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Abstract We show that the principal order ideal of an element w in the Bruhat or-
der on involutions in a symmetric group is a Boolean lattice if and only if w avoids
the patterns 4321, 45312 and 456123. Similar criteria for signed permutations are
also stated. Involutions with this property are enumerated with respect to natural
statistics. In this context, a bijective correspondence with certain Motzkin paths is
demonstrated.

Keywords Bruhat order · Boolean involutions · Pattern avoidance

1 Introduction

The Bruhat order on a Coxeter group is fundamental in a multitude of contexts. For
example, the incidences among the closed cells in the Bruhat decomposition of a flag
variety are governed by the Bruhat order on the corresponding Weyl group.

In spite of its importance, the Bruhat order is in many ways poorly understood. For
example, much about the structure of intervals, or even principal order ideals, remains
unclear. There are, however, several known connections between structural properties
of principal order ideals in the Bruhat order and pattern avoidance properties of the
corresponding group elements. Here are some examples:

– A Schubert variety is rationally smooth if and only if the corresponding Bruhat
order ideal is rank-symmetric; see [3]. These properties have been characterized in
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terms of pattern avoidance by Lakshmibai and Sandhya [10] (type A) and Billey [1]
(types B , C, D).

– Gasharov and Reiner [5] have shown that a Schubert variety is “defined by inclu-
sions” precisely when the corresponding permutation avoids certain patterns. By
work of Sjöstrand [12], these permutations are precisely those whose Bruhat order
ideal is defined by the “right hull” of the permutation.

– Tenner [14] has demonstrated that the permutations whose Bruhat order ideals are
Boolean lattices can be characterized in terms of pattern avoidance. By general
theory, this characterizes the lattices among all principal order ideals in the Bruhat
order.

An interesting subposet of the Bruhat order is induced by the involutions. Activity
around this subposet was spawned by Richardson and Springer [11] who established
connections with algebraic geometry that resemble (and, in some sense, generalize)
the situation in the full Bruhat order. For example, the (dual of the) Bruhat order
on the involutions in the symmetric group S2n+1 encodes the incidences among
the closed orbits under the action of a Borel subgroup on the symmetric variety
SL2n+1(C)/SO2n+1(C); cf. [11, Example 10.3].

Recently, it has been shown that the Bruhat order on involutions has many combi-
natorial and topological properties in common with the full Bruhat order [6, 9]. The
purpose of this paper is to incorporate pattern avoidance into this picture. Specifically,
we shall study analogues for involutions of the aforementioned results of Tenner.

Our main result is as follows:

Theorem 1.1 The principal order ideal generated by an involution w in the Bruhat
order on the involutions in a symmetric group is a Boolean lattice if and only if w

avoids the patterns 4321, 45312 and 456123.

The remainder of this paper is organised in the following way. In the next sec-
tion, we recall standard definitions and agree on notation. That section also includes
a brief review of some results on involutions in Coxeter groups. After that, we turn
to the proof of Theorem 1.1 in Section 3. A corresponding result for signed permuta-
tions (the type B case) is also given. Section 4 is devoted to enumerative results; we
count involutions with Boolean principal order ideals with respect to various natural
statistics, and a bijective correspondence with certain Motzkin paths is constructed.
Finally, we suggest a direction for further research in Section 5.

2 Preliminaries

2.1 Permutations and patterns

Let Sn denote the symmetric group consisting of all permutations of [n] = {1, . . . , n}.
An inversion of π ∈ Sn is a pair (i, j) such that i < j and π(i) > π(j). The

number of inversions of π is denoted by inv(π).
The excedances and the deficiencies of π ∈ Sn are the indices i ∈ [n] such that

π(i) > i and π(i) < i, respectively. We use exc(π) to denote the number of ex-
cedances of π .
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Given π ∈ Sn and p ∈ Sm (with m ≤ n), say that π contains the pattern p if there
exist 1 ≤ i1 < · · · < im ≤ n such that for all j, k ∈ [m], π(ij ) < π(ik) if and only if
p(j) < p(k). In this case, say that 〈p〉 = (π(i1), . . . , π(im)) is an occurrence of p in
π . Furthermore, we write 〈p(j)〉 = π(ij ) for j ∈ [m].

If π does not contain p, it avoids p.

Example 2.1 Consider π = 84725631 ∈ S8. It has several occurrences of the pattern
4231; two of them are (8,5,6,1) and (8,4,5,3).

Recall that an involution is an element of order at most two. At times, we shall
find it convenient to represent an involution w ∈ Sn by the graph on vertex set [n] in
which two vertices are joined by an edge if they belong to the same 2-cycle in w. For
an example, see Figure 2.

2.2 Coxeter groups

Here, we briefly review those facts from Coxeter group theory that we need in the
sequel. For more details, see [2] or [8].

