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Abstract We study Stanley decompositions and show that Stanley’s conjecture on
Stanley decompositions implies his conjecture on partitionable Cohen–Macaulay
simplicial complexes. We also prove these conjectures for all Cohen–Macaulay
monomial ideals of codimension 2 and all Gorenstein monomial ideals of codimen-
sion 3.
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1 Introduction

In this paper we discuss the conjecture of Stanley [19] concerning a combinatorial
upper bound for the depth of a Z

n-graded module. Here we consider his conjecture
only for S/I , where I is a monomial ideal.

Let K be a field, S = K[x1, . . . , xn] the polynomial ring in n variables. Let u ∈ S

be a monomial and Z a subset of {x1, . . . , xn}. We denote by uK[Z] the K-subspace

Dedicated to Takayuki Hibi on the occasion of his fiftieth birthday.

J. Herzog (�) · A.S. Jahan
Fachbereich Mathematik und Informatik, Universität Duisburg-Essen, Campus Essen, 45117
Essen, Germany
e-mail: juergen.herzog@uni-essen.de

A.S. Jahan
e-mail: ali.soleyman-jahan@stud.uni-duisburg-essen.de

S. Yassemi
Department of Mathematics, University of Tehran, P.O. Box 13145448, Tehran, Iran

S. Yassemi
Institute for Theoretical Physics and Mathematics (IPM), Tehran, Iran
e-mail: yassemi@ipm.ir



114 J Algebr Comb (2008) 27: 113–125

of S whose basis consists of all monomials uv, where v is a monomial in K[Z]. The
K-subspace uK[Z] ⊂ S is called a Stanley space of dimension |Z|.

Let I ⊂ S be a monomial ideal, and denote by I c ⊂ S the K-linear subspace of S

spanned by all monomials which do not belong to I . Then S = I c ⊕ I as a K-vector
space, and the residues of the monomials in I c form a K-basis of S/I .

A decomposition D of I c as a finite direct sum of Stanley spaces is called a Stanley
decomposition of S/I . The minimal dimension of a Stanley space in the decomposi-
tion D is called the Stanley depth of D, denoted sdepth(D).

We set sdepth(S/I) = max{sdepth(D) : D is a Stanley decomposition of S/I }
and call this number the Stanley depth of S/I .

In [17, Conjecture 5.1] Stanley conjectured the inequality sdepth(S/I) ≥
depth(S/I). We say that I is a Stanley ideal if Stanley’s conjecture holds for S/I .

Not many classes of Stanley ideals are known. Apel [3, Corollary 3] showed that
all monomial ideals I with dimS/I ≤ 1 are Stanley ideals. He also showed [3, Theo-
rem 3 and Theorem 5] that all generic monomial ideals and all cogeneric Cohen–
Macaulay monomial ideals are Stanley ideals, and Soleyman Jahan [15, Proposi-
tion 2.1] proved that all monomial ideals in a polynomial ring in n variables of di-
mension less than or equal to 1 are Stanley ideals. The above facts imply in particular
a result of Apel which says that all monomial ideals in the polynomial ring in three
variables are Stanley ideals. The same result for four variables has been recently ob-
tained in [2]. Moreover, Stanley’s conjecture for small dimensions is also discussed
in [1].

In [13] the authors attach to each monomial ideal a multi-complex and introduce
the concept of shellable multi-complexes. In case I is a squarefree monomial ideal,
this concept of shellability coincides with the nonpure shellability introduced by
Björner and Wachs [4]. It is shown in [13, Theorem 10.5] that if I is pretty clean
(see the definition in Sect. 3), then the multi-complex attached to I is shellable and
I is a Stanley ideal. The concept of pretty clean modules is a generalization of clean
modules introduced by Dress [8]. He showed that a simplicial complex is shellable if
and only if its Stanley–Reisner ideal is clean.

We use these results to prove that any Cohen–Macaulay monomial ideal of codi-
mension 2 and any Gorenstein monomial ideal of codimension 3 is a Stanley ideal,
see Proposition 2.4 and Theorem 3.1. For the proof of Proposition 2.4, we observe
that the polarization of a perfect codimension 2 ideal is shellable and show this by
using Alexander duality and the result of [11] that any monomial ideal with 2-linear
resolution has linear quotients. The proof of Theorem 3.1 is based on the structure
theorem for Gorenstein monomial ideals given in [5]. It also uses the result, proved in
Proposition 3.3, that a pretty clean monomial ideal remains pretty clean after applying
a substitution replacing the variables by a regular sequence of monomials.

