
precisely, it was shown that the coefficients in the mentioned formula are all quiver coef-
ficients. Note that the derivation in [7] relies on a formula of Fomin and Greene, which
gives a combinatorial interpretation for the coefficients in the expansion of stable Schubert
polynomials (also known as Stanley symmetric functions) in the basis of Schur functions
[9]. The result of Fomin and Greene, which is obtained as an application of their theory of
noncommutative Schur functions, is not needed in the proof below.

Let us now recall the setup in [7]. First recall that a permutation w is said to have a
descent in position i whenever wi > wi+1. We say that a set of integers A is compatible
with w if all descent positions of w are contained in A. The Schur polynomial indexed by
a partition λ in a set of variables X is denoted by sλ(X ). The column word of a SSYT T
is denoted by col(T ). We let U (λ, a) denote the SSYT of shape λ with all entries in row i
equal to a + i . We say that a sequence of SSYT (T1, . . . , Tk) is strictly bounded below by
a sequence (a1, . . . , ak) if the entries of Ti are strictly greater than ai , for each i .

Theorem 5.1 ([7]) Suppose that w is a permutation in Sn compatible with the set of
integers {0 = a0 < a1 < . . . < am}. Then we have

Sw(X ) =
∑

λ

cλsλ1 (X1) . . . sλm (Xm),

where Xi = {xai−1+1, . . . , xai }, and the sum is over all sequences of partitions λ =
(λ1, . . . , λm). The coefficients cλ are nonnegative integers; furthermore, they count the
sequences of SSYT (T1, . . . , Tm) strictly bounded below by (0, a1, . . . , am−1), such that the
shape of Ti is conjugate to λi and col(T1) . . . col(Tm) is a reduced word for w.
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Proof: Assume am < n. Given an rc-graph R in R(w), we can clearly split it into a
sequence of rc-graphs (R1, . . . , Rm), where Rk := {(i, j) ∈ R : ak−1 + 1 ≤ i ≤ ak}, for
each k. Note that w(Rk) is not necessarily a permutation with a unique descent (that is,
a Grassmannian permutation). We associate to Rk the pair of SSYT (P̃(Rk), Q̃(Rk)), as
in Section 3. It is easy to check that the above procedure defines a map from R(w) to
sequences of pairs of SSYT of conjugate shapes ((P1, Q1), . . . , (Pm, Qm)), which satisfy
the following conditions:

1. (P1, . . . , Pm) is strictly bounded below by (0, a1, . . . , am−1);
2. col(P1) . . . col(Pm) is a reduced word for w;
3. the entries of Qk , for k = 1, . . . , m, are between ak−1 + 1 and ak .

Clearly, this map is injective, so we only need to prove surjectivity.
Consider a sequence of pairs of tableaux ((P1, Q1), . . . , (Pm, Qm)) with the above proper-

ties. This determines a sequence of stable rc-graphs (R1, . . . , Rm), which, in turn, determines
a stable rc-graph for the permutation w, by condition (2) (just by concatenating the corre-
sponding reduced words and compatible sequences, or, graphically, by stacking the relevant
portions of Ri on top of each other). It suffices to show that each Rk is, in fact, an rc-graph.
Let λk be the shape of Qk . It is not hard to see, based on the first two conditions above, that
(Pk, U (λk, ak−1)) determines an rc-graph R0

k . We can get from the tableau U (λk, ak−1) to
Qk by succesively applying operations fr , with ak−1 + 1 ≤ r ≤ ak − 1 (due to condition
(3)). We will show that the same sequence of operations f̃r applied to R0

k produces an
rc-graph. Then we conclude that this rc-graph has to be Rk , based on Propositions 3.18
and 3.22 (which state the compatibility of the actions of f̃r on rc-graphs and of fr on the
associated tableaux).

Now consider the above sequence of operations f̃r applied to the concatenation of the
rc-graphs R0

1, . . . , R0
m , which is an rc-graph for w. Based on the properties of the operations

f̃r discussed above, it suffices to show that, when applying f̃r to an rc-graph for w, we never
obtain a stable rc-graph which is not an rc-graph. This could only happen if, at the beginning
of rows r and r + 1, we have the configuration shown below, where the circled cross is the
one moved by f̃r .