A Coxeter group is a group W generated by a finite set S of involutions where all
relations among the generators are derived from equations of the form (ss′)m(s,s′) = e

for some m(s, s′) = m(s′, s) ≥ 2, where s, s′ ∈ S are disctinct generators. Here, e ∈
W denotes the identity element. The pair (W,S) is referred to as a Coxeter system.

We may specify a Coxeter system using its Coxeter graph. This is an edge-labelled
complete graph on vertex set S where the edge {s, s′} has the label m(s, s′). For
convenience, edges labelled 2 and edge labels that equal 3 are suppressed from the
notation.

Let (W,S) be a Coxeter system. Given w ∈ W , suppose k is the smallest number
such that w = s1 · · · sk for some si ∈ S. Then k is the length of w, denoted �(w), and
the word s1 · · · sk is called a reduced expression for w.

The set of reflections of W is T = {wsw−1 : w ∈ W,s ∈ S}. Define the absolute
length �′(w) to be the smallest k such that w is a product of k reflections.

Example 2.2 The symmetric group Sn is a Coxeter group with the adjacent transpo-
sitions si = (i, i + 1), i ∈ [n − 1], as Coxeter generators. Its Coxeter graph is simply
a path on n − 1 vertices. In this setting, �(w) = inv(w).

In the Sn case, T is the set of transpositions. It is well-known that the minimum
number of transpositions required to express w ∈ Sn as a product is n− c(w), where
c(w) is the number of cycles in the disjoint cycle decomposition of w. In particular,
if w ∈ Sn is an involution, �′(w) is the number of 2-cycles in w. In other words,
�′(w) = exc(w).

The Bruhat order is the partial order on W defined by u ≤ w if and only if w =
ut1 · · · tm for some ti ∈ T such that �(ut1 · · · ti ) < �(ut1 · · · ti+1) for all i ∈ [m − 1].
Clearly, e ∈ W is the minimum element under the Bruhat order.
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2.3 Involutions in Coxeter groups

As before, let (W,S) be a Coxeter system. Denote by I(W) ⊆ W the set of involu-
tions in W . We now review some results on the combinatorics of I(W). They can all
be found in [6] or [7]. The reader who is acquainted with the subject will notice that
all these properties are completely analogous to standard statements about the full
group W .

Introduce a set of symbols S = {s : s ∈ S}. By abuse of notation, we will denote the
symbols corresponding to the generators si of the symmetric group Sn by si instead
of si for better readability. Define an action of the free monoid S∗ from the right on
(the set) W by

ws =
{

ws if sws = w,

sws otherwise,

and ws1 · · · sk = (· · · (ws1)s2 · · · )sk for w ∈ W , si ∈ S. By abuse of notation, we
write s1 · · · sk instead of es1 · · · sk . The elements of this kind are precisely the invo-
lutions in W :

Proposition 2.3 The orbit of e under the S∗-action is I(W).

When w ∈ I(W), the condition sws = w which appears in the definition of the
S∗-action is equivalent to �(sws) = �(w).

If w = s1 · · · sk for some si ∈ S, then the sequence s1 · · · sk is called an S-
expression for w. This expression is reduced if k is minimal among all such ex-
pressions. In this case, k is called the rank and denoted ρ(w).

Proposition 2.4 (Deletion property) Suppose s1 · · · sk is an S-expression for w which
is not reduced. Then, w = s1 · · · ŝi · · · ŝj · · · sk for some 1 ≤ i < j ≤ k, where a hat
means omission of that element.

Let Br(I(W)) denote the subposet of the Bruhat order on W induced by I(W).
Next, we recall a convenient characterization of its order relation.

Proposition 2.5 (Subword property) Suppose that s1 · · · sk is a reduced S-expression
for w ∈ I(W). For u ∈ I(W), we have u ≤ w if and only if u = si1

· · · sim
for some

1 ≤ i1 < · · · < im ≤ k.

The poset Br(I(W)) is graded with rank function ρ. Furthermore, ρ(w) =
(�(w) + �′(w))/2 for all w ∈ I(W). In fact, given a reduced S-expression s1 · · · sk

for w ∈ I(W), one has

�′(w) = |{i ∈ [k] : s1 · · · si = s1 · · · si−1si}|
and, consequently,

�(w) = �′(w) + 2 · |{i ∈ [k] : s1 · · · si 
= s1 · · · si−1si}|.
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3 Boolean involutions and pattern avoidance

As before, let (W,S) be a Coxeter system. For w ∈ I(W), denote by B(w) the prin-
cipal order ideal below w in the Bruhat order on involutions. In other words, B(w) is
the subposet of Br(I(W)) induced by {u ∈ I(W) : u ≤ w}.