In the last section of this paper we introduce squarefree Stanley spaces and show in
Proposition 4.2 that for a squarefree monomial ideal I , the Stanley decompositions of
S/I into squarefree Stanley spaces correspond bijectively to partitions into intervals
of the simplicial complex whose Stanley–Reisner ideal is the ideal I . Stanley calls
a simplicial complex Δ partitionable if there exists a partition Δ = ⋃r

i=1[Fi,Gi] of
Δ such that for all intervals [Fi,Gi] = {F ∈ Δ : Fi ⊂ F ⊂ Gi} one has that Gi is a
facet of Δ. We show in Corollary 4.5 that the Stanley–Reisner ideal IΔ of a Cohen–
Macaulay simplicial complex Δ is a Stanley ideal if and only if Δ is partitionable. In
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other words, Stanley’s conjecture on Stanley decompositions implies his conjecture
on partitionable simplicial complexes.

2 Stanley decompositions

Let S = K[x1, . . . , xn] be a polynomial ring and I ⊂ S a monomial ideal. Note that
I and I c as well as all Stanley spaces are K-linear subspaces of S with a basis that
is a subset of monomials of S. For any K-linear subspace U ⊂ S that is generated
by monomials, we denote by Mon(U) the set of elements in the monomial basis
of U . It is then clear that if uiK[Zi], i = 1, . . . , r, are Stanley spaces, then I c =⊕r

i=1 uiK[Zi] if and only if Mon(I c) is the disjoint union of the sets Mon(uiK[Zi]).
Usually one has infinitely many different Stanley decompositions of S/I . For ex-

ample, if S = K[x1, x2] and I = (x1x2), then for each integer k ≥ 1 one has the
Stanley decomposition

Dk : S/I = K[x2] ⊕
k⊕

j=1

x
j

1 K ⊕ xk+1
1 K[x1]

of S/I . Each of these Stanley decompositions of S/I has Stanley depth 0, while the
Stanley decomposition K[x2] ⊕ x1K[x1] of S/I has Stanley depth 1.

Even though S/I may have infinitely many different Stanley decompositions, all
these decompositions have one property in common, as noted in [15, Sect. 2]. Indeed,
if D is a Stanley decomposition of S/I with s = dimS/I , then the number of Stanley
sets of dimension s in D is equal to the multiplicity e(S/I) of S/I .

There is also an upper bound for sdepth(S/I) known, namely

sdepth(S/I) ≤ min
{
dimS/P : P ∈ Ass(S/I)

}
,

see [3, Sect. 3]. Note that for depth(S/I) the same upper bound is valid. As a conse-
quence of these observations, we have the following:

Corollary 2.1 Let I ⊂ S be a monomial ideal such that S/I is Cohen–Macaulay.
Then the following conditions are equivalent:

(a) I is a Stanley ideal.
(b) There exists a Stanley decomposition D of S/I such that each Stanley space in

D has dimension d = dimS/I .
(c) There exists a Stanley decomposition D of S/I that has e(S/I) summands.

We now recall the notion of clean and pretty clean filtrations which will be used
in the sequel. Let I ⊂ S be a monomial ideal. According to [13], S/I is called pretty
clean if there exists a chain of monomial ideals such that:

(a) For all j, one has Ij /Ij−1 ∼= S/Pj , where Pj is a monomial prime ideal.
(b) For all i < j such that Pi ⊂ Pj , it follows that Pi = Pj .
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Dress [8] calls the ring S/I clean if there exists a chain of ideals as above such
that all the Pi are minimal prime ideals of I . By an abuse of notation we call I

(pretty) clean if S/I is (pretty) clean. Obviously, any clean ideal is pretty clean. In
[13, Theorem 6.5] it is shown that if I is pretty clean, then I is a Stanley ideal, while
Dress showed [8, Sect. 4] that if I = IΔ for some simplicial complex Δ, then Δ is
shellable if and only if IΔ is clean. In particular, it follows that IΔ is a Stanley ideal
if Δ is shellable.

The following result will be needed later in Sect. 3.

Proposition 2.2 Let I ⊂ S be a monomial complete intersection ideal. Then S/I is
clean. In particular, I is a Stanley ideal.

Proof Let u ∈ S be a monomial. We call supp(u) = {xi : xi divides u} the support
of u. Now let G(I) = {u1, . . . , um} be the unique minimal set of monomial gener-
ators of I . By our assumption, u1, . . . , um is a regular sequence. This implies that
supp(ui) ∩ supp(uj ) = ∅ for all i 
= j .

From the definition of the polarization of a monomial ideal (see, for example, [15])
it follows that for the polarized ideal Ip = (u

p

1 , . . . , u
p
m) one again has supp(u

p
i ) ∩

supp(u
p
j ) = ∅ for all i 
= j .

Thus J = Ip is a squarefree monomial ideal generated by the regular sequence of
monomials v1, . . . , vm with vi = u

p
i for all i.