But this means that the permutation w has a descent in in position r , which is a contra-
diction with the compatibility of the sequence {0 = a0 < a1 < · · · < am}. �

Let us note, as it is done in [7], that the classical construction of Schubert polynomials
(2.4) is equivalent to the special case of the above theorem corresponding to the set of
integers [n − 1].
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6. Kohnert Diagrams

Kohnert [18] conjectured that Schubert polynomials can be constructed in terms of certain
diagrams, currently known as Kohnert diagrams. These are subsets of [n]×[n] which can be
obtained from the diagram of a permutation by certain moves (recall that [n] := {1, . . . , n}).
The diagram D(w) of the permutation w is the set

D(w) := {(i, w j ) : i < j, wi > w j } ⊆ [n] × [n].

A Kohnert move (or, simply, K-move) on a Kohnert diagram picks the rightmost cell in
any row i , and moves it up to the first nonoccupied cell directly above it, say in row j ; we
indicate such a move by i → j . Let K(w) denote the closure of {D(w)} under all possible
K-moves. Kohnert’s conjecture says that

Sw(X ) =
∑

K∈K(w)

x K , (6.1)

where x K := ∏
(i, j)∈K xi .

Bergeron [1] defined more complex moves on diagrams, called B-moves, and constructed
the set of diagrams B(w) as the closure of {D(w)} under all possible B-moves. He stated
that

Sw(X ) =
∑

B∈B(w)

x B . (6.2)

He used Schubert induction, starting with the longest permutation wn
0 in Sn , and successively

applying combinatorial versions of the operators ∂r for diagrams. The definition of the latter
can be easily rephrased using the operations fr on diagrams in Section 3. More precisely,
if w �= wn

0 , Bergeron considered r := min {i : wi < wi+1}. Then, given a diagram B
in B(wsr ), he considered B ′ := B \ {(r, wr )}. Finally, he defined ∂r (B) to be the set of
diagrams {B ′, fr (B ′), . . . , f t

r (B ′)} if all the t unpaired cells in the r -pairing for B ′ are
in row r ; otherwise, ∂r (B) was defined to be the empty set. Bergeron stated the following
combinatorial version of the identity Sw(X ) = ∂r (Swsr (X )) defining Schubert polynomials,
which implies (6.2):

B(w) = ∂r (B(wsr )); (6.3)

the right-hand side is understood in the multiset sense discussed before Theorem 4.2.
Winkel [36] announced a proof of Kohnert’s conjecture (6.1) and of the fact that K(w) =

B(w), which was conjectured in [1]. He thus obtained (6.2) as a Corollary. This proof is still
by induction, and is still based on Bergeron’s combinatorial ∂r , but is very involved. The
reason for this is the fact that the action of ∂r on diagrams does not have a close relationship
with K-moves, although it does have a closer one with B-moves. Later, Winkel announced
a shorter proof of just (6.1) in [37], based on Monk’s formula for Schubert polynomials.
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But this proof is still not transparent, using complex manipulations with Kohnert diagrams.
In fact, Winkel himself recognized that his shorter proof is “done by an exhaustive study of
cases, which establishes correctness without leading to a deeper understanding”.

We attempted to find a more transparent proof of Kohnert’s conjecture by constructing a
bijection between Kohnert diagrams and rc-graphs based on relating K-moves and L-moves.
Although these moves look very similar in nature, their relationship is complicated, so we
failed in this attempt.

One of the reasons for the difficulties in all the mentioned attempts is that, as opposed to
rc-graphs, there is no intrinsic description of the diagrams in B(w) or K(w), just recursive
constructions. We now investigate a new set of diagrams �(w), which is in a monomial
preserving bijection with R(w) (thus providing a combinatorial construction of Sw(X )),
and which has both a recursive and a nonrecursive construction. Furthermore, we show that
�(w) coincides with B(w) and K(w), if we assume the results of Bergeron and Winkel
mentioned above. The nonrecursive construction of �(w) is very easy to state using the
one-to-one map φ on rc-graphs defined in (3.20), namely �(w) := φ(R(w)). Clearly, φ is
a monomial preserving bijection from R(w) to �(w), that is, xφ(R) = x R .