We call an involution w ∈ I(W) Boolean if B(w) is isomorphic to a Boolean
lattice. In this section we shall prove the characterization of Boolean involutions in
I(Sn) which was stated as Theorem 1.1.

First, we observe a useful characterization of Boolean involutions which is valid
in any Coxeter group. See [14, Theorem 4.3] for an analogous statement about the
full Bruhat order.

Proposition 3.1 Let w ∈ I(W). Then w is Boolean if and only if no reduced S-
expression for w has repeated letters. This is the case if and only if there is an S-
expression for w without repeated letters.

Proof Observe that, by the subword property, every reduced S-expression of w ∈
I(W) contains the same set of letters, namely {s ∈ S : s ≤ w}. If s1 · · · sk−1 is a
reduced S-expression for w ∈ I(W) and all si , i ∈ [k], are distinct, then s1 · · · sk is
reduced, too; otherwise the deletion property would imply that w = s1 · · · sksk has
a reduced expression containing the letter sk , contradicting the above assertion. We
conclude that every S-expression containing only distinct letters is reduced. The “if”
direction (of both assertions) therefore follows directly from the subword property.

Since ρ is the rank function of Br(I(W)), the elements of rank one in [e,w] are
the si ≤ w. Thus, if w has a reduced S-expression containing repeated letters, [e,w]
will have fewer elements of rank one than the Boolean lattice of rank ρ(w), so that
w cannot be Boolean. This shows the “only if” part of the assertions. �

Remark 3.2 As a consequence of [6, Theorem 4.5], the principal order ideals in
Br(I(W)) are compressible Eulerian posets in the sense of du Cloux [4]. It then
follows from [4, Corollary 5.4.1], that such an ideal is a lattice if and only if it is a
Boolean lattice. Thus, the Boolean involutions are precisely the involutions whose
principal order ideals are lattices.

Remark 3.3 The map w �→ w−1 is an automorphism of the Bruhat order on the full
group W . The fixed point poset is Br(I(W)). It is easy to see that the fixed point
poset of any automorphism of a Boolean lattice is itself a Boolean lattice. Therefore,
an involution w is Boolean if its principal order ideal in the full Bruhat order on W is
Boolean. The converse, however, does not hold. For example, 321 and 3412 are the
smallest non-Boolean permutations in the full Bruhat order, but they are Boolean in
the Bruhat order on involutions.

3.1 Proof of Theorem 1.1

We now proceed to prove Theorem 1.1. First, however, let us give a short outline
of the idea of the proof. We shall introduce the notions of connected components
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and long-crossing pairs for purely technical purposes. Then, Propositions 3.8 and
3.9 establish the fact that being Boolean is equivalent to the non-existence of a
long-crossing pair. Finally, we show in Proposition 3.12 that w ∈ I(Sn) has a long-
crossing pair if and only if it contains one or more of the patterns 4321, 45312 and
456123.

An orbit of w ∈ Sn is a set of the form {i,w(i),w2(i), . . .} ⊆ [n].

Definition 3.4 Let w ∈ Sn. An interval C ⊆ [n] is called a connected component of
w if it is the union of some orbits of w and it cannot be partitioned into two intervals
that also are unions of orbits of w. The permutation w ∈ Sn is called connected if [n]
is the unique connected component of w.

For w ∈ Sn and D ⊆ [n] being any union of orbits of w, we define the restriction
wD of w to D by

wD(i) =
{

w(i) if i ∈ D,

i otherwise.

We see that if w ∈ I(Sn) is an involution, then wD is also an involution.

Example 3.5 Consider the involution w = 532614798 ∈ I(S9). Its cycle decompo-
sition is given by (15)(23)(46)(89) and it has connected components [1,6], {7} and
[8,9]. The restriction of w to D = {1,5,8,9} is the involution wD = 523416798 ∈
I(S9) which has connected components [1,5], {6}, {7} and [8,9].

Recall that, as a Coxeter group, Sn is generated by the adjacent transpositions
si = (i, i + 1), i ∈ [n − 1].

Let w ∈ I(Sn) have connected components C1, . . . ,Ck . Then wCi
belongs to

the standard parabolic subgroup of Sn generated by sai
, sai+1, . . . , sbi

where Ci =
[ai, bi +1]. In particular, those subgroups have pairwise trivial intersections and gen-
erators of different subgroups commute. This implies that the concatenation of re-
duced S-expressions for wCi

and wCj
is a reduced S-expression for wCi∪Cj

for all
i, j ∈ [k] with i 
= j . The following lemma is now immediate.

Lemma 3.6 Let w ∈ I(Sn) have connected components C1, . . . ,Ck . Then the fol-
lowing holds:

1. If wi is a reduced S-expression for wCi
for all i ∈ [k], then the concatenation

wπ(1)wπ(2) · · ·wπ(k) is a reduced S-expression for w for any π ∈ Sk .
2. B(w) ∼= B(wC1) × · · · × B(wCk

).
3. The involution w is Boolean if and only if wCi

is Boolean for all i ∈ [k].

