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Abstract. This paper is a sequel to [3]. We keep the notation and terminology and extend the numbering of
sections, propositions, and formulae of [3],

The main result of this paper is a generalization of the Robinson-Schensted correspondence to the class of dual
graded graphs introduced in [3], This class extends the class of Y-graphs, or differential posets [22], for which a
generalized Schensted correspondence was constructed earlier in [2].

The main construction leads to unified bijective proofs of various identities related to path counting, including
those obtained in [3]. It is also applied to permutation enumeration, including rook placements on Ferrers boards
and enumeration of involutions.

As particular cases of the general construction, we re-derive the classical algorithm of Robinson, Schensted,
and Knuth [19,12], the Sagan-Stanley [18], Sagan-Worley [16, 29] and Haiman's [11] algorithms and the author's
algorithm for the Young-Fibonacci graph [2]. Some new applications are suggested.

The rim hook correspondence of Stanton and White [23] and Viennot's bijection [28] are also special cases of
the general construction of this paper.

In [5], the results of this paper and the previous paper [3] were presented in a form of extended abstract.

Keywords: discrete algorithm, enumerative combinatorics, poset, Young diagram

3. Bijective correspondences

Recall from Definition 1.3.4 that two graded graphs G1 = (P, R, E1) and G2 = (P, R, E2)
with the same set of vertices and same rank function are called r-dual if the up operator U
of the first graph and the down operator D of the second one (see Definition 1.2.1) satisfy
the commutation relation

the main special case is r = 1 with

In what follows we always assume that G1 and G2 have a zero, and r > 0.
Various enumerative consequences of (3.0.1) were obtained in [3]. We shall demon-

strate that all these formulae, and many others, can be derived in an entirely combinatorial
way by establishing certain bijective correspondences between Hasse walks (i.e., paths

tA prequel [3] to this article appeared in Journal of Algebraic Combinatorics, Vol. 3, No. 4.
*Partially supported by the Mittag-Leffler Institute.
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in the oriented graded graph G = ( P , R , E 1 , E 2 ) ) and permutations. These correspon-
dences generalize the classical Robinson-Schensted construction for the Young tableaux
(see, e.g., [12, 20, 17]). Each of these bijections also has a direct combinatorial interpre-
tation in terms of certain permutation statistic that is peculiar to the particular pair of dual
graphs. These statistics generalize the well-known invariant due to C. Greene [8].

To make our plans clear, let us consider the following typical case. It has been already
shown that, for any pair of dual graded graphs,

(cf. (1.5.9)) where e 1 ( x ) and e2(x) denote the number of paths connecting 0 with x in
G1 and G2, respectively. In this paper, we construct a bijective (though not canonical)
correspondence between

(i) pairs ( p 1 , p 2 ) of paths of a fixed length k in G1 and G2, respectively, having a common
endpoint, and

(ii) permutations of k elements.

Part 3 contains the main bijective construction of this paper that provides bijective proofs
of (3.0.3) and many other combinatorial identities related to enumeration of Hasse walks.
This construction gives a uniform interpretation of various Schensted-type algorithms. We
show how to design such an algorithm for any pair of dual graded graphs. This extends the
results of [2] (see also [15]) and, in turn, those of [1] to the case of dual graphs.

In Part 4, applications to concrete examples are given, including the Young, Young-
Fibonacci, and Pascal graphs, the binary tree, etc. It is shown that the classical Robinson-
Schensted-Knuth algorithm, the algorithms of Sagan and Stanley [18], Sagan [16], Wor-
ley [29], and Haiman [11], and the author's algorithm [2] for the Young-Fibonacci lattice
are all special cases of the main construction of Part 3.

3.1. 2-Growth

The main concept of [3] was that of an oriented graded graph which is a pair of graded
graphs sharing the same set of vertices. Now we introduce corresponding morphisms
called 2-growths.

Definition 3.1.1 Assume G = (P, R, E 1 ,E 2) is an oriented graded graph (pair of graphs).
Define

So E is the set of generalized edges each of which is either an ordinary non-degenerate
edge of E1 U E2 or a degenerate edge joining a vertex with itself.
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Let start(a) and end(a) denote the startpoint and the endpoint of a generalized edge
a, respectively. Thus start(a) = end(a) if a is degenerate and R (end(a)) = R(start(a))
+1 otherwise.

Definition 3.1.2 Assume 5 = (T, T, F1 , F2) and G = (P, R, E1, E2) are oriented graded
graphs. A map P: F —> E is a 2-growth if the following conditions are satisfied:

The rest of this section is devoted to technical preliminaries related to the notion of
2-growth.

Lemma 3.1.3 Assume the conditions of Definition 3.1.2 hold. Then

(i) if two generalized edges a, b E F have common startpoint (endpoint), then the same is
true for P(a ) and P ( b ) ;

(ii) the image of any degenerate edge is also a degenerate edge.

In view of the latter statement, one can define a map P: T —> P by

Corollary 3.1.4 Assume the conditions of Definition 3.1.2 hold; let P be defined by
(3.1.1). Then

(i) if y covers x in (T, T, Fi), then either P ( y ) covers P ( x ) in (P, R, Ei) or P ( y ) = P ( x ) ,
i = 1,2;

(ii) P is bi-monotone, that is, P is monotone with respect to partial orders on T and P
induced by F1 and E1, and P is also monotone regarding the F2- and E2-induced
orderings;

(iii) if an edge a E Fi joins vertices x and y, then P(a) E Ei joins P ( x ) and p ( y ) ;

(iv) P is uniquely determined by P provided G has no multiple edges; namely,

So P is a bi-monotone map T —> P preserving both "cover-or-equal" relations, and P
is a map F —> E consistent with P. This statement can also be used as an alternative
definition of a 2-growth. Informally, 2-growth maps vertices to vertices, and the edges
joining them—to the edges (maybe degenerate) joining their images, so that E1 -edges are
mapped to F1-edges, and E2-edges—to F2-edges. In a sense, T is time, and P is a growth
process in G that develops in course of the time.

Definition 3.1.5 A 2-growth P : F - > E is called strict if P(F) C P ( E ) , i.e., a P-image
of any non-degenerate edge is non-degenerate.
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3.2. Skew graphs

In a typical case, the "time graph" 5 is a so-called skew graph.

Definition 3.2.1 An oriented graded graph S = (T, T, F1, F2) is called a skew graph if
all the following conditions are satisfied:

(i) T is a finite convex subposet of the two-dimensional lattice Z2;

(ii) T is a restriction of the standard rank function on Z2:

(iii) F1 contains the edges linking vertices (k, l) and (k, l + 1) both belonging to T;

(iv) F2 contains the edges linking vertices (k, l) and (k + 1, l) both belonging to T.

In other words, T is a skew shape, F1 is the set of horizontal edges of its Hasse diagram,
and F2 is the set of its vertical edges. Note that a skew graph is uniquely determined by the
set of its vertices.

Sometimes it is convenient to make no distinction between skew graphs one of which is
a translation of the other; for the same reason, a rank function

can be occasionally used instead of (3.2.1).

Definition 3.2.2 Let S = (T ,T ,F 1 ,F 2 ) be a skew graph. Let the lower and upper
boundaries of S to be stew graphs d- S = ( T - , T , F -

1 ,F
-
2) and D + S = (T+,T,F+

1,F
+

2)
defined by

Let

and

thus, for example, F+ is the set of edges lying on the upper boundary. In turn, F+ is the
corresponding set of generalized edges.

Define the north-west and south-east corners of a skew graph S by
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where kmin = min{k : El : (k,l) e T} and so on. In other words, n w(S) and se(S) are
the extremal elements of T according to the transversal ordering of Z2.

A skew graph S = (T, T, F1, F2) is called connected if any two vertices of T can be
joined by a path consisting of edges belonging to either F1 or F2. The lower and upper
boundaries of a connected skew graph are simply paths in Z2 between nw(S) and se(S).

In what follows, some particular types of skew graphs play an important role.

Definition 3.2.3 Let dnxm denote the skew graph with the set of vertices

The skew graph with the vertices

is denoted Dkl (do not confuse with Okxl !). Such a graph is called a cell. The notation D
is used if the particular values of k and l are inessential.

We say that a cell Dkl is a cell of S if all the four vertices (3.2.6) belong to 5. Denote

Let c = Dkl be a cell and t = (k', l') a point of Z2. Then we write c < t if k < k' and
l < l'; similarly, c > t means that k - 1 > k' and l - 1 > l'.

Definition 3.2.4 A skew graph S = (T, T, F 1 ,F 2 ) is a Ferrers graph if T is a Ferrers
diagram, i.e., the point (0, 0) is the only minimal element of the poset T.

Definition 3.2.5 Let S = (T,T, F1, F2) be a skew graph, and P : F -> E a 2-growth
with values in an oriented graded graph G = (P, R, E1, E2). The following notation will
be used throughout:

3.3. Diagonal sets

Definition 3.3.1 A set of cells is called diagonal if any two of them are situated neither
in the same row nor in the same column; cf. Definition 2.6.1. A diagonal set containing n
cells of the graph DnX n can be identified with a permutation of {1 ,2 , . . . , n}.
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Definition 3.3.2 Let S be a skew graph. A map a: C(S) —> Z (see (3.2.7)) is called an
r-colored diagonal set if

The set a is called a support of a; we write a = supp(a). If a is a permutation, a is
called an r-colored permutation. Sometimes we will say that a or a is contained in S. No
distinction will be made between r-colored diagonal sets with a common support and the
same coloring (i.e., the restriction of a to the support).