Remarks 6.4 (1) In [35], the image of the plactification map on reduced words for w is
characterized in terms of D(w−1)-peelable words. Thus, we have the following nonrecursive
description of �(w):

�(w) = {D ⊆ [n] × [n] : col(D) is D(w−1)-peelable and (6.5)

row(D) ≤ φ−1(col(D)) },

where ≤ means entrywise comparison. One might be able to rephrase the above inequality
in an even more explicit way; essentially, we are asking: what do compatible sequences for
u become under the map u �→ φ(u)?

(2) The situation is nicer if we replace the map u �→ φ(u) in the previous remark with
u �→ (φ(urev))rev. Indeed, it turns out that the set of compatible sequences is preserved
under the latter map (compatible sequences for arbitrary words are defined in the same
way as for reduced words). Here is an easy way to see this: we translate the compatibility
condition into the language of keys as stated in (4.4) (there is a similar statement for words
instead of reduced words), and then we invoke the plactification map. We need, of course, the
properties of this map listed in Theorem 3.16, as well as the following property appearing in
[35]: K−(φ(P)) = K̃−(P), for SSYT P whose column word is reduced. The mentioned fact
implies another combinatorial construction for Sw(X ) (in terms of D(w)-peelable words),
which was stated in [35] as Theorem 31(1).

We now turn to the recursive construction of �(w). The idea is to first give a recursive
construction of R(w) based on analogs ∂̃r of the operators ∂r on diagrams defined above.
Then we show that the latter correspond to the former via the bijectionφ. Given a permutation
w �= wn

0 in Sn , we let r be defined as above, namely r := min {i : wi < wi+1}. Then,
given an rc-graph R in R(wsr ), we proceed in the same way as for diagrams by letting
R′ := R \ {(r, wr )} (the rc-graph is viewed as a subset of Z>0 × Z>0 here). Finally, we
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define ∂̃r (R) to be the set of rc-graphs {R′, f̃r (R′), . . . , f̃ t
r (R′)} if all the t unpaired crosses in

the r -pairing for R′ are in row r ; otherwise, it is defined to be the empty set. The fact that R′

is indeed an rc-graph (i.e., its lines have no multiple intersections) can be seen by examining
the figure below, which shows the form of any rc-graph in R(wsr ); the circled cross is the
one to be removed. On the other hand, the successive applications of the operation f̃r does
produce rc-graphs (rather than just stable rc-graphs) because R′ has no crosses in positions
(r, wr ) and (r + 1, wr ). Hence ∂̃r is a set-valued map from R(wsr ) to R(w).

Before stating the next result, we introduce some notation. Given positive integers j > i ,
let ( j..i) be the reduced word j( j − 1) . . . i . Given a word u = u1 . . . un , we consider the
following operator on words: φu := u1σ1 . . . unσn; in particular, φ(uv) = φu(φ(v)), where
φ is the plactification map (3.15), and uv is a reduced word with subwords u and v. We
need the following Remark.

Remark 6.6 Let v be a word with all letters strictly greater than i . The effect of applying
φ( j..i) to v is to subtract 1 from the letters i + 1, . . . , j + 1 in v, while leaving the other
letters unchanged. Thus, the resulting word will not contain the letter j + 1.

Theorem 6.7 We have that

R(w) = ∂̃r (R(wsr )), �(w) = ∂r (�(wsr )),

where the right-hand sides are understood in the multiset sense discussed before
Theorem 4.2.

Proof: Any rc-graph R′ in R(w) has the form shown in the figure above, except that
there is no cross in position (r, wr ), and there might or might not be a cross in position
(r + 1, wr ). If the former situation arises, this cross will clearly not be r -paired with a cross
in row r . Hence it can be moved to row r by successive applications of operations ẽr . Let
R := ẽt

r (R′) ∪ {(r, wr )}, where t is the number of unpaired crosses in row r + 1 of R′. It is
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not hard to check that R ∈ R(wsr ), and that R′ ∈ ∂̃r (R). The uniqueness of R with these
properties is clear from the definition of ∂̃r .