Definition 3.7 Let w ∈ I(Sn) and i, j ∈ [n]. The pair (i, j) is long-crossing in w if
i < j < w(j) and w(i) > j + 1.

We note that the elements i and j of a long-crossing pair (i, j) in some w ∈ I(Sn)

are in the same connected component.
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Proposition 3.8 (A sufficiency criterion) Let w ∈ I(Sn). If there is no long-crossing
pair (i, j) in w, then w is Boolean.

Proof Assume that w ∈ I(Sn) has no long-crossing pair and that n ≥ 3. Using
Lemma 3.6 we can assume that w is connected (otherwise consider each connected
component separately). Assume that the set of 2-cycles of w is given by {(il,w(il)) :
l ∈ [k]} with il < w(il) for all l ∈ [k] and 1 = i1 < i2 < . . . < ik . Because (il, il+1) is
not a long-crossing pair for l ∈ [k − 1], it holds that w(il) ≤ il+1 + 1 ≤ w(il+1) and
in particular w(ik) = n. If now w(il) < il+1 for some l ∈ [k − 1], then [1,w(il)] and
[w(il)+1, n] are unions of orbits of w and w is not connected. Thus, w(il) = il+1 +1
for all l ∈ [k − 1].

Consider the involution

v = (1, i2)(i2 + 1, i3)(i3 + 1, i4) · · · (ik−1 + 1, ik)(ik + 1, n) ∈ I(Sn).

An S-expression for v is given by

s1s2 · · · si2−1si2+1 · · · si3−1si3+1 · · · sik−1sik+1 · · · sn−1.

But w is obtained by letting si2
si3

· · · sik
act on v from the right, that is

s1s2 · · · si2−1si2+1 · · · si3−1si3+1 · · · sik−1sik+1 · · · sn−1si2
si3

· · · sik

is an S-expression for w without repeated letters, and thus w is Boolean by Corol-
lary 3.1. �

Proposition 3.9 (A necessity criterion) Let w ∈ I(Sn). If there is a long-crossing
pair (i, j) in w, then w is not Boolean.

Proof Fix i, j ∈ [n] such that (i, j) is a long-crossing pair in w. Choose any cycle
(k,w(k)) with k 
= i, j . By multiplication of w with (k,w(k)) from the right, we get
an involution w′ ≤ w with the same entries as w except that k and w(k) are now fixed
points. Repeat this for all cycles except (i,w(i)) and (j,w(j)), and call the resulting
involution w′. Thus, the only non-fixed points of w′ are i, w(i), j and w(j), and we
have w′ ≤ w.

By conjugating w′ first with (j + 1,w(j)), then with (i, j − 1) and finally with
(j + 2,w(i)), we get an involution w′′ ≤ w′ having the cycles (j − 1, j + 2) and
(j, j + 1) and fixed points in all other positions. (Here, (k, k) for any k ∈ [n − 1]
should be interpreted as the identity permutation.)

A reduced S-expression for w′′ is given by sj−1sj sj+1sj , and thus w′′ is not
Boolean. But we have w′′ ≤ w′ ≤ w, and therefore w is not Boolean either. �

Example 3.10 In Figure 1 the steps of the proof of Proposition 3.9 are demonstrated
for w = 5764132 and the long-crossing pair (1,2).

In fact, we have shown that w ∈ I(Sn) is Boolean if and only if B(w) contains
no element of the form sj−1sj sj+1sj . Using similar terminology as in [14], such an
element may be called a shift of s1s2s3s2 = 4321 ∈ I(S4). Thus, 4321 in some sense
is the unique minimal non-Boolean involution.
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Fig. 1 Illustration for the proof
of Proposition 3.9

Definition 3.11 Suppose π ∈ Sn, p ∈ Sm and that 〈p〉 is an occurrence of p in
π . We say that this occurrence is induced if (〈p1〉, 〈p2〉, . . . , 〈pk〉) is a cycle of π

whenever (p1,p2, . . . , pk) is a cycle of p.

Recall the involution π = 84725631 ∈ S8 from Example 2.1 with its cycle de-
composition (1,8)(2,4)(3,7)(5)(6). Two occurrences of the pattern 4231 in π are
(8,5,6,1) and (8,4,5,3) whereof the first one is induced but the second one is not.

Proposition 3.12 (A pattern criterion) Let w ∈ I(Sn). The following are equivalent:

1. There is a long-crossing pair (i, j) in w.
2. The involution w contains at least one of the patterns 4321, 45312 and 456123 as

an induced pattern.
3. The involution w contains at least one of the patterns 4321, 45312 and 456123.