Definition 3.3.3 A 2-growth P defined on a skew graph S and an r-colored diagonal set a
with support a (note that a may contain cells lying outside 5) are said to be consistent with
each other if for any k, l

and for any k, l

(cf. Definition 3.2.5). If all the values appearing within "otherwise" options are 1, then P
and a are said to be 1-consistent with each other.

Lemma 3.3.4 Let S = (T, T, F1, F2) be a connected skew graph, P: F —> E a 2-growth,
and a: C(S) —> Z an r-colored diagonal set consistent with P. Then the following state-
ments are equivalent to each other:

(a) the restriction of P to the upper boundary F+ is strict;

(b) the restriction of P to the upper boundary F+ is 1-consistent with a;

(c) the restriction of P to the lower boundary F- is 1-consistent with a.

Proof: The equivalence (a) = (b) is trivial. The equivalence (b) = (c) follows from the
definition of 1-consistence and from the existence of a natural bijection between the edges
of upper and lower boundaries F+ and F- (namely, edges crossing the same row/column
correspond to each other). Details are left to the reader. D

Definition 3.3.5 Let S = (T, T, F1 , F2) be a connected skew graph. Move along its upper
boundary from n w(S) to se(S) and write, from right to left, a {U, D}-word, according to
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the following rule: write D while moving down and U while moving to the right. The
resulting word is denoted w+(S). For example, if

then w+(S) = D2U2DU. The same operations with the lower boundary produce a {U, D}-
word denoted w - ( S ) . In the example (3.3.1), w - ( S ) = DUDU2D.

Now assume a diagonal set a is given. Let us modify the last construction as follows:
any letter corresponding to an edge of d - ( S ) that crosses a row or column containing a
cell of a should be omitted. Formally, if Okl E Z, then we omit the letters corresponding
to the edges ((k - 1, l ' ) , (k, l')) and ((k', l - 1), (k', l)) belonging to F-. The resulting
word is denoted by w- (S, z). Equivalently, w- (S, z) = w- (S') where S' is a skew graph
obtained from 5 by cutting off the rows and columns containing the cells of z. For example,
if S is defined by (3.3.1) and z = {D42}, then w - ( S , z ) = DU2D. If a is an r-colored
diagonal set with a support a, then, by definition, w- (S, a) = w- (S, z).

Lemma 3.3.6 Let S = (T, T, F 1 ,F 2 )be a connected skew graph, G = (P, p, E1 , E2) an
oriented graded graph, and A and B two vertices of G. Then there is a canonical bijection
between

(a) strict 2-growths P+ : F+ —> E such that P+ (nw(S)) = A and P+ (se(S)) = B and

(b) paths from A to B having a structure w+(S).

Given a diagonal set a, there is a canonical bijection between

(a) 2-growths P- : F- —> E which are 1-consistent with a and satisfy P- (nw(S)) = A
and P- (se(S)) = B and

(b) paths from A to B having a structure w- (S, a).

Proof: The first statement is trivial. To prove the second one, consider a 2-growth
P- : F- —> E. It is 1-consistent with a if and only if for any edge a E F- the image
P (a) is either degenerate or it does not depend on whether or not a crosses a row or column
containing a cell of supp(a). Hence to define P- means to give a path having a structure
w - ( S , a). The endpoints of such a path will certainly coincide with the values of P- at
nw(S) and se(S). D

3.4. r-correspondence

Definition 3.4.1 Let G = (P, p, E1 ,E2) be an oriented graded graph and Ar the set of
all triples (a 1 , a2, a) such that
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Let B be the set of all pairs (b1, b2) such that

A bijective map P: B —> Ar is called an r-correspondence if the following conditions hold:

P(b1,b2) = (a1 ,a2 ,a) implies end(a1) = start(b2) and end(a2) - start(b1);

Thus the four generalized edges a1, b2, b1 and a2 should form a Hasse cycle in G (see
(3.4.2), (3.4.6), and (3.4.7)).

Lemma 3.4.2 It is possible to define an r-correspondence in an oriented graded graph
G = (P, p, E 1 ,E 2 ) if and only if the graphs G1 = (P, p, E1) and G2 = (P, P, E2) are
r-dual.

Proof: Because of (3.4.7), an r-correspondence P should establish bijections between the
sets Ar,x,y and Bx,y defined by:

Thus P exists if and only if Ar,x,y and Bx,y are equinumerous for every x and y.
Let us examine all possible cases. First note that if | p ( x ) - p ( y ) | > 2, then both Ar,x,y

and BX,y are empty.
Case 1. R ( x ) = R ( y ) - 1. Then necessarily start(a1) = start(a2) = x, end(b1) =

end(b2) = y, a1= (x, x), b1 = (y, y), a = 0, and

for any graph G.
Case 2. R ( x ) = R ( y ) + 1. This case is quite similar to the previous one: interchange a1

and a2, b1 and b2, and x and y.
Case 3. R ( x ) = R ( y ) , x = y. The set Ax,y contains all the triples (a1,a2,0) where a1

and a2 form a UD-path connecting x and y (cf. Definition 1.2.2). Similarly, Bx,y is the set
of pairs (b1,b2) forming DU-paths between these vertices. So the cardinalities of Ar,x,y

and Bx,y are equal if and only if the condition (1) of Definition 1.3.3 holds with qn = 1.
Case 4. x = y. In this case Ar,x,y contains

(i) the triples (a1,a2,0) where a1 and a2 form a UD-loop from x to x;

(ii) the triples (e, e, a) where e = (x, x) and a E {0,.. . , r}.

Also, Bx,y contains

(i) the pairs (b1,b2) where b1 and b2 form a DU-loop from x to x;



SCHENSTED ALGORITHMS FOR DUAL GRADED GRAPHS 13

(ii) the degenerate pair (e, e).

Thus Ar,x,y and Bx,y have equal cardinalities if and only if the condition (2) of Defini-
tion 1.3.3 is satisfied with qn = 1 and rn = r. D

Informally, an r-correspondence is a constructive analogue of an r-duality; while the
latter requires certain sets to be equinumerous, an r-correspondence establishes explicit
bijections between them.

We give below a pseudo-language template defining an r-correspondence $ and its inverse
C = P-1. The dots should be replaced by appropriate operators, peculiar to the particular
choice of P.

Definition 3.4.3 {b1 and b2 are generalized edges of G1 and G2, respectively; end(b1) =
end(b2); returned parameters are a e {0,... ,r} and generalized edges a1 and a2 of G1

and G2 satisfying start(a1) = start(a2), end(a1) = start(b2), and end(a2) = start(b1)}

function P(b1,b2);
begin

case
b1 and b2 are degenerate => a1 := a2 :=b1;a := 0;
b1 is degenerate, b2 is not => a1 is degenerate; a2 := b2; a := 0;
b2 is degenerate, b1 is not => a2 is degenerate; a1 := b1; a := 0;
b1 and b2 are not degenerate = > . . .

endcase;
return(a1,a2,a)

end;

Definition 3.4.4 {a1 and a2 are generalized edges of G1 and G2, respectively, such
that start(a1) = start(a2); a E {0,... , r}; (3.4.4) is satisfied; returned parameters are
generalized edges b1 and b2 of G1 and G2, satisfying end(b1) = end(b2), start(b2) =
end(a1),start(b1) = end(a2)}

function C(a1,a2,a);
begin

case
a1 and a2 are degenerate, a = 0 => b1 := b2 := a1;
a1 is degenerate, a2 is not => b1 is degenerate; b2 := a2;
a2 is degenerate, a1 is not => b2 is degenerate; b1 := a1;
(a1 and a2 are not degenerate) or (a1 and a2 are degenerate and a = 0) => ···

endcase;
return(b1,b2)

end;

Note that the operators replacing dots in the above definitions should be chosen so that
the functions P and C are inverse to each other.
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3.5. P-growth

The following conventions are fixed throughout Secs. 3.5-3.7:

G = (P, p, .E1, E2) is an oriented graded graph (see Definition 1.2.1);

G1 = (P, p, E1) and G2 = (P, p, E2) are r-dual graphs (see (3.0.1));

$ is an r-correspondence in G (see Definition 3.4.1);

5 = (T, T, F1, F2) is a skew graph (see Definition 3.2.1).

See also Definition 3.2.5 for the notation associated with any 2-growth P : F -> E.

Definition 3.5.1 2-growth P: F —> E is said to be a p-growth if there exists a function
a : C(S) -> Z such that, for any cell Dkl of S,

Equivalently,

Informally, the values of a P-growth at the left and the bottom edges of every cell are
uniquely determined by its values at the right and top edges—and vice versa, provided that
a(k, l) is given. Therefore in order to define a P-growth it suffices to set its restriction to the
upper boundary F+ of S (see (3.2.5)). One can also define a P-growth by setting its values
on the lower boundary F- together with the function a. To express these observations
formally, we use the algorithmic notation.

Definition 3.5.2 In the following procedures, 2-growth P : F — > E and function a: C(S) —>
Z are treated as global unprotected variables (i.e., their values may be modified):

procedure LeftDown(k,l: integer);
begin

end;

procedure RightUp(k, l: integer);
begin

end;

C = P-1;

(p1(k,l - 1 ) , p 2 ( k - 1,l), a(k,l)) := P(p 1 (k , l ) ,p 2 (k , l ) ) ;
p(k - 1, l - 1) := start(p1(k,l - 1))

(p1(k, l ) , p 2 ( k , l ) ) := C(p1(k,l - 1),P2(k - 1,l),a(k,l));
p(k,l) := e n d ( p 1 ( k , l ) )
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cf. (3.5.1)-(3.5.2); the functions P and C are to be defined,—e.g., by fixing appropriate
versions of Definitions 3.4.3-3.4.4.