Fix R in R(wsr ), and let s := wr + r − 1. In the above figure, the oblique dotted
lines indicate the crosses in R to which correspond identical letters (denoted s − 1, s,
s + 1) in red(R). Let u, u′, u′′, and v be the subwords of red(R) corresponding to rows
less than r , row r , row r + 1, and rows greater than r + 1, respectively. We have u =
. . . (s − 1..1) . . . (s − 1..r − 1), u′ = . . . (s..r ), and u′′ = . . . ŝ + 1(s..r + 1), where thê indicates the absence of a letter. Let ũ′ be obtained from u′ by dropping the letter s.
According to Remark 6.6, we have that φ(s−1..r )(φ(u′′v)) contains no letters s and s + 1.
Therefore, this word is fixed by σs . Hence, φ(ũ′u′′v) is obtained from φ(u′u′′v) by dropping
the letter s. By applying Remark 6.6 repeatedly, we can see that the effect of applying
φu on the letters r, . . . , s in the mentioned words is to subtract r − 1 from these letters;
furthermore, it is not hard to check that the effect on the other letters is identical in the two
words. We conclude that φ(R \ {(r, wr )}) = φ(R)\ {(r, wr )}. By applying Proposition 3.21,
we can see that φ(∂̃r (R)) = ∂r (φ(R)). �

Hence, the set of diagrams �(w) can be recursively generated via the operators ∂r , starting
from �(wn

0 ). This process is best illustrated using a tree, in a similar way to other recursive
constructions in this paper. Let us note that different combinatorial versions of the divided
difference operators were recently defined and used to recursively generate R(w) in [33].
On the other hand, one can easily show that �(wn

0 ) = B(wn
0 ) = {D(wn

0 )}; in fact, we
can prove the more general statement in Proposition 6.9 below. The next result follows by
Schubert induction.

Theorem 6.8 Assuming Bergeron’s result (6.3), we have that B(w) = �(w); hence, the
map φ defines a bijection betweenR(w) andB(w). Assuming Winkel’s resultK(w) = B(w),
we have that K(w) = �(w); hence, the map φ defines a bijection between R(w) and K(w).

The second statement was conjectured by Billey [5]. We intend to use the two characteri-
zations of �(w) presented above (the nonrecursive one in Remark 6.4 (1) and the recursive
one in Theorem 6.7) in order to find a transparent proof of Kohnert’s conjecture, based
on proving the stronger conjecture of Billey. The following two results are steps in this
direction.

Proposition 6.9 We have

φ(Rbot(w)) = D(w).

Proof: Assuming that w ∈ Sn , we argue by induction on n. Let R′ be the rc-graph
obtained from Rbot(w) by removing its first row, and let w̄ := w(R′) be the corresponding
permutation of {2, . . . , n}. We have w = w1w̃2 . . . w̃n , where

w̃i :=
{

w̄i − 1 if 2 ≤ i ≤ w1

w̄i otherwise.
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Thus, we can see that D(w) is obtained from D(w̄) by inserting an extra empty column w1,
as well as an extra first row containing w1 − 1 left justified cells. By induction, we have
that φ(R′) = D(w̄). By Remark 6.6, the effect of the map φred1(R) = φ(w1−1..1) on the word
col(D(w̄)) is to subtract 1 from the letters 2, . . . , w1. Therefore, the image is col(D(w)),
which concludes the proof of the induction step. �

Example 6.10 Below are shown the Kohnert diagrams corresponding to the rc-graphs in
Example 2.5 via the map φ. Note that the diagram on the left is just the diagram of the
permutation w = 215463. A sequence of Kohnert moves on this diagram which leads to
the one on the right is: 4 → 2, 2 → 1, 5 → 4, 4 → 2.