Proof “1. ⇒ 2.” Let (i, j) be a long-crossing pair in w. Assume that w does not
contain an induced occurence of 4321. In particular, this implies that w(i) < w(j).
If j + 1 is a fixed point then w contains the induced pattern 45312. Otherwise, we
have w(j + 1) < i or w(j + 1) > w(j) because we assumed w to avoid the induced
pattern 4321. But then w contains 456123 as an induced pattern.

“2. ⇒ 3.” is obvious.
“3. ⇒ 1.” We distinguish three cases. First, assume that w contains 4321 and that

〈4321〉 is an occurrence. Then, at least one of 〈3〉 or 〈2〉 is not a fixed point of w;
denote that value by k. Recall that 〈x〉 refers to the value corresponding to x in the
occurrence and that w(〈x〉) = w−1(〈x〉) denotes the position of that value in w. If
w(k) > k, then w(〈1〉) > w(k) > k > 〈1〉 and (〈1〉, k) is a long-crossing pair in w.
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Fig. 2 Non-Boolean patterns for I(Sn)

Otherwise, it follows that w(〈4〉) < w(k) < k < 〈4〉 and (w(〈4〉),w(k)) is such a
pair.

Next, assume that w avoids 4321 but contains 45312. Let 〈45312〉 be an occur-
rence. Then 〈3〉 is a fixed point, because otherwise w will contain 4321 by similar
arguments as in the first case. This implies that (〈1〉, 〈2〉) is a long-crossing pair.

Finally, assume that w avoids 4321 and 45312 and let 〈456123〉 be an occurrence
of 456123 in w. The fact that w avoids 45312 implies that none of 〈1〉, 〈2〉, . . . , 〈6〉
is a fixed point. Furthermore, if 〈1〉, 〈2〉 or 〈3〉 is a deficiency, denote that value
by k. Then w(〈4〉) < w(k) < k < 〈4〉 and w contains 4321 in contradiction to our
assumption. Thus, 〈1〉, 〈2〉 and 〈3〉 are excedances. Analogously, 〈4〉, 〈5〉 and 〈6〉 are
deficiencies. Now, w(〈1〉) 
= 〈x〉 for at least one of x = 4 or x = 5, and for such x

(w(〈x〉), 〈1〉) or (〈1〉,w(〈x〉)) is a long-crossing pair because w(〈x〉) < 〈1〉 < 〈2〉 <

〈x〉 or 〈1〉 < w(〈x〉) < w(〈6〉) < w(〈1〉), respectively. �

3.2 Other Coxeter groups

The knowledge we gained in Section 3.1 about Boolean involutions in I(Sn) can
be used to classify Boolean involutions in I(W) for some other W . Here, we shall
develop results for the case that W is the group of signed permutations SB

n . This is
the group of permutations π of the set [±n] = {−n, . . . ,−1} ∪ [n] such that π(i) =
−π(−i) for all i ∈ [n].

Let s′
i = (−i,−i − 1), i > 0, and s0 = (1,−1). Define sB

i = sis
′
i , i > 0, and

sB
0 = s0. Then, SB

n is generated as a Coxeter group by {sB
0 , . . . , sB

n−1}, whereas the
symmetric group S([±n]) is generated by {s′

n−1, . . . , s
′
1, s0, . . . , sn−1}.

We have an obvious inclusion I(SB
n ) ⊆ I(S([±n])); let φ denote the inclusion

map.

Lemma 3.13 Let w ∈ I(SB
n ). Then, φ(wsB

0 ) = φ(w)s0. Furthermore, for i ∈
[n − 1],

φ(ws
B
i ) =

{
φ(w)si if siwsi = s′

iws′
i 
= w,

φ(w)sis
′
i otherwise.

Proof Let w ∈ I(SB
n ). Assume first that w = siwsi . This implies w = s′

iws′
i as

well as wsB
i = sB

i w and thus φ(wsB
i ) = φ(wsB

i ) = φ(w)sis
′
i = φ(w)sis

′
i . If, on the

other hand, siwsi 
= s′
iws′

i it follows that siwsi 
= w 
= s′
iws′

i and thus φ(wsB
i ) =

φ(sB
i wsB

i ) = sis
′
iφ(w)sis

′
i = φ(w)sis

′
i . Finally, assume that w 
= siwsi = s′

iws′
i .

By the remark after Proposition 2.3, �(siφ(w)si ) = �(φ(w)) ± 2. Assume the plus
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sign holds; otherwise a completely analogous argument applies. We claim that
φ(w)si = s′

iφ(w) and siφ(w) = φ(w)s′
i . To see this, consider the open interval

I = (φ(w), siφ(w)si ) in the Bruhat order on S([±n]). Known facts about the Bruhat
order (see e.g. [2, Lemma 2.7.3]) imply that I consists of exactly two elements. Thus,
I = {φ(w)s′

i , s
′
iφ(w)} = {φ(w)si , siφ(w)}, proving the claim. We conclude

φ(ws
B
i ) = φ(ws

B
i ) = φ(w)sis

′
i = siφ(w)si = φ(w)si

and the lemma is proved. �

In conjunction with Proposition 3.1, this in particular implies the following.