Algorithm 3.5.3

Input: the values of a P-growth P on the upper boundary F+.
Output: (i) all the values of P; (ii) a function a: C(S) —> Z.

begin
for all (k, l) E C(S) do southwestbound LeftDown(k, l)

end

The word "southwestbound" means that in the course of an execution of the algorithm
the pairs (k, l) should be taken in an order anti-compatible with the usual ordering on Z2.
In other words, the only requirement is:

Note that the for-cycle may be executed in parallel, obeying the rule (3.5.3).

Algorithm 3.5.4

Input: (i) the values of a P-growth P on the lower boundary F-; (ii) a function
a: C(S) -> Z.
Output: all the values of P at non-degenerate edges of 5.

begin
for all (k, l) E C(S) do northeastbound RightUp(k,l)

end

The word "northeastbound" means that, analogously to (3.5.3),

This algorithm can be executed in parallel as well, taking into account the rule (3.5.4).
Now we proceed to the analysis of Algorithms 3.5.3-3.5.4. First we state explicitly the

restrictions on the input of each of the algorithms.

Lemma 3.5.5 Let P: F —> E be a P-growth and a the corresponding function defined by
(3.5.1). Then a is an r-colored diagonal set consistent with P.

(Recall definitions 3.3.2 and 3.3.3.)
Proof: First we prove that Z = supp(a) is indeed a diagonal set. Suppose this is not
the case; say, there exist two cells Okl1 and Dkl2 belonging to z; let l1 < l2. Since
a ( k , l i ) = 0, i = 1,2, then
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(cf. Definition 3.2.5, (3.4.4), and (3.5.1)). On the other hand,

(cf. (3.4.8) and (3.5.1)). Thus the sequence

begins with 1 and ends with 0. Hence, for some l,

On the other hand, (3.5.1), (3.4.2), (3.4.6), and (3.4.7) imply

Hence (recall the values of Api are 0 and 1) Ap2(k,l) = 0 and AP2(k — 1, l) = 1 which
contradicts (3.4.8). Therefore a is an r-colored (see (3.4.3)) diagonal set.

Now let us prove the consistence of a and P. If any of the conditions of Definition 3.3.3
does not hold, then the same arguments as in the previous paragraph lead to a contradiction.
For instance, if for a certain l' > l we have Ap 1 (k , l) = 1 where Okl' e supp(a), then
examine the sequence

just as was done with (3.5.5). D

The following simple observation is rather useful. An r-colored permutation a of Lemma
3.5.5 is clearly consistent with any restriction of a P-growth P to any skew subgraph of
S,—for example, with the restriction to its lower or upper boundary.

Lemma 3.5.6 Any 2-growth P+: F+ —> E can be uniquely extended to a P-growth
P: F ->E.

Proof: Examine Algorithm 3.5.3 to verify that the only condition the restriction of a
P-growth should satisfy is that it is a 2-growth. Q

Therefore the following algorithm constructs P from P+.

Algorithm 3.5.7

Input: 2-growth P+: F+ -> E.
Output: (i) P-growth P: F —> E extending P+; (ii) r-colored diagonal set a contained
in S and consistent with P. (Actually, a is determined by P—see (3.5.1).)

begin
for all a E F+ do P(a) := P+(a);
for all (k, l) E C(S) do southwestbound LeftDown(k, l)

end
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(See the comments after Algorithm 3.5.3.)

Lemma 3.5.8 Let P-: F- —> E be a 2-growth and a:C(S)—>Z an r-colored diagonal
set consistent with P-. Then P- can be uniquely extended to a P-growth P: F —> E
satisfying (3.5.1).

Proof: The only problem that can arise while applying Algorithm 3.5.4 to P- and a
concerns the condition (3.4.4). That is, at every step of the algorithm we should be able to
apply the function C to the triple ( P 1 ( k , l - 1 ) , P 2 ( k - 1 , l ) , a ( k , l ) ) ; in other words, we
have to prove that

Suppose it is not the case; e.g., at some point

occurred. Since a and P- are consistent, we have AP1(k,l') = 0 for the only edge
((k - 1, l ' ) , (k, l ' ) ) E F- (cf. Definition 3.3.3). Every execution of DownUp(k, l") for
l" > l' results, by induction, in AP1(k,l") = 0 since

So AP1(k, l - 1) = 0 which contradicts (3.5.8).

Thus the following algorithm constructs P from P- and a.

Algorithm 3.5.9

Input: (i) 2-growth P-: F- —> E; (ii) r-colored diagonal set a contained in 5 and con
sistent with P-.
Output: P-growth P: F -> E extending P-, satisfying (3.5.1) and thus consistent with
a. (Actually, a is determined by P—see (3.5.1). )

begin
for all a E F- do P (a ) := P-(a);
for all (k,l) E C(S) do northeastbound RightUp(k,l)

end

(See the comments after Algorithm 3.5.4.)
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3.6. Main bijection

Combining Lemmas 3.5.6 and 3.5.8 results in the following statement. (Recall the conven-
tions fixed at the beginning of Section 3.5.)

Theorem 3.6.1 There exist bijective correspondences between any two of the following:

(a) the 2-growths P+: F+ —> E;

(b) the pairs (P-, a) where P-: F- —> E is a 2-growth and a an r-colored diagonal set
contained in S and consistent with P-;

(c) the P-growths P: F —> E.

These bijections can be realized by the following algorithms:
(a) -> (c) Algorithm 3.5.7
(b) -> (c) Algorithm 3.5.9
(c) —> (a) Restricting P to F+

(c) -> (b) Restricting P to F- and finding a from (3.5.1)
Thus P extends both P+ and P-; a is consistent with P, P-, and P+.

Comments 3.6.2

1. The bijections of Theorem 3.6.1 do depend on P; hence the whole construction is not
canonically determined by the graph G.

2. The most interesting bijective correspondence is between (a) and (b). We shall see later
that this is actually a generalization of the Robinson-Schensted bijection.

3. Since P- and P+ are both restrictions of P, the values of P- and P+ at generalized
edges belonging to F- n F+ should coincide. In particular, they coincide at the points
nw(S) and se(S). So we can fix a priori the values of P-, P+, and P at nw(S) and/or
se(S) and obtain bijections between corresponding sets of objects (a), (b), and (c).

4. Another restriction one can impose on these objects is their 1 -consistence (see Definition
3.3.3). By Lemma 3.3.4, the following conditions are equivalent to each other:

(a) P+ is strict;

(b) P- is 1-consistent with a.

Now use Lemma 3.3.6 and Comments 3.6.2.3 to obtain the following result.

Theorem 3.6.3 Let A, B E P. There exists a bijective correspondence between

(a) the paths in G from A to B with structure w+ (S) and
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(b) the pairs (r-colored diagonal set a contained in S, path in G from A to B with structure
w-(S,a)).

In particular, these sets have the same cardinality.

The algorithms establishing the bijections in both directions are given below. They depend
on the choice of an r-correspondence P.

Algorithm 3.6.4 (G, P, and S are fixed.)

Input: path p+ having a structure f+(S).
Output: (i) r-colored diagonal set a contained in S; (ii) path p- with structure f- (S, a).
{p+ and p- connect the same pair of vertices}

var P: 2-growth F —> E
begin

define the restriction of P to F+ according to p+;
find all the values of P and a using Algorithm 3.5.3;
move along d-S from nw(S) to se(S), including non-degenerate
values of P into p-

end

Algorithm 3.6.5 (G, P, and S are fixed.)

Input = Output of Algorithm 3.6.4.
Output = Input of Algorithm 3.6.4.

var P; 2-growth F —> E
begin

define the restriction of P to F- according to p~ and a
(see proof of Lemma 3.3.6);
find all the values of P using Algorithm 3.5.4;
move along d+S from nw(S) to se(S), including the values of P into p+

end

3.7. Generalized Schensted

The above-stated theorems and algorithms become much simpler in the case of Ferrers
graphs. Definition 3.3.5 provides a natural one-to-one correspondence between {U, D}-
words and Ferrers graphs; namely, a Ferrers graph S corresponds to the { U, Z)}-word that is
patterned after the upper boundary of S. Assume w is a {U, D}-word with m occurrences
of D and n occurrences of U; let S = S(w) be the corresponding Ferrers graph. Then
w+(S) = w, w - ( S ) = UnDm, and w - ( S , a ) = U n - k D m - k if a contains k (colored)
cells of S. Hence in this case Theorem 3.6.3 can be restated as follows.
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Corollary 3.7.1 Let w be a {U, D}-word with m entries of D and n entries of U. Let
A, B E P. Then Algorithms 3.6.4-3.6.5 establish a bijective correspondence between

(a) w-paths from A to B and

(b) pairs of the form (r-colored diagonal set a contained in S(w), path from A to B with
structure un-kDm-k where k = #supp(a)).

Assume, in addition, that A = 6 is the zero of G. Then there is no un-kDm-k-paths
from A to B unless k = m.

Corollary 3.7.2 Let w be a {U, D}-word with m entries of D and n entries of U. Let
B E P, p(B) = n-m. Then Algorithms 3.6.4-3.6.5 establish a bijective correspondence
between

(a) w-paths from 0 to B and

(b) pairs (r-colored m-cell diagonal set contained in S(w), path in G1 from 0 to B).