We conclude this section by examining the special case of 321-avoiding permutations. Re-
call that a permutation w is 321-avoiding if there are no i < j < k such that wi > w j > wk .
Such permutations were first investigated in [6], where it was shown that the corresponding
Schubert polynomials are flagged skew Schur polynomials; this fact is straightforwardly
rederived in Remark 7.1 (3) from the construction of a Schubert polynomial based on bal-
anced labelings of the diagram of the corresponding permutation. Special cases of 321-
avoiding permutations are Grassmannian permutations, which are permutations with a
unique descent. The corresponding Schubert polynomials are Schur polynomials. If the
permutation w is 321-avoiding, the bijection φ can be made more explicit. Given a cross
(i, j) in an rc-graph, let us denote by end(i, j) the column where the line traversing it
vertically ends. We need the following Lemma, which is best seen graphically, and is
straightforward.

Lemma 6.11 If the permutation w is 321-avoiding, then no rc-graph in R(w) has a line
containing both a cross traversed vertically and one traversed horizontally. Conversely, if
w contains the pattern 321, then all rc-graphs in R(w) have such a line.
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Theorem 6.12 If w is a 321-avoiding permutation, then the bijection φ maps every rc-graph
R to the diagram

{(i, end(i, j)) : (i, j) ∈ R}.
Furthermore, in this case we do have K(w) = �(w).

Proof: We denote the above bijection from R(w) to some set of diagrams E(w) by R �→
end(R). Let us show first that K(w) = E(w). We start by noting that the order of the
crosses in any row of an rc-graph R coincides with the order of the corresponding cells
in end(R); indeed, assuming that this is false contradicts the 321-avoiding property of w,
by Lemma 6.11. The inclusion E(w) ⊆ K(w) is clear, because all L-moves on rc-graphs
R in R(w) move crosses up by just one row (by Lemma 6.11), whence they become K-
moves on end(R); the previous remark is also needed here, together with the obvious fact
end(Rbot(w)) = D(w). The fact that E(w) is closed under K-moves is based on the following
fact. If a cell is moved past r cells in end(R) by a K-move, then the corresponding portion
of R looks as in the figure below (the remark at the beginning of the proof and Lemma
6.11 are needed again). Thus we can perform the r + 1 indicated ladder moves in R, which
together correspond to the considered K-move in end(R).

Assuming that w ∈ Sn , we now show that φ(R) = end(R) for any R in R(w) by
induction on n. Assume this is true for the rc-graph R′ obtained from Rbot(w) by removing
its first row; the rows and columns of R′ are numbered 2, . . . , n. Write the word red1(R)
as ( jp..i p) . . . ( j1..i1) with ik+1 − jk ≥ 2 for k = 1, . . . , p − 1. By Lemma 6.11, the
word col(end(R′)) = φ(red(R′)) does not contain letters i1, . . . , i p. Hence, by Remark 6.6,
the effect of φred1(R) on this word is to subtract 1 from the letters ik + 1, . . . , jk + 1, for
k = 1, . . . , p, while leaving the other letters unchanged. We conclude that φ(red(R)) =
col(end(R)). The example in the figure below illustrates our argument; here red1(R) =
(7..5)(2..1). �
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Note that, in general, the bijection R �→ end(R) is a monomial preserving bijection
between R(w) and a different set of diagrams than K(w) (and �(w)).

7. Balanced labelings

Fomin et al. [10] present a construction of Schubert polynomials in terms of balanced
column-strict labelings of the diagram of a permutation which satisfy a certain flag condition.
A labeling of the cells of the diagram D(w) is called balanced if it satisfies the following
condition: if one rearranges the labels within any hook of D(w) (which contains all the cells
below and to the right of a cell of D(w)) such that they weakly increase from right to left and
from top to bottom, then the corner label remains unchanged. A balanced labeling is called
column-strict if no column contains two equal entries. The flag condition mentioned above
is the requirement that all labels in row i are at most i . For convenience, we will omit the
terms “column strict” and “flag condition” for the rest of this section. With every balanced
labeling is associated a monomial, obtained by taking the product of xi over all labels i . It
was proved in [10] that the Schubert polynomial Sw(X ) can be obtained by summing the
monomials associated with all balanced labelings of D(w).