Corollary 3.14 An involution w ∈ I(SB
n ) is Boolean if and only if φ(w) ∈

I(S([±n])) is Boolean.

There are several possible ways to extend the notion of pattern avoidance from Sn

to SB
n . We now describe the version which we shall use.

Given π ∈ SB
n and p ∈ SB

m (with m ≤ n), we say that π contains the signed
pattern p if there exist 1 ≤ i1 < · · · < im ≤ n such that (|π(i1)|, . . . , |π(im)|) is
an occurrence of the (unsigned) pattern |p(1)| · · · |p(m)| in the ordinary sense, and
sgn(π(ij )) = sgn(p(j)) for all j ∈ [m].

We have a characterization of the Boolean elements of I(S([±n])) in terms of
patterns. This can be translated into signed pattern avoidance in I(SB

n ).
Below, we use window notation for signed permutations. Thus, π ∈ SB

n is repre-
sented by the sequence π(1) · · ·π(n). For compactness, we write i instead of −i. As
an example, 231 denotes the signed permutation defined by ±1 �→ ∓2, ±2 �→ ±3
and ±3 �→ ±1.

Proposition 3.15 Let w ∈ I(SB
n ). Then w is Boolean if and only if it avoids all of

the following signed patterns.
4321 45312 456123
12 132 321
213 4231 4321
3412 45312 45312
4321 54321 456123

546213

Proof Recalling Theorem 1.1 and Corollary 3.14, we need only show that w contains
one of the patterns from the above list if and only if φ(w) contains 4321, 45312 or
456123.

“⇒”. It is straightforward to check, that if w contains any of the signed patterns
listed in the lemma, then φ(w) contains 4321, 45312 or 456123. For example, assume
that w contains 213. Then the definition of φ implies that φ(w) contains 312213,
which in turn contains 4321.

“⇐”. Recall from Proposition 3.12 that φ(w) contains 4321, 45312 or 456123 if
and only if it has an induced occurrence of one of those three patterns. We will show
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Fig. 3 Graph representations for 4321-containing φ(w)

for 4321 that such an induced occurrence in φ(w) implies that w contains one of the
signed patterns listed in the lemma. Similar arguments apply in the other cases.

Assume that φ(w) contains an induced 4321-pattern. The graph representation of
φ(w) is symmetric with respect to the vertical axis bisecting the segment between
1 and −1, because φ(w) is the image of a signed permutation. In Figure 3 we have
indicated with thick edges all possibilities of how the induced occurrence of 4321
can be placed in the graph representation and completed to a symmetric pattern. This
leads to the list of signed patterns in the first column of the proposition. �

The subgroup SD
n of SB

n consists of the permutations with an even number of
negative elements in the window notation. It is a Coxeter group in its own right. The
interested reader is referred to [15, Corollary 5.25] for a list of forbidden patterns that
characterize Boolean involutions in SD

n . However, the proofs get even more techni-
cal because the obvious analogue of Corollary 3.14 does not hold. For example, the
signed involution w = 123 is Boolean in I(SD

n ) but its image φ(w) = 321123 is not
Boolean in I(S([±n])) as it contains the pattern 4321.

4 Enumeration

In this section we shall deduce some enumerative facts about Boolean involutions.
The key is a simple linear recurrence formula valid for a class of Coxeter groups
which we now specify.

Let W be a Coxeter group with Coxeter generator set S = {s1, . . . , sn}, n ≥ 3,
such that sn commutes with all si for i ≤ n− 2. Further, assume sn−1 commutes with
all si for i ≤ n − 3. Finally, suppose snsn−1sn = sn−1snsn−1 and sn−1sn−2sn−1 =
sn−2sn−1sn−2. This means that the Coxeter graph of (W,S) is of the form displayed
in Figure 4. Examples of such W include Sn, n ≥ 3, as well as SB

n , n ≥ 4, and SD
n ,

n ≥ 5.
For brevity, denote by Wi , i ∈ [n], the standard parabolic subgroup of W gener-

ated by {s1, . . . , si}. Let f (Wi, l, a) be the number of Boolean involutions in Wi of
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Fig. 4 The Coxeter graph of
W = Wn

Coxeter length l and absolute length a. In other words,

f (Wi, l, a) = |{w ∈ I(Wi) : w is Boolean, �(w) = l and �′(w) = a}|.