In case A = B = 0 (hence n = m), a diagonal set consisting of n cells of S(w) is
actually a permutation of n elements (cf. Definition 3.3.1).

Corollary 3.7.3 Let w be a balanced U, D-word of length 2n. Then Algorithms 3.6.4-
3.6.5 establish a bijective correspondence between

(a) w-paths (loops) starting at 6 and

(b) r-colored n-cellpermutations contained in the Ferrers graph S(w).

Now consider a particular case of a rectangular Ferrers graph dnxm that corresponds
to the word w = DmUn. In this case, Corollaries 3.7.1-3.7.3 turn into the following
statements.

Corollary 3.7.4 Let A, B E P and p(B) - p(A) = n-m. Then Algorithms 3.6.4-3.6.5
establish a bijective correspondence between

(a) DmUn-paths from A to B and

(b) pairs of the form

(r-colored diagonal set a contained in Dnxm. U n - k D m - k -path from A to B where k =
#supp(a)).

Corollary 3.7.5 Let B e P; R ( B ) = n - m. Then Algorithms 3.6.4-3.6.5 establish a
bijective correspondence between

(a) DmUn -paths from 0 to B and
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(b) pairs (r-colored m-cell diagonal set contained in nnxm, path in G1 from 0 to B).

Corollary 3.7.6 Algorithms 3.6.4-3.6.5 (see also Algorithms 3.7.7-3.7.8) establish a
bijective correspondence between

(a) DnUn-loops starting at 6 and

(b) r-colored n-cell permutations.

The last bijection is the generalized Robinson-Schensted correspondence. It is described
by the appropriate specializations of Algorithms 3.6.4-3.6.5 (see Algorithms 3.7.7-3.7.8
below.) The classical Schensted bijection appears when G1 = G2 = Y, r = 1; see
Section 4.2.

For the particular cases of the Young graph and the graph of shifted shapes, the bijection
of Corollary 3.7.4 was given by R.Stanley and B.Sagan [18].

Comments 3.7.6.1 Specializing Corollary 3.7.5 to m = 1 produces bijections between

(a) DUn-paths from 0 to B and

(b) pairs (r-colored cell in dn x 1, path in G1 from 0 to B).

If r = 1 and G2 has no multiple edges, then this gives bijections between

(a) paths w' of length n in G1 and

(b) pairs (integer k E {1,..., n} , path w of length n - 1 in G1).

In the conventional tableau slang, inserting k into w results in w',—or, equivalently, w is
obtained by deleting k from w' (to make it precise, the standardization procedure should
also be used). Cf. Definitions 2.5.4, 2.5.10, and Section 4.8.

Algorithm 3.7.7

Input: edges a1(1), a1(2), . . . , a1(n) of G1 and edges a2(1), a 2 ( 2 ) , . . . ,a2(n) of G2

which form two paths starting at 6 and having common endpoint;
Output: r-colored permutation a (an n x n-matrix).

var
P1 : array [1..n,0..n] of generalized G1-edges;
P2 : array [0..n, 1..n] of generalized G2-edges;
a : array [1..n, 1..n] of integer;

begin
for k := 1 to n do P1(k,n) := a1(k);
for l := 1 to n do P2(n, l) := a 2 ( l ) ;
for (k, l) := (n, n) downto (1,1) do

(P 1 (k , l - 1), P2(k - 1,l), a(k, l)) := P(P1(k, l), P 2 ( k , l))
end
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Comments: In the third for-cycle, a pair (k1, l1) should be treated later than (k2, l2)
whenever k1 < k2 and l1 < l2. The calculations may be done in parallel as long as this
condition is respected. $ is to be defined by an appropriate version of Definition 3.4.3.

Algorithm 3.7.8

Input = Output of Algorithm 3.7.7.
Output = Input of Algorithm 3.7.7.

var P1, P2 : ...; {see Algorithm 3.7.7}
begin

for k := 1 to n do P1(k,0) := (0,0);
for l := 1 to n do P2(0, l) := (0,0);
for (k,l) :=(1,1) to (n,n) do

(P1(k, l), P2(k, l)) := C(P1(k, l- 1), P2(k - l, l, a(k, l))
for k := 1 to n do a 1 ( k ) := P 1 ( k , n ) ;
for l := 1 to n do a2(l) := P2(n, l);

end

Comments: In the third for-cycle, a pair ( k 1 , l1) should be treated later (k2, l2) whenever
k1 < k2 and l1 < l2. The calculations may be done in parallel provided this condition is
obeyed. C is to be defined by an appropriate version of Definition 3.4.4.

Now assume that both G1 and G2 have no multiple edges. Then P-growth P is uniquely
determined by a function P (see Corollary 3.1.4(iv)). Moreover, the basic procedures
LeftDown and RightUp can be rewritten in terms of P. Namely, define functions PV
and CV by

where t = start(a1) = start(a2), (a1,a2,a) = P(b1,b2), b1 = ( y , z ) , b2 = ( x , z ) , and

where z = end(b1) = end(b2), (b1,b2) = C(a1, a2, a), a1 = ( t , x ) , a2 = ( t , y ) . We
conclude that, in the case of no multiple edges, Algorithms 3.7.7-3.7.8 can be rewritten as
follows.

Algorithm 3.7.9 (G has no multiple edges)

Input: paths (0 = V 0 , v 1 , . . . , vn) and (0 = w 0 ,w 1 , . . . ,wn = vn)
in G1 and G2, respectively.
Output: r-colored permutation a (an n x n-matrix).

var
P: array [0..n, 0..n] of vertices;
a: array [1..n, 1..n] of integer;

begin
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for k := 0 to n do P ( k , n ) := vk;
for l := 0 to n do P(n, l) := wl;
for (k, l) := (n, n) downto (1,1) do

(P(k -1 , l -1 ) , a(k, l)) := PV (P (k , l - 1), P(k - 1, l), P(k, l))
end

Comments: See the comments to Algorithm 3.7.7.

Algorithm 3.7.10 (G has no multiple edges)

Input = Output of Algorithm 3.7.9.
Output = Input of Algorithm 3.7.9.

var
P: array [0..n,0..n] of vertices;

begin
for k := 0 to n do P ( k , 0) := 0;
for l:= 0 to n do P(0, l) := 0;
for (k, l) :=(1,1) to (n,n) do

P(k, l) == CV (P(k , l - l),P(k - 1,l), P(k -1,l- 1),a(k, l));
for k := 0 to n do vk := P(k, n);
for l := 0 to n do wl := P(n, l);

end

Comments: See the comments to Algorithm 3.7.8.
Later on we shall use an algorithmic notation to define particular functions PV and CV

in the following way (cf. Definitions 3.4.3-3.4.4).

Definition 3.7.11 (Dots are to be replaced by an appropriate operator.)
{x, y, z are vertices of G; z either covers x in G2 or is equal to x; z either covers y in G1

or is equal to y; returned parameters are a E {0, . . . , r} and a vertex t}

function PV(x , y, z);
begin

case
x = y = z => t := x; a:= 0
x = z = y => t :=y;a := 0
x = z = y => t :=x; a :=0
x = z = y =>

endcase;
return(t, a)

end;

Definition 3.7.12 (Dots are to be replaced by an appropriate operator.)
{x, y, t are vertices of G; x either covers t in G1 or is equal to t; y either covers t in G2

or is equal to t; a E { 0 , . . . , r } ; i f a= 0 => x = y = t; returned parameter a vertex z}
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function C V ( x , y , t , a ) ;
begin

case
x = t = y, a = 0 => z := x;
x = t = y => z := x;
x = t = y => z := y;
(x = t = y and a = 0) or (x = t = y) =>

endcase;
return(z)

end;

The functions PV and CV should be inverse to each other for each pair (x, y).

3.8. Enumerative consequences

This section is devoted to deriving enumerative identities from the bijective correspondences
of Secs. 3.6-3.7.

Recall from Section 1.4 that any {U, D}-word w can be naturally represented as a linear
operator in the vector space of finitary functions on P. A matrix element of this operator
that corresponds to a pair of vertices (x, y) is the number of w-paths from x to y (see
the last paragraph of Section 1.2). Hence Theorem 3.6.3 has the following enumerative
consequence.

Corollary 3.8.1 Assume the up and down operators U and D in an oriented graded graph
G satisfy (3.0.1). Then, for any skew graph S, the following operator identity holds:

where the sum is over all r-colored diagonal sets a contained in S.

This corollary can be easily derived directly from (3.0.1). We emphasize, however, that
we gave a bijective proof of (3.8.1), viz., one associated with Theorem 3.6.3.

Since Corollaries 3.7.1-3.7.6 are special cases of Theorem 3.6.3, the corresponding enu-
merative identities follow from Corollary 3.8.1. In order to state these identities explicitly,
the following notation is introduced.

Definition 3.8.2 Let S be a skew graph. The number of diagonal sets consisting of exactly
k cells of S is denoted dk(S). The expression

is known as a rook polynomial of S (see, e.g., [14]). Thus Rs(r) is the number of r-colored
diagonal sets contained in S.
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For a {U, D}-word w, put dk(w) = dk(S) where S = S(w) is a Ferrers graph naturally
associated with w.

Now we are in a position to write enumerative formulae corresponding to Corollaries
3.7.1-3.7.6.