In [10] a monomial preserving bijection R �→ B(R) was constructed from R(w) to
balanced labelings of D(w). The construction of the balanced labeling corresponding to an
rc-graph R for w is based on the reduced word red(R) = a1 . . . al(w) and the compatible
sequence comp(R) = i1 . . . il(w). The labeling is constructed as follows: the cell in row p
and column q is labeled ir if the adjacent transposition sar = tar ,ar +1 in red(R) transposes q
and wp, where q < wp. Note that the number of labels i is equal to the number of crosses
in row i of the rc-graph; this means that the bijection is monomial preserving. For instance,
the balanced labeling of the diagram of 215463 corresponding to the second rc-graph in
Example 2.5 is the following.

We now intend to study the inverse map, from balanced labelings to rc-graphs. To this
end, we associate a word T (B) to a balanced labeling B, and a word T (R) to an rc-graph R.
The former is defined simply by sorting the entries in each row of B in (weakly) decreasing
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order, and by concatenating the sequences obtained in this way, in increasing order of the
rows. Now consider an rc-graph R inR(w). Assume that the permutation w = w1 . . . wn has
m descents, namely in positions d1, . . . , dm ; this means that wk > wk+1 if and only if k = di

for some i . We can associate a word tk = tk1tk2 . . . with line k in R in the following way:
follow the line starting from its left end, and to each cross traversed horizontally associate a
letter in tk equal to the number of the row where the cross lies. Now let Ti := tdi−1+1 . . . tdi ,
where i = 1, . . . , m and d0 = 0; also let T (R) = T1 . . . Tm .

Remarks 7.1 (1) The definition of the bijection R �→ B(R) immediately implies that if
B = B(R), then T (B) = T (R). Therefore, we can reconstruct R from T = T (B) only;
that is, R is determined by the set of labels in the rows of B. The precise description of the
procedure is given in Algorithm 7.3.

(2) If we sort the columns in a balanced labeling in ascending order, we obtain a sequence
of words which can be read off from the corresponding rc-graph by following its lines starting
at their top end, and by recording the row number of each cross traversed vertically.

(3) The entries in the rows and columns of a balanced labeling are neither increasing nor
decreasing, in general. In fact, based on Lemma 6.11 and Remark 7.1 (1), we can easily
check that if w is 321-avoiding, then the entries in the rows of a balanced labeling of D(w)
are weakly decreasing, and the entries in columns are strictly increasing. It is well-known
that, by omitting empty rows and columns in the diagram of a 321-avoiding permutation
w, we obtain a skew Young diagram λ/µ = λ(w)/µ(w) in French notation. Hence, the
corresponding balanced labelings can be identified with the reverse SSYT of skew shape
λ/µ (in English notation) satisfying a certain flag condition; the corresponding flag vector is
clearly the decreasing sequence of integers k for which the kth entry in code(w) in nonzero.
Recall that a filling of a skew Young diagram is called a reverse SSYT (or column-strict plane
partition) if the entries are weakly decreasing in rows and strictly decreasing in columns.
In [6], these reverse SSYT are reinterpreted as SSYT of the shape obtained from λ/µ by
a 180◦ rotation. Thus, we have a straightforward way of rederiving the fact (proved in [6])
that Schubert polynomials indexed by 321-avoiding permutations are flagged skew Schur
polynomials.

(4) According to the previous Remark, if w is a Grassmannian permutation with descent
at d, then the map R �→ B(R) followed by the renumbering k �→ d + 1 − k of the entries
in B(R) is a bijection from R(w) to SSYT of shape λ(w) with entries 1, . . . , d. This was
already observed in [1, 6]. Note that the mentioned bijection is not monomial preserving;
therefore, it is different from the map R �→ Q̃(R) (discussed in Section 4) between the
same sets as above, which is a bijection for Grassmannian permutations. Hence, it is natural
to ask about the way in which the SSYT Q̃(R) is related to the reverse SSYT B(R) of the
same shape. This is addressed in Theorem 7.2 below.