Let Δ be the simplicial complex whose Stanley–Reisner ideal IΔ is equal to J .
The Alexander dual Δ∨ of Δ is defined to be the simplicial complex whose faces are
{[n] \ F : F 
∈ Δ}. The Stanley–Reisner ideal of Δ∨ is minimally generated by all
monomials xi1 · · ·xik , where (xi1, . . . , xik ) is a minimal prime ideal of IΔ.

In our case it follows that IΔ∨ is minimally generated by the monomials of the
form xi1 . . . xim , where xij ∈ supp(vj ) for j = 1, . . . ,m. Thus we see that IΔ∨ is the
matroidal ideal of the transversal matroid attached to the sets supp(v1), . . . , supp(vm),
see [7, Sect. 5]. In [14, Lemma 1.3] and [7, Section 5] it is shown that any polyma-
troidal ideal has linear quotients, and this implies that Δ is a shellable simplicial
complex, see, for example, [12, Theorem 1.4]. Hence by the theorem of Dress quoted
in the next section, S/IΔ is clean. Now we use the result in [15, Theorem 3.10] which
says that a monomial ideal is pretty clean (see the definition in Sect. 2) if and only
if its polarization is clean. Therefore we conclude that S/I is pretty clean. Since all
prime ideals in a pretty clean filtration of S/I are associated prime ideals of S/I (see
[13, Corollary 3.4]) and since S/I is Cohen–Macaulay, the prime ideals in the filtra-
tion are minimal. Hence S/I is clean. Thus from [13, Theorem 6.5] we conclude that
I is Stanley ideal. �

Corollary 2.3 Let I ⊂ S be a monomial ideal with depthS/I ≥ n − 1. Then I is a
Stanley ideal.

Proof The assumption implies that I is a principal ideal. Thus the assertion follows
from Proposition 2.2. �

With the same techniques as in the proof of Proposition 2.2 we can show the
following:
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Proposition 2.4 Let I ⊂ S be a monomial ideal that is perfect and of codimension 2.
Then S/I is clean. In particular, I is a Stanley ideal.

Proof We will show that the polarized ideal Ip defines a shellable simplicial com-
plex. Then, as in the proof of Proposition 2.2, it follows that S/I is clean. Note that
Ip is a perfect squarefree monomial ideal of codimension 2. Let Δ be the simplicial
complex defined by Ip . By the Eagon–Reiner theorem [9] and a result of Terai [20],
the ideal IΔ∨ has a 2-linear resolution. Now we use the fact, proved in [11, Theo-
rem 3.2], that an ideal with a 2-linear resolution has linear quotients, which in turn
implies that Δ is shellable, as desired. �

Combining the preceding results with Apel’s result according to which all mono-
mial ideals with dimS/I ≤ 1 are Stanley ideals, we obtain the following:

Corollary 2.5 Let I ⊂ S be a monomial ideal. If n ≤ 4 and S/I is Cohen–Macaulay,
then I is a Stanley ideal.

3 Gorenstein monomial ideals of codimension 3

As the main result of this section, we will show the following:

Theorem 3.1 Each Gorenstein monomial ideal of codimension 3 is a Stanley ideal.

The proof of this result is based on the following structure theorem that can be
found in [5].

Theorem 3.2 Let I ⊂ S be a monomial Gorenstein ideal of codimension 3. Then
|G(I)| is an odd number, say |G(I)| = 2m + 1, and there exists a regular sequence
of monomials u1, . . . , u2m+1 in S such that

G(I) = {uiui+1 · · ·ui+m−1 : i = 1, . . . ,2m + 1},
where ui = ui−2m−1 whenever i > 2m + 1.

We now show

Proposition 3.3 Let I ⊂ T = K[y1, . . . , yr ] be a monomial ideal such that T/I is
(pretty) clean. Let u1, . . . , ur ∈ S = K[x1, . . . , xn] be a regular sequence of mono-
mials, and let ϕ : T → S be the K-algebra homomorphism with ϕ(yj ) = uj for
j = 1, . . . , r . Then S/ϕ(I)S is (pretty) clean.

Proof Let I = I0 ⊂ I1 ⊂ · · · ⊂ Im = T be a pretty clean filtration F of T/I with
Ik/Ik−1 = T/Pk for all k.