Corollary 3.8.3 Assume the up and down operators U and D in an oriented graded graph
G satisfy (3.0.1). In addition, the statements (ii), (iii), (v), and (vi) below require G to have
a zero 0. Then

(i) for any {U, D}-word w with m occurrences of D and n occurrences of U,

(ii) for any {U, D}-word w with m occurrences of D and n occurrences of U and for any
vertex x of rank n — m,

#{w-paths from 0 to x} = r m d m (w)e 1 (x ) ;

(iii) for any balanced {U, D}-word w of length 2n,

#{w-loops starting at 0} = rndn(w);

(iv) for any m and n,

(v) for any vertex x of rank n — m,

(vi) for any n,

(see Section 1.1 for the notation used).
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Proof: Our general algorithmic construction provides unified bijective proofs to all these
identities. The statements (i)-(vi) follow from Corollaries 3.7.1-3.7.6, respectively; in
(iv)-(vi), the formula

is used. Note that (ii)-(vi) follow directly from (i), just as Corollaries 3.7.2-3.7.6 follow
from Corollary 3.7.1) D

The statement (ii) of Corollary 3.8.3 generalizes [St88, Theorem 3.7]. The statements (v)
and (vi) coincide with (1.5.8) and (1.5.9), respectively.

For some types of Ferrers graphs, the rook polynomials can be computed explicitly.

Lemma 3.8.4 [14, Section 8.5]

The word (UD)n corresponds to the isosceles staircase board, i.e., the Ferrers graph with
the set of vertices {(k,l): 0 < k,0 < l,k + l < n}, and D(U 2 D) n - 1 — to the staircase
board with the vertices

Combine Lemma 3.8.4 and (3.8.2) to obtain the following identities.

Corollary 3.8.5 The relation (3.0.1) implies:

Identity (3.8.3) coincides with [22, Proposition 4.9, (46)]; in fact, it can be reduced to

Subsequent computations make use of the following lemma.

Lemma 3.8.6 [6, case n = m] For any n, m, and k,

where the sum is over all {U, D}-words w with m entries of D and n entries of U.

Comments: This lemma has an elegant probabilistic reformulation. Choose uniformly at
random a diagonal set containing k cells of the rectangle nnxm (there are exactly (m

k) (
n
k) k!
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such sets). Choose independently a random shortest path in Dnxm connecting the opposite
corners (0, TO) and (n, 0) (there are (m+n

n) such paths). The lemma states that the probability
of the entire diagonal set lying below the chosen path is exactly 2 - k . This fact is quite
surprising for the following reasons. The probability of a single cell being under a random
path is certainly 1/2. Thus the lemma asserts that if one throws k random cells into the
rectangle so that they form a diagonal set and wonders if they all lie under the same random
path, then the probabilities of the k events "a cell lies under a path" are multiplied even
though these events are strongly dependent. Nevertheless, the proof of Lemma 3.8.6 we
give below is probabilistic.
Proof: Consider the following stochastic experiment. Let x 1 , . . . ,xn, y 1 , . . . , ym be
independent random variables each having a uniform distribution on [0, 1]. Sort X 1 , . . . , X n

to obtain the order statistics x(1) < ··· < X ( n ) , similarly, produce y(1) < ··· < y(m)

from y 1 , . . . , ym. The set of cells {Dij: x(i) + y(j) < 1} defines a Ferrers shape lying
within the rectangle Onxm. This shape is naturally associated with a path connecting the
corners (0, TO) and (n, 0), viz., the path along the upper boundary of the shape. All paths
this experiment can produce are equally likely. Indeed, a path is uniquely determined by
the ordering of the n + m numbers x ( 1 ) , . . . , X(n), 1 - y (1 ),..., 1 - y(m), and conversely
(i.e., a path determines an ordering).

Now let us proceed with our experiment. Choose among nm points ( x i , yj) some k points
with distinct i and distinct j (let all the (m

k) (
n
k) k! options have the same probability). Such

a choice produces k random points which are distributed just as if they have been thrown
independently and uniformly into the square [0,1] x [0,1] (a uniform Poisson field). Hence
the probability of all these points lying under the line x + y = 1 is 2-k. On the other hand,
this is just the probability of a random k-cell diagonal set in Dn x m lying under the random
path constructed at the first stage. D

Corollary 3.8.7 For any n and m, the relation (3.0.1) implies

where the sum is over all {U, D}-words w with m occurrences of D and n occurrences of
U.

Proof: Follows from (3.8.2) and Lemma 3.8.6. D

Corollary 3.8.8 For any p, (3.0.1) implies

Proof: Sum (3.8.4) over all n and m such that n + m = p.
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Corollary 3.8.9 [22, Corollary 2.6(a)] The relation (3.0.1) implies

where t is a formal parameter.

Proof: Equate coefficients of tp to get (3.8.5).

Corollary 3.8.10 Assume the up and down operators in an oriented graded graph G with
zero 0 satisfy (3.0.1). Fix n and m <n. Then

(i) for any vertex x E Pn - m , the number of oriented paths (Hasse walks) of length n + m
going from 0 to x equals

(ii) the number of closed Hasse walks 0 = X0, x 1 , . . . , xn+m > xn+m+1 > ··· > x2n = 0
in G is equal to rn2-m(m + n)!/m!.

Proof:

(i) Apply (3.8.4) to 6. All terms on the right-hand side vanish except for the one corre-
sponding to k = m.

(ii) Multiply (3.8.6) by e2(x), sum over all x E Pn-m, and employ

The first statement of Corollary 3.8.10 generalizes the formula of S. Sundaram [25] (see
also [17, Theorem 2.3.1]) for the Young lattice. The second statement of Corollary 3.8.10
coincides with [22, Corollary 3.16] in the self-dual case.

3.9. Self-dual graphs and involutions

Consider a self-dual case, i.e., the case G1 = G2. Assume, for simplicity, that G1 has no
multiple edges. Then it is easy to see that an r-correspondence can be chosen in such a way
that the whole construction is transpose-invariant. Thus if a skew graph S is self-conjugate,
then the bijection (a) <-> (c) of Theorem 3.6.1 assigns symmetric growths F+ —> E to
symmetric growths F- —> E and symmetric diagonal sets a. The corresponding version
of Corollary 3.7.1 will be stated after the following definition.

Definition 3.9.1 Let w be a {U, D}-word of length n. Define w* to be a {U, D}-word
obtained by writing w in the reverse order and replacing each and every U by a D and vice
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versa. Then S(w*w) is a self-conjugate Ferrers graph whose upper boundary has structure
w*w.

Theorem 3.9.2 Let G be a (non-oriented, i.e., ordinary) graded graph without multiple
edges; assume the condition (3.0.1) holds in G. Let A be a vertex of G and w a {U,D}-word
of length n. Then there is a bijective correspondence between

(a) the w-paths in G starting at A and

(b) the pairs

(symmetric r-colored diagonal set a contained in S(w*w), Dn - k -path starting at A) where
k = #supp(a).

To state the algebraic/enumerative version of this theorem we need the notation P =
ZxE Px introduced in Section 1.5.

Corollary 3.9.3 Assume G is a (non-oriented) graded graph without multiple edges
satisfying (3.0.1). Let w be a {U, D}-word of length n. Then

where d k , r (w*w) is the number of symmetric r-colored diagonal sets contained in S(w*w)
(the coloring should also be symmetric).

In fact, the clause prohibiting multiple edges is unnecessary. Moreover, (3.9.1) has to
be a formal algebraic consequence of (3.0.1) and the relation (U + rI - D)P = 0 (cf.
Section 1.5.13). Thus Corollary 3.9.3 is also valid for graded networks.

The case A = 6 of Theorem 3.9.2 corresponds to equating coefficients of 6 in (3.9.1).
All the terms on the right-hand side vanish but the one corresponding to k = n.

Corollary 3.9.4 Assume the conditions of Corollary 3.9.3 hold, and G has a zero 0.
Then the number of w-paths starting at 6 is equal to the number of symmetric r-colored
permutations (involutions) contained in the Ferrers graph S(w*w). (A coloring of an
involution should also be symmetric.)

Moreover, there is a bijection, based on the algorithms of Section 3.6, between w-paths
and these r-colored involutions.

In the case of w = Un, Corollary 3.9.4 can be restated as follows.

Corollary 3.9.5 Let G be a self-r-dual [non-oriented] graded graph with zero 0. Then,
for any n,

a(0 —> n) = #{r-colored involutions of n elements} .

(A coloring should also be symmetric.)

Corollaries 3.9.4-3.9.5 and Theorem 3.9.2 were proved in [2] for the case r = 1; Corollary
3.9.5 is well-known for the case of the Young graph (see, e.g., [21, Section 17]; cf. (2.1.1)).
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4. Schensted algorithms: Examples

This part of the paper is devoted to exploring several special cases of the main bijective
construction of Part 3. For each pair of dual graded graphs, we introduce a natural r-
correspondence and study the corresponding specializations of Algorithms 3.7.7-3.7.10
(generalized Schensted). These examples include the classical RSK algorithm for the
Young graph, the Sagan-Worley-Haiman algorithm for the graph of shifted shapes, the
Schensted analogues for the Young-Fibonacci graph, the subword order, the Pascal graphs,
and others.

The rim hook algorithm of Stanton and White [23] is a special case of our general
construction; it is studied in [7] together with its analogue for the shifted shapes.