Theorem 4.1 Let (W,S) be as above. Then, for n, l ≥ 3 and a ≥ 1,

f (Wn, l, a) = f (Wn−1, l, a) + f (Wn−1, l − 2, a)

+ f (Wn−2, l − 1, a − 1) − f (Wn−2, l − 2, a)

+ f (Wn−2, l − 3, a − 1) − f (Wn−3, l − 3, a − 1). (4.1)

Proof Suppose w ∈ I(Wn) is Boolean with �(w) = l and �′(w) = a. If sn 
≤ w then w

is a Boolean involution in Wn−1. There are exactly f (Wn−1, l, a) such w. Otherwise,
consider the lexicographically first (with respect to the indices of the generators)
reduced S-expression for w; call this expression E. We have two cases, depending on
whether E ends with sn. If it does not, then it necessarily ends with snsn−1. Because
w is Boolean, exactly one sn appears in E.

Case 1, E ends with sn. This is the case if and only if wsn ∈ I(Wn−1). If w

commutes with sn, we have �(w) = �(wsn) + 1 and �′(w) = �′(wsn) + 1. If not,
�(w) = �(wsn) + 2 and �′(w) = �′(wsn).

Now, w commutes with sn if and only if sn−1 does not occur in E, that is if and
only if wsn ∈ I(Wn−2). Hence, the number of w that fall into Case 1 is f (Wn−2, l −
1, a − 1) + f (Wn−1, l − 2, a) − f (Wn−2, l − 2, a).

Case 2, E ends with snsn−1. Let u = wsn−1sn. Then w = usnsn−1 = usn−1sn,
that is sn−1 and sn commute, if and only if no reduced S-expression for u contains
sn−2. Thus, we are in Case 2 if and only if u ∈ I(Wn−2) \ I(Wn−3). Then, u com-
mutes with sn whereas usn does not commute with sn−1. Hence, �(w) = �(u) + 3
and �′(w) = �′(u)+ 1. Consequently, there are f (Wn−2, l − 3, a − 1)−f (Wn−3, l −
3, a − 1) elements w that belong to Case 2. �

Corollary 4.2 Keeping the above assumptions on (W,S), let g(Wi, k) denote the
number of Boolean involutions w ∈ I(Wi) with rank ρ(w) = k. Also, define h(Wi) to
be the number of Boolean involutions in I(Wi). Then, for n ≥ 3 and k ≥ 2,

g(Wn, k) = g(Wn−1, k) + g(Wn−1, k − 1) + g(Wn−2, k − 2) − g(Wn−3, k − 2)

and

h(Wn) = 2h(Wn−1) + h(Wn−2) − h(Wn−3).
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Proof Once we recall that ρ(w) = (�(w) + �′(w))/2, the identities follow by sum-
ming equation (4.1) over appropriate l and a. �

From now on, let us stick to the case of symmetric groups. With W = Sn+1, we
have Wj = Sj+1 and f (Sj , i, e) is the number of Boolean involutions in Sj with i

inversions and e excedances.

Proposition 4.3 Consider the generating function for the number of Boolean involu-
tions in Sn with respect to inversion number and excedance number. That is, define

F(x, y, z) =
∑

n≥1, i≥0, e≥0

f (Sn, i, e)x
nyize.

Then,

F(x, y, z) = x2yz + x − x2y2 − x3y3z

1 − x − x2yz − xy2 + x2y2 − x2y3z + x3y3z
.

Proof This follows from equation (4.1) via standard techniques once one has com-
puted f (Sn, l, a) for n ≤ 3 or i ≤ 2 or e = 0. These numbers vanish except in the
following cases: f (Sn,0,0) = 1 (n ≥ 1), f (Sn,1,1) = n−1 (n ≥ 2), f (Sn,2,2) =
(n2 − 5n + 6)/2 (n ≥ 4) and f (S3,3,1) = 1. �

Plugging in y = z = t1/2 and y = z = 1, one obtains the generating functions for
g(Sn, k) and h(Sn), respectively.

Corollary 4.4 We have

∑
n≥1, k≥0

g(Sn, k)xntk = x(1 − x2t2)

(1 − x2t2)(1 − x) − xt

and ∑
n≥1

h(Sn)x
n = x(1 − x2)

1 − 2x − x2 + x3
.

Recall that a Motzkin path of length n is a lattice path from (0,0) to (n,0) which
never goes below the x-axis and whose steps are either (1,1), (1,0) or (1,−1). These
steps are called upsteps, flatsteps and downsteps, respectively. We denote by Mn the
set of Motzkin paths of length n.

The sequence h(Sn), n ≥ 1, can be found in [13, A052534] where it is referred to
as the number of Motzkin paths with certain properties. Let M r

n ⊆ Mn denote the set
of Motzkin paths of length n that never go higher than level 2 and whose flatsteps all
occur on level at most 1. We call a path in M r

n a restricted Motzkin path of length n.