Observe that the K-algebra homomorphism ϕ : T → S is flat, since u1, . . . , ur is
a regular sequence. Hence if we set Jk = φ(Ik)S for k = 1, . . . ,m, then we obtain the
filtration ϕ(I)S = J0 ⊂ J1 ⊂ · · · ⊂ Jm = S with Jk/Jk−1 ∼= S/ϕ(Pk)S.
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Suppose that Pk = (yi1, . . . , yik ); then ϕ(Pk)S = (ui1, . . . , uik ). In other words,
ϕ(Pk)S is a monomial complete intersection, and hence by Proposition 2.2 we have
that S/ϕ(Pk)S is clean. Therefore there exists a prime filtration Jk = Jk0 ⊂ Jk1 ⊂
· · · ⊂ Jkrk

= Jk+1 such that Jki
/Jki−1

∼= S/Pki
, where Pki

is a minimal prime ideal
of ϕ(Pk)S. Since ϕ(Pk)S = (ui1, . . . , uitk

)S is a complete intersection, all minimal
prime ideals of ϕ(Pk) have height tk .

Composing the prime filtrations of Jk/Jk−1, we obtain a prime filtration of
S/ϕ(I)S. We claim that this prime filtration is (pretty) clean. In fact, let Pki

and P�j

be two prime ideals in the support of this filtration. We have to show that if Pki
⊂ P�j

for k < � or Pki
⊂ P�j

for k = � and i < j , then Pki
= P�j

. In the case k = �, we have
height(Pki

) = height(P�j
) = tk , and the assertion follows. In the case k < �, by using

the fact that F is a pretty clean filtration, we have that Pk = P� or Pk 
⊂ P�. In the first
case, the prime ideals Pki

and P�j
have the same height, and the assertion follows. In

the second case, there exists a variable yg ∈ Pk \ P�. Then the monomial ug belongs
to ϕ(Pk)S but not to ϕ(P�)S. This implies that Pki

contains a variable which belongs
to the support of ug . However this variable cannot be a generator of P�j

, because the
support of ug is disjoint from the support of all the monomial generators of ϕ(P�)S.
This shows that Pki


⊂ P�j
. �

Corollary 3.4 Let Δ be a shellable simplicial complex and IΔ ⊂ T = K[y1, . . . , yr ]
its Stanley-Reisner ideal. Furthermore, let u1, . . . , ur ⊂ S = K[x1, . . . , xn] be a reg-
ular sequence of monomials, and let ϕ(yi) = ui for i = 1, . . . , r . Then ϕ(IΔ)S is a
Stanley ideal.

Proof By the theorem of Dress, the ring T/IΔ is clean. Therefore, S/ϕ(IΔ)S is again
clean by Proposition 3.3. In particular, S/ϕ(IΔ)S is pretty clean, which according to
[13, Theorem 6.5] implies that ϕ(IΔ)S is a Stanley ideal. �

Proof of Theorem 3.1 Let Δ be the simplicial complex whose Stanley–Reisner ideal

IΔ ⊂ T = K[y1, . . . , y2m+1]
is generated by the monomials yiyi+1 · · ·yi+m−1, i = 1, . . . ,2m + 1, where yi =
yi−2m−1 whenever i > 2m + 1, and let u1, . . . , u2m+1 ⊂ S = K[x1, . . . , xn] be the
regular sequence given in Theorem 3.1. Then we have I = ϕ(IΔ)S where ϕ(yj ) = uj

for all j . Therefore, by Corollary 3.4, it suffices to show that Δ is shellable.
Identifying the vertex set of Δ with [2m + 1] = {1, . . . ,2m + 1} and observing

that IΔ is of codimension 3, it is easy to see that F ⊂ [2m + 1] is a facet of Δ if and
only if F = [2m + 1] \ {a1, a2, a3} with

a2 − a1 < m + 1, a3 − a2 < m + 1, a3 − a1 > m.

We denote the facet [2m + 1] \ {a1, a2, a3} by F(a1, a2, a3).
We will show that Δ is shellable with respect to the lexicographic order. Note that

F(a1, a2, a3) < F(b1, b2, b3) in the lexicographic order if and only if either b1 < a1,
or b1 = a1 and b2 < a2, or a1 = b1, a2 = b2, and b3 < a3.

In order to prove that Δ is shellable we have to show that if F = F(a1, a2, a3) and
G = F(b1, b2, b3) with F < G, then there exists c ∈ G \ F and some facet H such
that H < G and G \ H = {c}.
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We know that |G \ F | ≤ 3. If |G \ F | = 1, then there is nothing to prove. In the
following we discuss the cases |G \ F | = 2 and |G \ F | = 3. The discussion of these
cases is somewhat tedious but elementary. For the convenience of the reader, we list
all the possible cases.

Case 1: |G \ F | = 2.

(i) If b1 = a1 < b2 < a2, then we choose H = (G \ {a2}) ∪ {b2}.
(ii) If b1 < b2 = a1 or b1 < b2 < a1 < a2 = b3 < a3, then we choose H = (G \

{a3}) ∪ {b1}.
(iii) If b1 < a1 < b2 < a2 = b3 < a3, we consider the following two subcases:

For a3 − b2 < m + 1, we choose H = (G \ {a3}) ∪ {b3}.
For a3 − b2 ≥ m + 1, we choose H = (G \ {a3}) ∪ {b1}.