The following conventions are used throughout Part 4:

4.1. Functions of permutations

The generalized Schensted correspondence, as described in Corollary 3.7.6 and Algorithms
3.7.8 and 3.7.10, gives rise to a map a -> v p ( a ) that maps an r-colored permutation a to
the common endpoint v P ( a ) of the two paths associated with a. The following definition
will be used to explain the role played by the map vp.

Definition 4.1.1 Let a be an r-colored diagonal set. For any integers k and l, define an
r-colored set akl by

and let ak,l be an r-colored permutation which is the type of akl in the sense of Definition
2.6.1. In other words, take all nonzero values of a in the quadrant {(i,j) : i < k, j < l}
and consider the rows and the columns containing corresponding points. The values of a
at the intersections of these rows and columns give the elements of a matrix of an r-colored
permutation akl.

The following result is simple but important for our further considerations.

Lemma 4.1.2 Let a be an r-colored permutation and P the corresponding p-growth.
Then the function P associated with P (see Definition 3.2.5) is given by P ( k , l) = v p (a k l ) .

Thus the function vp: Perm —> P (permutations to vertices) gives an alternative de-
scription of a P-growth provided G has no multiple edges (cf. Corollary 3.1.4(iv)). In the
author's opinion, a natural choice of an r-correspondence should produce a function vp hav-
ing a reasonable intrinsic (direct, non-recursive) definition. In other words, v p ( a ) should



SCHENSTED ALGORITHMS FOR DUAL GRADED GRAPHS 31

be a meaningful statistic of a permutation a provided that $ has been properly chosen. A
well-known result in the theory of the Robinson-Schensted correspondence describes the
shape vp(a) in terms of increasing and decreasing subsequences of a (Greene's theorem
[8]). Other pairs of dual graphs and respective natural r-correspondences give rise to other
permutation statistics. Note that each of these can be computed by means of an appropriate
version of generalized Schensted algorithm, i.e., Algorithm 3.7.7 and/or 3.7.9.

4.2. The Young graph: RSK

In the case of the Young graph (see Example 2.1.2), a natural choice of an r-correspondence
converts Algorithms 3.7.7-3.7.10 into certain parallel versions of the Robinson-Schensted
algorithm (see [19, 12, 20, etc.]); these versions initially appeared in [1] and then in [2];
see also [15] and [26, 27].

First we introduce an r-correspondence.

Lemma 4.2.1 Let G be the Young graph (so r = 1). Define functions pV and CV as
follows:

Then PV and CV define an r-correspondence in G = Y (cf. (3.7.1)-(3.7.2)).

Proof: A straightforward verification shows that the corresponding functions P and C are
indeed inverse bijections between appropriate sets. Q

Each edge of the Young graph adds a box to a certain Young diagram; say, this box lies
in the kth row (if an edge is degenerate, let k = 0). The procedures PV and CV of Lemma
4.2.1 can be entirely rewritten in terms of the parameters k (i.e., row numbers). Thus
Algorithms 3.7.9-3.7.10 can process these parameters instead of the vertices of Y. For
instance, in the input of Algorithm 3.7.9 the sequences {vi} and {wi} may be substituted
by respective Yamanouchi symbols (Y1(i)} and {Y2(i)}, i.e., the sequences of integers

replace the dots in Definition 3.7.11 by
case

x = y => t := x n y; a := 0;
x = y, z = x U {box in the kth row }, k > 2 =>

t := x U {box in the (k — 1)st row}; a := 0;
x = y, z = x U {box in the first row} => t := x; a := 1;

endcase

replace the dots in Definition 3.7.12 by
case

x = y => z:= x U y;
x = y = t U {box in the kth row} =>

z := x U {box in the (k + 1)st row};
x = y = t, a= 1 => z := x U {box in the first row}

endcase
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indicating which row is a box placed into at each step; thus, e.g., Y1(i) is the row number
for the box vi \V i - 1 .

Now we are prepared to write the versions of Algorithms 3.7.9-3.7.10 for the Young
graph.

Algorithm 4.2.2 (cf. Algorithm 3.7.9)

Input: Yamanouchi symbols Y1(1), Y 1 ( 2 ) , . . . , Y1(n) and Y 2 (1) , Y 2 ( 2 ) , . . . , Y2(n) of
two standard Young tableaux of the same shape.
Output: n x n permutation matrix a.

var
P1 : array [1..n, 0..n] of integer;
P2 : array [0..n, 1..n] of integer;
a: array [1..n, 1..n] of integer;
c: integer;

begin
for k := 1 to n do P1(k,n) := Y1(k);
for l := 1 to n do p2(n, l) := Y2(l);
for (k, l) := (n, n) downto (1,1) do

begin
if p 1 ( k , l ) = p 2 ( k , l ) =0 then c:= 1 else c := 0;
p 1 ( k , l - 1 ) : = p 1 ( k , l ) - c ;
p 2 ( k - 1 , l ) : = p 2 ( k , l ) - c ;
if c= 1 and p1(k,l) = 1 then a(k, l) := 1 else a(k,l) := 0

end
end

Algorithm 4.2.3 (cf. Algorithm 3.7.10)

Input: n x n permutation matrix a.
Output: Yamanouchi symbols Y1(1), Y 1 (2) , . . . , Y1(n) and Y2(1), Y 2 (2 ) , . . . , Y 2 ( n )
of two standard Young tableaux of the same shape.

var
p1 : array [1..n, 0..n] of integer;
p2 : array [0,.n, 1..n] of integer;
c: integer;

begin
for k := 1 to n do p 1 ( k , 0 ) := 0;
for l := 1 to n do p2(0, l) := 0;
for (k,l) := (1,1) to (n,n) do

begin
if p 1 ( k , l - 1 ) = p 2 ( k - 1 , l ) = 0 or a(k,l) = 1 then c:= 1 else c:=0;
p1(k, l) := p 1 ( k , l - 1 ) + c;
p 2 ( k , l ) : = p 2 ( k - 1 , l ) + c
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Definition 4.2.4 Algorithms 4.2.2-4.2.3 establish bijective correspondence between pairs
of standard Young tableaux of the same shape and permutations. This is the Robinson-
Schensted correspondence.

To demonstrate that this definition coincides with the traditional one, consider sequential
versions of Algorithms 4.2.2-4.2.3. In other words, replace, e.g.,

and verify that the interior for-loop is just the usual Schensted insertion. Note that the
parallel version makes transparent the well-known symmetry of the entire construction: the
inverse permutation corresponds to the same pair of tableaux switched with each other.

Algorithms 4.2.2-4.2.3 can be viewed as "Yamanouchi versions" of the Robinson-
Schensted bijections. These versions seem to provide the most convenient techniques
for the actual computation of the Schensted correspondence. By the way, their parallel
computational complexity is slightly smaller than that of the usual "bumping" versions.

Theorem 4.2.5 Both Roblnson-Schenstedcorrespondences (i.e., constructing a permuta-
tion from a pair of tableaux and constructing tableaux from a permutation) can be realized
by algorithms running in O(n) time using O(n) processors; or by a circuit with O(n2)
nodes and O(n) depth.

Since the algorithmic constructions we use apply to any pair of dual graded graphs, results
analogous to Theorem 4.2.5 are also valid for other Schensted-type correspondences, e.g.,
for the examples given in the next sections.

Let us now describe the function vp (see Section 4.1). In the case under consideration
this function assigns Ferrers shapes to permutations: in the notation of Algorithm 3.7.9,
v p ( a ) = vn. According to the main message of Section 4.1, there should be a direct (not
recurrent) definition of the map vp. Such a definition is provided by the Greene-Kleitman
duality theorem for finite posets.

Theorem 4.2.6 [9, 10] Let A be a finite poset. Let Rk (Qk, respectively) denote the
maximal number of elements in a union of k chains (antichains, respectively) in A. Denote
xk = Rk - Rk-1, yk = Qk- Qk-1. Then

for (k, l) := (1, 1) to (n,n) do

by

for k := 1 to n do
for l := 1 to n do

end
for k := 1 to n do Y 1 ( k ) := p1(k,n);
for l := 1 to n do Y2(l) : = p2(n, l)

end



34 FOMIN

(ii) the Young diagram with row lengths x 1 , x 2 , . . . has column lengths y 1 , y 2 , . . .

Let \(A) denote this Young diagram.
Any permutation a can be regarded as a poset with the ordering induced from Z2. Thus

one can consider the corresponding diagram L ( z ) .

This theorem can also be proved by demonstrating that the correspondence a —> L(Z)
respects the rule PV of Lemma 4.2.1; see [2].

4.3. General plan

We have now a general scheme that can be used to study a graded graph; this scheme has
been already applied to the Young graph. Let us outline the main elements of this scheme.

Let G1 = (P, R, E1) be a graded graph. Define the up operator U: KP —> KP (recall
K is the ground field) by

where a 1 ( x , y ) is the multiplicity (weight) of the edge ( x , y ) in G1.

1. Find a graph G2 = (P, R, E2) which is dual (r-dual) to G1. This means that the down
operator D: KP -> KP of G2 defined by

(here a 2 ( x , y ) is the multiplicity of the edge ( x , y ) in G2) satisfies the commutation
relation DU = UD + rI.

2. Define an oriented graded graph G = (P, R, E1, E2) by reversing the direction of the
G2-edges (so one can only move "up" in G1 and "down" in G2; see Definition 1.2.1).
Introduce an r-correspondence P in G (see Section 3.4). Generally, there are various
ways of defining such a correspondence; choose a "natural" one.