Theorem 7.2 For any Grassmannian permutation w and R in R(w), we have

Q̃(R) = evac(B(R)).

More generally, if w is 321-avoiding, then Q̃(R) is the rectification of the SSYT of skew
shape obtained from B(R) by a 180◦ rotation.
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Proof: Let w be 321-avoiding. By Theorem 3.16 (3) and (3.2), we have

Q̃(R) = Q(φ(R)) = P(φ(R)′);

recall that

φ(R)′ =
(

φ(red(R))′

comp(R)′

)
,

cf. (3.20) and the definition of the biword w′ (corresponding to some biword w) at the
beginning of Section 3. On the other hand, we know from Theorem 6.12 that φ(R) = end(R).
Therefore, by Remark 7.1 (2), we have that (comp(R)′)rev is precisely the column word of
B(R). In conclusion, Q̃(R) can be obtained by applying Schensted insertion to the reverse
column word of B(R), and therefore coincides with evac(B(R)) when w is Grassmannian.

�

Algorithm 7.3
for k = 1, . . . , n do

start at the left end (k, 1) of line k;
while not at the upper end of line k do

let (i, j) be the current position;
if a previous line crosses position (i, j) horizontally then

cross position (i, j) vertically;
else

if (i, j) �= (k, 1) then avoid position (i, j) fi;
move to the right past a number of lattice points

equal to the number of labels i in the kth row of T ;
avoid the current position;

fi;
od;

od.

We conclude with a closer look at the word T (R) associated to an rc-graph R. We view
T (R) as the sequence of its subwords Ti = tdi−1+1 . . . tdi , where i = 1, . . . , m. Note that
the length of the subword tk is the kth entry ck in the code of w(R). Hence the lengths of
tdi−1+1, . . . , tdi form a weakly increasing sequence. Now view Ti as a filling of a Young
diagram of shape (cdi−1+1, . . . , cdi ), where the French convention for such diagrams is used.

Proposition 7.4 Using the notation above, we have that T (R) is a sequence of reverse SSYT
(T1, . . . , Tm).

Proof: Fix i , k such that di−1 + 1 ≤ k < k + 1 ≤ di , and consider the lines k and k + 1
in R. It is not hard to see that all lines which cross line k vertically will have to cross line
k + 1 vertically as well; indeed, such lines cannot cross line k twice, so they must exit
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the region between lines k and k + 1 by crossing the latter. Now remove all crosses in the
mentioned region. By following the lines which cross line k vertically in the new diagram,
we obtain a pairing of these crosses with some crosses on line k + 1 (see the figure below).
Obviously, the row of the first cross in any pair is strictly smaller than the row of the second.
Furthermore, we can order the pairs such that the first and second components appear in
the order obtained by following lines k and k + 1 from their left ends to their top ends. This
essentially shows that the entries in the columns of Ti strictly increase.

�

Example 7.5 The sequences of reverse SSYT corresponding to the two rc-graphs in Ex-
ample 2.5 are shown below, stacked on top of each other. More precisely, there are three
reverse SSYT, corresponding to the following sets of rows: {1}, {2, 3}, {4, 5}.

1 1

3 3 3 2

4 1

5 3

Remark 7.6 The sequence of reverse SSYT T (R) = (T1, . . . , Tm) associated to an rc-graph
R might be useful for the important open problem of multiplying Schubert polynomials.
One approach to this problem, adopted in [2, 16, 17], is to define an insertion procedure for
rc-graphs (i.e., to “insert” an rc-graph into another) which generalizes Schensted insertion.
There are such procedures (see the mentioned papers) which “insert” rc-graphs R corre-
sponding to certain Grassmannian permutations. They can be viewed as “insertions” of the
corresponding words T (R), and they depend on a parameter d, which is the unique descent
of the permutation w(R); we call such an insertion a d-insertion. Based on the results of
the mentioned papers, we suggest that the general procedure of “inserting” an arbitrary
rc-graph R into another could be reduced to a sequence of di -insertions of the words Ti

corresponding to R.
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Appendix

The construction of the crystal in Example 4.11.
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