(iv) If b1 < a1 < a2 = b2 < b3 < a3, then we choose H = (G \ {a3}) ∪ {b3}.
(v) If b1 < a1 < a2 = b2 < a3 < b3 or b1 < a1 < a2 < a3 = b2 < b3, then we choose

H = (G \ {a1}) ∪ {b1}.
Case 2: |G \ F | = 3.

(i) If b1 < a1 < a2 < a3 < b3, then we choose H = (G \ {a1}) ∪ {b1}.
(ii) If b1 < b2 < b3 < a1 < a2 < a3 or b1 < b2 < a1 < a2 < a3 and a1 < b3, then we

choose H = (G \ {a1}) ∪ {b2}.
(iii) If b1 < a1 < b2 < b3 < a2 < a3, then we choose H = (G \ {a2}) ∪ {b3}.
(iv) If b1 < a1 < b2 < a2 < b3 < a3, we consider the following two subcases:

For a3 − b2 < m + 1, we choose H = (G \ {a3}) ∪ {b3}.
For a3 − b2 ≥ m + 1, we choose H = (G \ {a3}) ∪ {b1}.

(v) If b1 < a1 < a2 < b2 < b3 < a3, then we choose H = (G \ {a3}) ∪ {b3}. �

Combining the result of Theorem 3.1 with Corollary 2.3, Proposition 2.4, and the
result of Apel [3, Corollary 3], we obtain:

Corollary 3.5 Let I ⊂ S be monomial ideal. If n ≤ 5 and S/I is Gorenstein, then I

is a Stanley ideal.

4 Squarefree Stanley decompositions and partitions of simplicial complexes

A Stanley space uK[Z] is called a squarefree Stanley space if u is a squarefree mono-
mial and supp(u) ⊆ Z. We shall use the following notation: for F ⊆ [n], we set
xF = ∏

i∈F xi and ZF = {xi : i ∈ F }. Then a Stanley space is squarefree if and only
if it is of the form xF K[ZG] with F ⊆ G ⊆ [n].

A Stanley decomposition of S/I is called a squarefree Stanley decomposition of
S/I if all Stanley spaces in the decomposition are squarefree.

Lemma 4.1 Let I ⊂ S be a monomial ideal. The following conditions are equiva-
lent:

(a) I is a squarefree monomial ideal.
(b) S/I has a squarefree Stanley decomposition.
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Proof (a) =⇒ (b) We may view I as the Stanley–Reisner ideal of some simplicial
complex Δ. With each F ∈ Δ we associate the squarefree Stanley space xF K[ZF ].
We claim that

⊕
F∈Δ xF K[ZF ] is a (squarefree) Stanley decomposition of S/I . In-

deed, a monomial u ∈ S belongs to I c if and only if supp(u) ∈ Δ, and these monomi-
als form a K-basis for I c . On the other hand, a monomial u ∈ S belongs to xF K[ZF ]
if and only if supp(u) = F . This shows that I c = ⊕

F∈Δ xF K[ZF ].
(b) =⇒ (a) Let

⊕
i uiK[Zi] be a squarefree Stanley decomposition of S/I . As-

sume that I is not a squarefree monomial ideal. Then there exists u ∈ G(I) that
is not squarefree, and we may assume that x2

1 |u. Then u′ = u/x1 ∈ I c , and hence
there exists i such that u′ ∈ uiK[Zi]. Since x1|u′, it follows that x1 ∈ Zi . Therefore
u ∈ uiK[Zi] ⊂ I c , a contradiction. �

Let Δ be a simplicial complex of dimension d − 1 on the vertex set V =
{x1, . . . , xn}. A subset I ⊂ Δ is called an interval if there exist faces F,G ∈ Δ such
that I = {H ∈ Δ : F ⊆ H ⊆ G}. We denote this interval given by F and G also by
[F,G] and call dimG − dimF the rank of the interval. A partition P of Δ is a pre-
sentation of Δ as a disjoint union of intervals. The r-vector of P is the integer vector
r = (r0, r1, . . . , rd), where ri is the number of intervals of rank i.

Proposition 4.2 Let P : Δ = ⋃r
i=1[Fi,Gi] be a partition of Δ. Then

(a) D(P) = ⊕r
i=1 xFi

K[ZGi
] is a squarefree Stanley decomposition of S/I .

(b) The map P �→ D(P) establishes a bijection between partitions of Δ and square-
free Stanley decompositions of S/I .