3. Once P has been chosen, certain parallel algorithms based on the concept of a P-growth
arise. They establish bijective correspondences between permutations (or diagonal sets;
in case r = 1 they are r-colored) and oriented paths in G with prescribed structure.
These algorithms can be presented in either "vertex version" (cf. Algorithms 3.7.9-
3.7.10) or "edge version" (cf. Algorithms 3.6.4-3.6.5,3.7.7-3.7.8). Sequential versions
can be sometimes restated in terms of tableaux and insertion-replacement procedures.

Bijective correspondences of this kind can be used for obtaining various formulae related
to path enumeration.

Theorem 4.2.7 [8] vp(z) = L(z).
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4. The main particular case of the construction is the case of a square Ferrers graph
anxn (cf. Corollary 3.7.6)); it leads to Schensted-type algorithms. Such an algorithm
constructs paths p1 and p2 in G1 and G2, respectively, for a given permutation a; these
paths have a common endpoint denoted v p ( z ) . The map a -> ( p 1 , p 2 ) is a bijection;
the inverse map can also be presented in a similar algorithmic form.

If an r-correspondence P is properly chosen, the map vP has an intrinsic definition (usually
not easy to find). In other words, v p ( z ) is a reasonable permutation statistic. Hence we
may use the above mentioned algorithms for computing these statistics.

4.4. The Young-Fibonacci graph

The Young-Fibonacci graph YF was defined in Example 2.1.4. Similarly to the case of
the Young graph, we begin by introducing an r-correspondence via functions PV and CV.
The descriptions of these functions are similar to those of Lemma 4.2.1.

Lemma 4.4.1 Let G be the Young-Fibonacci graph (so r = 1). Define functions PV and
CV as follows:

This gives an r-correspondence in G = YF (cf. Lemma 4.2.1).

Proof: Straightforward verification. d

Now we follow the example of the Young graph and introduce certain numerical char-
acteristics of edges which can be processed by the Young-Fibonacci Schensted algorithms
instead of edges themselves (cf. Algorithms 4.2.2-4.2.3).

Suppose (s, t) is an edge of YF. This implies that there is a single well-defined entry
ti of t which either has to be removed (if it is 1) or replaced by 1 (if it is 2) in order to
obtain s. Let k be the sum of all entries of t which precede ti, including ti itself. Then we
will say that t is obtained from s by adding a box into the kth position. For example, if
s = 22121, then a box can be inserted into the 1st, 3rd, 5th, or 6th position, hence getting
122121, 212121, 221121, or 22221, respectively. This parameter plays the same role for the
Young-Fibonacci graph as the row number plays for the Young lattice. In particular, we can
work with Young-Fibonacci analogues of the Yamanouchi words instead of the standard

replace the dots in Definition 3.7.11 by
case

z = 1u for some u => t := u; a := 1;
z = 2u for some u => t : = u; a := 0;

endcase
replace the dots in Definition 3.7.12 by

case
x = t = y => z := 2t;
x = y = t, a = 1 => z := 1t;

endcase
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Young-Fibonacci tableaux of Example 2.5.7. For example, the tableau (see Example 2.5.7)
is represented by the sequence 112433 which simply encodes the positions where new boxes
are inserted. We do not discuss here the simple restrictions such a sequence should satisfy.

Let us now write the versions of Algorithms 3.7.9-3.7.10 for the Young-Fibonacci graph.

Algorithm 4.4.2 (cf. Algorithms 3.7.9, 4.2.2)

Input: Sequences Y1(1), Y 1 (2 ) , . . . , Y1(n) and Y2(1), Y2(2),..., Y2(n) defining
two standard Young-Fibonacci tableaux of the same shape.
Output: n x n permutation matrix a.

var
p1: array [1..n,0..n] of integer;
p2: array [0..n, 1..n] of integer;
a: array [1..n, 1..n] of integer;

begin
for k := 1 to n do p 1 ( k , n ) := Y1(k);
for l := 1 to n do p2(n, l) := Y2(l);
for (k, l) := (n, n) downto (1, 1) do

begin
if p1(k, l) = 0 = p2(k, l) then

begin
p1(k, l-1) :=p2(k, l) - 1;
p2(k-l, l):= p1(k, l) - 1;

end
else

begin
p1(k, l - 1) := p1(k, l);
P2(k-1, l) := p2(k, l);

end;
if p1(k, l) = p2(k, l) = 1 then a(k, l) := 1 else a(k, l) := 0

end
end
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Algorithm 4.4.3 (cf. Algorithm 3.7.10, 4.2.3)
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Input = Output of Algorithm 4.4.2.
Output = Input of Algorithm 4.4.2.

var
p1: array [1..n,0..n] of integer;
p2: array [0..n, 1..n] of integer;

begin
for k := 1 to n do p1(k,0) := 0;
for l := 1 to n do P2(0, l) := 0;
for (k, l) := (1,1) to (n,n) do

begin
if p 1 ( k , l - 1) = 0 = P 2 (k - 1,l) or a(k,l) = 1 then

begin
p1(k, l) := p2(k - 1, l) + 1;
P2(k, l) := p1(k, l - 1) + 1;

end
else

begin
p1(k, l) := p1(k, l - 1);
p2(k, l) :=P2(k - 1, l);

end
end

for k := 1 to n do Y1(k) := p1(k, n);
for l := 1 to n do Y2(l) := P2(n, l)

end

Algorithms 4.4.2-4.4.3 establish bijective correspondences (originally appeared in [2];
see also [15]) between pairs of Young-Fibonacci tableaux of the same shape and permuta-
tions. These bijections possess all the main features of RSK.

Sequential versions of Algorithms 4.4.2-4.4.3 give rise to corresponding insertion pro-
cedures which play the same role as the Schensted insertion. The description of these
procedures in conventional "bumping" terms results precisely in the construction of Defi-
nition 2.5.10. (See also [15].) Details are left to the reader.

Now we describe a "Greene analogue" for the Young-Fibonacci lattice, i.e., a permutation
statistic vp that assigns vertices of YF to permutations (cf. Theorem 4.2.7). The following
result was independently obtained by T. Roby [15] and the author.

Theorem 4.4.4 Let a be an (n x n)-permutation. Then the corresponding {1, 2}-word
(a Young-Fibonacci shape) V p ( z ) can be defined as follows.

Take the uppermost and the rightmost elements of a. (Or, if you prefer to write a in a
one-line notation, take the last and the largest elements of a.) If they coincide, write 1;
otherwise write 2. Then remove these elements from a and repeat this operation until a is
empty. The resulting {1,2}-word is v p ( z ) .
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Proof: Induction on the size of a based on Algorithm 4.4.3. D

4.5. Shifted Shapes

This is the first example with G1 = G2. Recall the definition of the graph of shifted shapes
SY and its dual from Example 2.2.8. Let G1 = SY. Since the dual graph G2 does have
multiple edges, the "vertex version" of the generalized Schensted algorithm (Algorithms
3.7.8-3.7.9) does not apply and the "edge version" will only be given.

To describe an r-correspondence, color the edges of SY in black, blue, and red as follows.
Each edge a adds a box B to a certain shifted shape A. If B lies on the main diagonal (cf.
(2.2.8)) then a is colored black. Otherwise color one of the edges which add B to A blue and
another one red (this corresponds to two kinds of entries in the usual shifted P-tableaux;
cf. [18] or [17]). Now we can define an r-correspondence for this dual pair.

Lemma 4.5.1 Let G1 be the graph of shifted shapes SY and G2 a dual graph defined as
in Example 2.2.8. Define the functions $ and U as follows:

replace the dots in Definition 3.4.3 by
case

b1 and b2 add different boxes =>
a1 and a2 add the same boxes as b1 and b2, respectively;
a2 has the same color as b2; a := 0;

b1 and b2 add a box into the kth row, k > 2, b2 is blue or black =>
a1 and a2 add a box into the (k - 1)st row; a2 is blue; a := 0;

b1 and b2 add a box into the first row, b2 is blue or black =>
a1 and a2 are degenerate; a := 1;

b1 and b2 add a box into the kth column, b2 is red =>
a1 and a2 add a box into the (k - 1)st column; a2 is red or black; a := 0

endcase
replace the dots in Definition 3.4.4 by
case

a1 and a2 add different boxes =>
b1 and b2 add the same boxes as a1 and a2, respectively;
b2 has the same color as a2;

a1 and a2 add the same box, a2 is blue =>
b1 and b2 add a box into the next row; b2 is blue or black;

a1 and a2 add the same box, a2 is red or black =>
b1 and b2 add a box into the next column; b2 is red;

a1 and a2 are degenerate, a = 1 =>
b1 and b2 add a box into the first row; b2 is blue or black

endcase

Then P is an r-correspondence in G, and C = P-1.
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Proof: It is straightforward to verify that these procedures are well-defined and that $
and C are inverse bijections between appropriate sets. a

Thus we obtain Robinson-Schensted analogues for the dual pair (G1,G2) which are
specializations of Algorithms 3.7.7-3.7.8 with P and C defined as above.

Proposition 4.5.2 The sequential versions of Algorithms 3.7.7-3.7.8 for the graph of
shifted shapes and an r-conespondence defined in Lemma 4.5.1 coincide with algorithms
of Sagan-Worley [16,29] and Haiman [11].

(Comments: These sequential versions are the row-by-row and column-by-column ver-
sions which appear when the main for-cycle

for (k, l) := (1, 1) to (n,n) do

is transformed into either

for k := 1 to n do
for l := 1 to ndo

or

for l := 1 to n do
for k := 1 to n do;

similar substitutions can be done in the downto-cycles.)
A proof of this statement reduces to a formal verification.
Proposition 4.5.2 clarifies the well-known fact (see [17]): Sagan-Worley and Haiman's

algorithms produce the same pairs of tableaux when applied to inverse permutations. In
fact, these algorithms are just different versions of one and the same parallel algorithm.