Proposition 4.5 Let ψ : I(Sn) → Mn be the mapping which sends an involution w

to the Motzkin path ψ(w) with a flatstep, upstep or downstep as k-th step if w(k)
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Fig. 5 A Boolean involution
and the corresponding restricted
Motzkin path

is a fixed point, an excedance or a deficiency, respectively. Then ψ induces a bijec-
tion between the Boolean involutions in I(Sn) and the restricted Motzkin paths of
length n.

An example is shown in Figure 5.

Proof For every w ∈ I(Sn), ψ(w) is a lattice path by definition. It goes from (0,0)

to (n,0), because w has the same number of excedances and deficiencies, and it
obviously does not go below the x-axis. Thus, ψ(w) is a Motzkin path for all w ∈
I(Sn) and ψ is well-defined.

Assume that the k-th step of ψ(w) is a flatstep on level p (that is it goes from
(k−1,p) to (k,p)). Then there are exactly p elements l ∈ [k−1] such that w(l) > k.
If p > 1 there are l1, l2 ∈ [k−1] such that w(l1) > k and w(l2) > k. Assuming l1 < l2,
(l1, l2) is a long-crossing pair. Thus, if ψ(w) is a path with a flatstep on level 2 or
higher, then w is not Boolean. Similarly, it follows that if ψ(w) goes to a level > 2,
then w is not Boolean. Therefore every Boolean involution is mapped to a restricted
Motzkin path and

ψ({w ∈ I(Sn) : w is Boolean}) ⊆ M r
n.

In order to show the reverse inclusion, fix a restricted Motzkin path Γ . We con-
struct an involution w ∈ I(Sn) such that ψ(w) = Γ . For k ∈ [n] define w(k) = k if
the k-th step of Γ is a flatstep. If the k-th step is an upstep or a downstep, and it is
the m-th upstep or downstep, respectively, then define w(k) = p where p is such that
the p-th step in Γ is the m-th downstep or upstep, respectively. This obviously de-
fines a unique involution in I(Sn). Observe that the given restrictions on the Motzkin
path ensure that long-crossing pairs never occur. Hence, the constructed involution is
Boolean. This proves ψ({w ∈ I(Sn) : w is Boolean}) = M r

n.
Note that the proof of Proposition 3.8 implies that a Boolean involution is uniquely

determined by its sets of excedances and deficiencies. Thus, ψ yields a bijection
between the Boolean elements of I(Sn) and M r

n. �

We conclude this section by pointing out what happens to our favourite statistics
under the bijection ψ .

Proposition 4.6 Suppose w ∈ I(Sn) is Boolean. Let α(w) be the number of indices
i ∈ [n] such that ψ(w) contains the point (i,0). Then, ρ(w) = n − α(w).
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Proof Because w is Boolean, ρ(w) is the number of distinct generators si , i ∈ [n−1]
that appear in reduced S-expressions for w, that is that are below w in the Bruhat
order. On the other hand, for i ∈ [n−1], (i,0) belongs to ψ(w) if and only if w(j) ≤ i

for all j ≤ i. This holds if and only if si 
≤ w. �

By construction, the number of excedances (or deficiencies) of w is precisely the
number of upsteps (or downsteps) of ψ(w). Since 2ρ = exc + inv, Proposition 4.6
also provides an interpretation for the inversion number of w in terms of the corre-
sponding Motzkin path.

As an example, the path in Figure 5 touches the x-axis in two points (excluding
the origin). Thus, the rank of the corresponding involution w is 9 − 2 = 7. There are
four upsteps, so exc(w) = 4. Hence, inv(w) = 10.

5 Twisted involutions

As was mentioned in the introduction, a good reason to study Br(I(W)) is the con-
nection with orbit decompositions of symmetric varieties which is explained in [11].
In this context, the more general setting of twisted involutions with respect to an in-
volutive automorphism θ of (W,S) is important. These are the elements w ∈ W such
that θ(w) = w−1. Thus, I(W) corresponds to the θ = id case.

In the context of a symmetric group, there is only one non-trivial θ ; it is given by
w �→ w0ww0, where w0 ∈ Sn is the longest element (the reverse permutation).

Problem 5.1 Find an analogue of Theorem 1.1 valid for θ 
= id.

In order to attack this problem, [15, Proposition 5.1] is likely to be useful. It pro-
vides a generalization to arbitrary θ of Proposition 3.1. Also, the tools mentioned in
Subsection 2.3 have direct counterparts in this more general setting; see [6, 7].

We remark that whenever θ is given by w �→ w0ww0, the Bruhat order on twisted
involutions is isomorphic to the dual of Br(I(W)). Thus, Problem 5.1 is equivalent
to the problem of characterizing Boolean principal order filters in Br(I(Sn)).
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