Proof (a) Since each xFi
K[ZGi

] is a squarefree Stanley space, it suffices to show
that I c is indeed the direct sum of the Stanley spaces xFi

K[ZGi
]. Let u ∈ Mon(I c);

then H = supp(u) ∈ Δ. Since P is a partition of Δ, it follows that H ∈ [Fi,Gi] for
some i. Therefore, u = xFi

u′ for some monomial u′ ∈ K[ZGi
]. This implies that u ∈

xFi
K[ZGi

]. This shows that Mon(I c) is the union of sets Mon(xFi
K[ZGi

]). Suppose
that there exists a monomial u ∈ xFi

K[ZGi
]∩xFj

K[ZGj
]. Then supp(u) ∈ [Fi,Gi]∩

[Fj ,Gj ]. This is only possible if i = j , since P is partition of Δ.
(b) Let [Fi,Gi] and [Fj ,Gj ] be two intervals. Then xFi

K[ZGi
] = xFj

K[ZGj
]

if and only if [Fi,Gi] = [Fj ,Gj ]. Indeed, if xFi
K[ZGi

] = xFj
K[ZGj

], then xFj
∈

xFi
K[ZGi

], and hence xFi
|xFj

. By symmetry we also have xFj
|xFi

. In other words,
Fi = Fj , and it also follows that K[ZGi

] = K[ZGj
]. This implies that Gi = Gj .

These considerations show that P �→ D(P) is injective.
On the other hand, let D : S/I = ⊕r

i=1 xFi
K[ZGi

] be an arbitrary squarefree
Stanley decomposition of S/I . By the definition of a squarefree Stanley set we have
Fi ⊆ Gi , and since xFi

K[ZGi
] ⊂ I c , it follows that Gi ∈ Δ. Hence [Fi,Gi] is an

interval of Δ, and a squarefree monomial xF belongs to xFi
K[ZGi

] if and only if
F ∈ [Fi,Gi].

Let F ⊂ Δ be an arbitrary face. Then xF ∈ Mon(I c) = ⋃r
i=1 Mon(xFi

K[ZGi
]).

Hence the squarefree monomial xF belongs to xFi
K[ZGi

] for some i, and hence F ∈
[Fi,Gi]. This shows that

⋃r
i=1[Fi,Gi] = Δ. Suppose that F ∈ [Fi,Gi] ∩ [Fj ,Gj ].

Then xF ∈ xFi
K[ZGi

] ∩ xFj
K[ZGj

], a contradiction. Hence we see that P : Δ =⋃r
i=1[Fi,Gi] is a partition of Δ with D(P) = D. �
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Now let I ⊂ S be a squarefree monomial ideal. Then we set

sqdepth(S/I) = max
{
sdepth(D) : D is a squarefree Stanley decomposition of S/I

}

and call this number the squarefree Stanley depth of S/I .
As the main result of this section, we have the following:

Theorem 4.3 Let I ⊂ S be a squarefree monomial ideal. Then sqdepth(S/I) =
sdepth(S/I).

Proof Let D be any Stanley decomposition of S/I , and let Δ be the simplicial
complex satisfying I = IΔ. For each F ∈ Δ, we have xF ∈ I c. Hence there ex-
ists a summand uK[Z] such that xF ∈ uK[Z]. Since xF is squarefree, it follows
that u = xG is squarefree and F ⊆ G ∪ Z. Let D′ be the sum of those Stanley
spaces uK[Z] in D for which u is a squarefree monomial. Then this sum is direct.
Therefore the intervals [G,G ∪ Z] corresponding to the summands in D′ are pair-
wise disjoint. On the other hand, these intervals cover Δ, as we have seen before,
and hence form a partition of P of Δ. From the construction of P it follows that
sqdepthD(P) ≥ sdepthD. This shows that sqdepth(S/I) ≥ sdepth(S/I). The other
inequality sqdepth(S/I) ≤ sdepth(S/I) is obvious. �

Corollary 4.4 Let Δ be a simplicial complex. Then the following conditions are
equivalent:

(a) IΔ is a Stanley ideal.
(b) There exists a partition Δ = ⋃r

i=1[Fi,Gi] with |Gi | ≥ depthK[Δ] for all i.

Let Δ be a simplicial complex and F(Δ) its set of facets. Stanley calls a sim-
plicial complex Δ partitionable if there exists a partition Δ = ⋃r

i=1[Fi,Gi] with
F(Δ) = {G1, . . . ,Gr}. We call a partition with this property a nice partition. Stan-
ley conjectures [18, Conjecture 2.7] (see also [19, Problem 6]) that each Cohen–
Macaulay simplicial complex is partitionable. In view of Corollary 2.1, it follows
that the conjecture on Stanley decompositions implies the conjecture on partitionable
simplicial complexes. More precisely, we have the following:

Corollary 4.5 Let Δ be a Cohen–Macaulay simplicial complex with the h-vector
(h0, h1, . . . , hd). Then the following conditions are equivalent:

(a) IΔ is a Stanley ideal.
(b) Δ is partitionable.
(c) Δ admits a partition whose r-vector satisfies ri = hd−i for i = 0, . . . , d .
(d) Δ admits a partition into e(K[Δ]) intervals.