A Greene analogue v p ( z ) for the shifted case was found by D. Worley [29] and B.
Sagan [16]. It can be expressed in terms of the ordinary Greene invariant. Namely, for
z = z1z2 ··· zn, compute the Young diagram L(zn ··· z2z1z1z2 ··· zn) and partition it
in halves along the main diagonal (the diagonal itself is contained in the lower part). These
halves always have the same shifted shape, and this is v P ( z ) .

4.6. Binary tree and subword order

The lifted binary tree and the dual graph BinWord (the binary subword order) were defined in
Examples 2.3.6 and 2.4.1. Since there is only one path in a tree that connects any vertex with
the root, we will actually obtain bijection(s) between paths in BinWord and permutations.

We restrict ourselves to the "vertex versions" (i.e., specializations of Algorithms 3.7.9-
3.7.10) which are valid as both graphs have no multiple edges.

There are many simple ways to define an r-correspondence for this dual pair. The
following one seems to be the most natural.

Lemma 4.6.1 Let G1 be the lifted binary tree and G2 the dual graph BinWord. Define
the functions PV, CV as follows:
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case
x = y => z := yw; {here w is the last symbol of x; so x = tw}
x = y = t => z := y0;
x = y = t, a = 1 => z := y1 {if y = 0 then y1 means 1}

endcase

Then the corresponding maps P and C are inverse to each other, and $ is an r-correspondence
in G.

In the case under consideration Algorithms 3.7.9-3.7.10 (with the above choice of an
r-correspondence) define a bijection between permutations and paths in BinWord. The
corresponding map vp assigns binary words (vertices of BinWord) to permutations. This
map can be directly defined as follows.

Proposition 4.6.2 Let a be an (n x n)-permutation. Then the binary word v p ( z ) is a
descent word of a. Formally, if z = z1 ··· zn, then v p ( z ) = w1 ··· wn where

in addition, vp(z) = 0 when n = 0.

Proof: Induction on the size of a based on Algorithm 3.7.10. D

This proposition implies that our Schensted correspondence for the subword order essen-
tially coincides with the bijection of X. G. Viennot [28].

4.7. Pascal graphs

The Pascal graph Nr is a lattice of r-dimensional points with nonnegative integer coordi-
nates. The r-dual graph is Nr with appropriate weights assigned to its edges (see Examples
2.2.2 and 2.3.3). Since this dual pair is, in a sense, the rth cartesian power of the dual pair
for the infinite chain (see Example 2.2.1 and Lemma 2.2.3), we start with the latter.

Definition 4.7.1 Let G1 be the infinite chain N. Then G2 has the same vertices but
multiple edges; namely, n edges connect n - 1 and n for n = 1,2 , . . . . Let us label these
edges with marks 1 ,2 , . . . , n in order to distinguish among them. The most natural way of
defining an r-correspondence seems to be the following:

replace the dots in Definition 3.7.12 by

case
x = y or z = w0 for some w => t := x with the last symbol removed; a := 0;
x = y and z = w1 for some w => t := x; a := 1

endcase

replace the dots in Definition 3.7.11 by
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This is certainly an r-correspondence, and the corresponding Greene analogue is simply a
function vp that assigns n to a permutation of n elements. Since N is a tree, the Schensted
analogue is a bijection between permutations and paths in G2; the latters are determined by
sequences of marks. The only condition such a sequence should satisfy is

The total number of such sequences is certainly n!. The meaning of the sequence {mi}
assigned to a permutation z = z1 ··· zn is the following:

This is a modification of the so-called code of a permutation.
Now we turn to the general case of an arbitrary r. To save space, we do not describe the

r-correspondence in detail; just note that it is, in a natural sense, a cartesian r-power of the
r-correspondence for the case r = 1, i.e., for the infinite chain (see above).

The resulting Greene analogue is a function vp that assigns to an r-colored permutation
a the point (G1, ···, Gr) e Nr where Gi is the number of elements of a which have color i.
The Schensted analogue is a bijection between r-colored permutations and pairs

that can be alternatively described as follows. Let z = z1.. ,zn where zi has color Ci.
Define a path in Nr that starts at 0 = ( 0 , . . . , 0) and at step i adds 1 to the C ith coordinate.
This is the first path of (4.7.2), or the "P-tableau". The second path (the "Q-tableau") is
defined in a similar way; namely, for each i find k such that zk = i (cf. (4.7.1)) and add
1 to the Ckth coordinate. We should also fix a mark of every edge, since the path is to be
in the dual graph (do not confuse marks and colors!). These marks are defined similarly to
(4.7.1), taking the colors into account:

replace the dots in Definition 3.4.4 by
{we should only determine the mark of b2}

case
a1 and a2 are not degenerate => mark(b2) := mark(a2) + 1;
a1 and a2 are degenerate, a = 1 => mark(b2) := 1;

endcase

replace the dots in Definition 3.4.3 by
{it suffices to determine whether a1 and a2 are degenerate or not,
and in the latter case, also the mark of a2}

case
mark(b2) = 1 =>

a1 and a2 are not degenerate; mark(a2) := mark(b2) - 1; a := 0;
mark(b2) = 1 => a1 and a2 are degenerate; a := 1

endcase
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Thus the marks determine how the elements of each color are permuted; the distribution of
colors among rows and columns is governed by the first path and the "unmarked" second
path, respectively.

One can also easily describe the corresponding algorithms in insertion-replacement terms.

4.8. Insertion graphs and path trees

Let G1 = (P, R, E1) be a graded graph with zero. The paths in G\ starting at zero form
a path tree T(G1) (see Definition 2.5.1). In other terminology, vertices of T(G1) are
"standard tableaux"; so T abbreviates both tree and tableau. It turns out that, once a dual
graph G2 = (P, R, E2) is found, one can construct a dual to T(G1) as well.

Assume P is an r-correspondence in G = ( P , R , E 1 , E 2 ) . Then an analogue of the
Schensted insertion appears (see Comments 3.7.6.1). This allows us to define a graph
Ins(G1, G2, P) called an insertion graph that proves to be dual to T(G1).

Definition 4.8.1 The definition of an insertion graph Ins(G1 , G2, P) generalizes Defini-
tion 2.5.5 of the Schensted graph. The set of vertices is the same as that of T(G1), namely,
the paths in G1 starting at zero. The rank function is the same, too. Each vertex w of rank
n — 1 is covered in Ins(G1, G2, P) by exactly n vertices of rank n (cf. Corollary 2.9.2(2)).
These vertices can be obtained by inserting a number into w, i.e., by applying the procedure
of Comments 3.7.6.1. Note that we use an r-correspondence P, fixed in advance, while
making these insertions.

The construction of Definition 4.8.1 leads to the Schensted graph and the graph InsYF
(see Definitions 2.5.4-2.5.5 and 2.5.10-2.5.11) when specialized to the Young and Young-
Fibonacci graphs, respectively.

Theorem 4.8.2 A path tree T(G1) and an insertion graph Ins(G1 , G2, P) are dual to
each other.

Proof: Let U be the up operator in Ins(G1 , G2, P) and D the down operator in T(G1).
Applying UD to a vertex, i.e., a path ( a 1 , . . . , an) in G1, can be described as removing
an and then inserting each possible k, namely, k = 1,. . . , n. On the other hand, DU
inserts all the k (thus resulting in a formal sum of respective vertices = paths) and then
removes the last edge from each path. Note that in the latter procedure k can be either of
1 , . . . , n + 1. Moreover, corresponding operations (i.e., inserting k and deleting the last
edge, or the maximal entry of a tableau) commute for each fixed k < n. Finally, inserting
n + 1 and deleting last edge results in the initial path (vertex). Hence DU = UD + I.

n

This construction can be extended,—say, to the case of commutation relations
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where rn > 0 for all n (cf. (1.3.4)). The statement of Theorem 4.8.2 remains valid and
essentially the same proof works.

The following particular case leads us to the permutation trees of Section 2.6.

Theorem 4.8.3 Assume G1 and G2 are dual and G2 is a tree. Then T(G1) and
Ins(G1 ,G2 , P) are dual permutation trees.

A proof of this theorem is omitted; it is technical and not very hard.
Strictly speaking, we should not say that T(G1) and Ins(G1 ,G2 , P) are permutation

trees but rather that there exists a pair of isomorphisms between them and permutation trees
that respects the whole construction.

Corollary 4.8.4 As T(G1) and Ins(G1,G2, P) are dual (Theorem 4.8.2), let E be an
r-correspondence for this pair of graphs. Make one additional step to obtain dual graphs

These graphs are isomorphic to dual permutation trees.

In other words, a repeated use of the main construction of this section results (for any
pair of dual graded graphs!) in the canonical Example 2.6.8.

Now we list the main applications of this construction.

4.8.5 Theorem Appropriate choices of r-correspondences P produce the following series
of examples (consult Index 2.8 for definitions):

Proof: The first two lines are valid since these are particular cases of the general con-
struction. Lines 4-7 follow from Theorem 4.8.3. It only remains to check the third line.
Clearly, T(Nr) = Tr. A proof of the fact that in this case the insertion graph is [isomorphic
to] the graph related to derivation (2.3.7) is left to the reader. n
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