Moreover, any nice partition of Δ satisfies conditions (c) and (d).

Proof (a) ⇐⇒ (b) follows from Corollary 4.4. In order to prove the implication
(b) =⇒ (c), consider a nice partition Δ = ⋃r

i=1[Fi,Gi] of Δ. From this decompo-
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sition, the f -vector of Δ can be computed by the formula

d∑

i=0

fi−1t
i =

d∑

i=0

ri t
d−i (1 + t)i .

On the other hand, one has

d∑

i=0

fi−1t
i =

d∑

i=0

hit
i(1 + t)d−i ,

see [6, p. 213]. Comparing the coefficients, the assertion follows.
The implication (c) =⇒ (d) follows from the fact that e(K[Δ]) = ∑d

i=0 hi , see
[6, Proposition 4.1.9]. Finally, (d) =⇒ (a) follows from Corollary 2.1. �

We conclude this section with some explicit examples. Recall that constructibil-
ity, a generalization of shellability, is defined recursively as follows: (i) a simplex is
constructible, (ii) if Δ1 and Δ2 are d-dimensional constructible complexes and their
intersection is a (d − 1)-dimensional constructible complex, then their union is con-
structible. In this definition, if in the recursion we restrict Δ2 always to be a simplex,
then the definition becomes equivalent to that of (pure) shellability. The notion of con-
structibility for simplicial complexes appears in [16]. It is known and easy to see that

shellable ⇒ constructible ⇒ Cohen–Macaulay.

Since any shellable simplicial complex is partitionable (see [18, p. 79]), it is nat-
ural to ask whether any constructible complex is partitionable. This question is a
special case of Stanley’s conjecture that says that Cohen–Macaulay simplicial com-
plexes are partitionable. We do not know the answer yet! In the following we present
some examples where the complexes are not shellable or are not Cohen–Macaulay
but the ideals related to these simplicial complexes are Stanley ideals.

Example 4.6 The following example of a simplicial complex is due to Masahiro
Hachimori [10]. The simplicial complex Δ described by the next figure is 2-dimen-
sional and nonshellable but constructible. It is constructible, because if we divide the
simplicial complex by the bold line, we obtain two shellable complexes, and their
intersection is a shellable 1-dimensional simplicial complex.

3
0 5

3

4 9 6 2

1 8 7 1

1

3

4 2

4 2
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Indeed we can write Δ = Δ1 ∪ Δ2, where the shelling order of the facets of Δ1 is
given by

148,149,140,150,189,348,349,378,340,390,590,569,689,678,

and that of Δ2 is given by

125,126,127,167,235,236,237,356.

We use the following principle to construct a partition of Δ: suppose that Δ1 and
Δ2 are d-dimensional partitionable simplicial complexes and that Γ = Δ1 ∩ Δ2 is
a (d − 1)-dimensional pure simplicial complex. Let Δ1 = ⋃r

i=1[Ki,Li] be a nice
partition of Δ1, and Δ2 = ⋃s

i=1[Fi,Gi] a nice partition of Δ2. Suppose that, for
each i, the set [Fi,Gi] \ Γ has a unique minimal element Hi . Then Δ1 ∪ Δ2 =⋃r

i=1[Ki,Li]∪⋃s
i=1[Hi,Gi] is a nice partition of Δ1 ∪Δ2. Notice that [Fi,Gi] \Γ

has a unique minimal element if and only if, for all F ∈ [Fi,Gi] ∩ Γ, there exists a
facet G of Γ with F ⊆ G ⊂ Gi .

Suppose that Δ2 is shellable with shelling G1, . . . ,Gs . Let Fi be the unique
minimal subface of Gi that is not a subface of any Gj with j < i. Then Δ2 =⋃s

i=1[Fi,Gi] is the nice partition induced by this shelling. The above discussions
then show that Δ1 ∪ Δ2 is partitionable if, for all i and all F ∈ Γ such that F ⊂ Gi

and F 
⊂ Gj for j < i, there exists a facet G ∈ Γ with F ⊆ G ⊂ Gi .
In our particular case the shelling of Δ1 induces the following partition of Δ1:

[∅,148], [9,149], [0,140], [5,150], [89,189], [3,348], [39,349], [7,378],
[30,340], [90,390], [59,590], [6,569], [68,689], [67,678],

and the shelling of Δ2 induces the following partition of Δ2:

[∅,125], [6,126], [7,127], [67,167], [3,235], [36,236], [37,237], [56,356].
The facets of Γ = Δ1 ∩ Δ2 are: 15,56,67,73.

The restrictions of the intervals of this partition of Δ2 to the complement of Γ do
not all give intervals. For example, we have [6,126] \Γ = {16,26,126}. This set has
two minimal elements, and hence is not an interval. On the other hand, the partition
of Δ2 (which is not induced from a shelling)

[∅,237], [1,125], [5,356], [6,167], [17,127], [25,235], [26,126], [36,236]
restricted to the complement of Γ yields the intervals

[2,237], [12,125], [35,356], [16,167], [17,127], [25,235], [26,126], [36,236],
which together with the intervals of the partition of Δ1 give us a partition of Δ.

Example 4.7 (The Dunce hat) The Dunce hat is the topological space obtained from
the solid triangle abc by identifying the oriented edges �ab, �bc, and �ac. The following
is a triangulation of the Dunce hat using 8 vertices.
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The facets arising from this triangulation are

124,125,145,234,348,458,568,256,236,138,128,278,678,237,137,167,136.

It is known that the simplicial complex corresponding to this triangulation is not
shellable (not even constructible), but it is Cohen–Macaulay, see [10], and has the
following partition:

[∅,124], [3,234], [5,145], [6,236], [7,137], [8,348], [13,138], [16,136], [18,128],
[25,125], [27,237], [28,278], [56,256], [67,167], [68,568], [78,678], [58,458].

Therefore we again have depth(Δ) = dim(Δ) = sdepth(Δ) = 3.

Example 4.8 (The Cylinder) The ideal I = (x1x4, x2x5, x3x6, x1x3x5, x2x4x6) ⊂
K[x1, . . . , x6] is the Stanley–Reisner ideal of the triangulation of the cylinder shown
in the next figure. The corresponding simplicial complex Δ is Buchsbaum but not
Cohen–Macaulay.

1 5

3

42

6

The facets of Δ are 123,126,156,234,345,456, and it has the following partition:

[∅,123], [4,234], [5,345], [6,456], [15,156], [16,126], [26,26].
Therefore we have depth(Δ) = sdepth(Δ) = 2 < 3 = dim(Δ). Although Δ is not
partitionable, IΔ is a Stanley ideal.
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Matematicǎ, 54, 137–152.

8. Dress, A. (1993). A new algebraic criterion for shellability. Beiträge zur Algebra und Geometrie,
34(1), 45–55.

9. Eagon, J., & Reiner, V. (1998). Resolutions of Stanley–Reisner rings and Alexander duality. Journal
of Pure and Applied Algebra, 130, 265–275.

10. Hachimori, M. Decompositions of two-dimensional simplicial complexes. Discrete Mathematics, in
press.

11. Herzog, J., Hibi, T., & Zheng, X. (2004). Monomial ideals whose powers have a linear resolution.
Mathematica Scandinavica, 95(1), 23–32.

12. Herzog, J., Hibi, T., & Zheng, X. (2004). Dirac’s theorem on chordal graphs and Alexander duality.
European Journal of Combinatorics, 25(7), 949–960.

13. Herzog, J., & Popescu, D. (2006). Finite filtrations of modules and shellable multicomplexes. Manu-
scripta Mathematica, 121, 385–410.

14. Herzog, J., & Takayama, Y. (2002). Resolutions by mapping cones. Homology, Homotopy and Appli-
cations, 4, 277–294. The Roos Festschrift, Vol. 2(2).

15. Jahan, A. S. (2007). Prime filtrations of monomial ideals and polarizations. Journal of Algebra,
312(2), 1011–1032.

16. Stanley, R. P. (1975). Cohen–Macaulay rings and constructible polytopes. Bulletin of the American
Mathematical Society, 81, 133–135.

17. Stanley, R. P. (1982). Linear Diophantine equations and local cohomology. Inventiones Mathematicae,
68, 175–193.

18. Stanley, R. P. (1983). Combinatorics and commutative algebra. Birkhäuser, Basel.
19. Stanley, R. P. (2000). Positivity problems and conjectures in algebraic combinatorics. In V. Arnold,

M. Atiyah, P. Lax, & B. Mazur (Eds.), Mathematics: frontiers and perspectives (pp. 295–319). Prov-
idence: American Mathematical Society.

20. Terai, N. (2000). Generalization of Eagon–Reiner theorem and h-vectors of graded rings. Preprint.


	Stanley decompositions and partitionable simplicial complexes
	Abstract
	Introduction
	Stanley decompositions
	Gorenstein monomial ideals of codimension 3
	Squarefree Stanley decompositions and partitions of simplicial complexes
	Acknowledgements

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


