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Abstract. Let W be a Coxeter group. We define an element w ~ W to be fully commutative if any reduced 
expression for w can be obtained from any other by means of braid relations that only involve commuting generators. 
We give several combinatorial characterizations of this property, classify the Coxeter groups with finitely many 
fully commutative elements, and classify the parabolic quotients whose members are all fully commutative. As 
applications of the latter, we classify all parabolic quotients with the property that (1) the Bruhat ordering is a 
lattice, (2) the Bruhat ordering is a distributive lattice, (3) the weak ordering is a distributive lattice, and (4) the 
weak ordering and Bruhat ordering coincide. 
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1. Introduction 

Let W be an arbitrary Coxeter group. This paper is concerned with the elements w c W 
with the property that any reduced word for w can be obtained from any other by using 
only the Coxeter relations that involve commuting generators. We say that such elements 
are fully commutative. 

Our motivation for studying full commutativity arose from some applications we dis- 
covered that involve the symmetric functions associated with the Weyl groups of type B 
and D studied by Billey and Haiman [1], Fomin and Kirillov [8], and Lam [10]. (These 
applications are discussed in [13].) A second (related) motivation arose from the interesting 
combinatorial properties of full commutativity in the symmetric group case. For example 
(quoting [2]), the fully commutative members of Sn are the permutations w that avoid the 
pattern 321 (in one-line notation). The number of these is the Catalan number C,, and 
there is a skew Young diagram 0 naturally associated to each fully commutative to with 
the property that the standard Young tableaux of shape 0 are in one-to-one correspondence 
with the reduced words for to. 

A third motivation, valid in any Coxeter group, is the fact that full commutativity is 
equivalent to several other natural combinatorial properties. For example (Theorem 3.2 
below), w E W is fully commutative if any only if the set of reduced words for to is order- 
theoretic, by which we mean that there is a labeled partially ordered set whose linear 
extensions are the reduced words for w. Also, one can show (again Theorem 3.2) that 
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knowledge of the fully commutative elements of W is equivalent to knowledge of the 
subintervals of the weak ordering of W that are distributive lattices. (By a theorem of 
Bj6rner [3], one knows that every subinterval of the weak order is at least a lattice.) 

In his recent Ph.D. thesis [6] (see also [7]), Fan has independently studied the fully 
commutative elements of simply-laced 1 Coxeter groups with an entirely different set of 
motivations in mind. Fan proves that the fully commutative elements index a basis for 
a quotient of the associated Iwahori-Hecke algebra. In the symmetric group case, this 
quotient is the Temperley-Lieb algebra. In the (simply-laced) Weyl group case, Fan gives 
the following characterization of full commutativity: If  q~(w) is the set of positive roots 
sent to negative roots by w, then w is fully commutative if and only if the root spaces 
indexed by ~ (w)  generate an abelian subalgebra of the associated Lie algebra. Fan also 
uses this characterization as the definition for commutative elements of non simply-laced 
Weyl groups, but this is not equivalent to full commutativity as we define it. 

The outline of the paper is as follows. In Section 3, we prove several characterizations 
of full commutativity, including the ones mentioned above. Of central importance is the 
"heap" associated to a fully commutative element w this is a labeled partial order whose 
linear extensions are the reduced words for w. In Section 4, we prove that every fully 
commutative heap occurs as a convex subset of a heap with unique maximal and minimal 
elements; these are the heaps of fully commutative double coset representatives of W 
relative to pairs of maximal parabolic subgroups. We also prove (Theorem 4.4) that a fully 
commutative element that is maximal with respect to multiplication on the right has a heap 
with a "top tree" that amounts to a rooted version of the Coxeter graph. In particular, there 
are no such elements unless the Coxeter graph is acyclic. We then characterize (Theorem 
4.5) the rooted trees that arise in this fashion. 

In Section 5, we classify the Coxeter groups that are FC-finite (i.e., contain finitely 
many fully commutative elements). This generalizes the work in [6], where Fan treats the 
simply-laced case. It is interesting to note that the proof we give is self-contained, purely 
combinatorial, and close to being a proof of the classification theorem for finite Coxeter 
groups. (However, there do exist infinite Coxeter groups that are FC-finite.) 

In Section 6, we classify the parabolic quotients of Coxeter groups whose members are 
all fully commutative. The result is that aside from a few exceptional cases, the irreducible 
quotients with this property arise from orbits of minuscule weights in finite Weyl groups and 
Coxeter groups in which every edge of the Coxeter graph has infinite weight. Among the 
finite Weyl groups, this classification coincides with Proctor's classification of the parabolic 
quotients of Weyl groups whose Bruhat ordering is a lattice [11]. In the final section, we 
extend Proctor's result by classifying all parabolic quotients of arbitrary Coxeter groups 
such that (1) the Bruhat ordering is a lattice, (2) the Bruhat ordering is a distributive lattice, 
(3) the weak ordering is a distributive lattice, and (4) the weak ordering and Bruhat ordering 
coincide. Interestingly, one finds that all four classification problems have the same answer. 

2. Preliminaries 

Throughout this paper, W shall denote a Coxeter group with finite generating set S and 
Coxeter matrix M = [m(s, t)]s.t~s. Thus m(s, t) is the order of st in W (possibly 
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m(s,  t) = ~ ) .  We let F denote the Coxeter graph of  (W, S); i.e., the simple graph with ver- 
tex set S and edges between pairs of  non-commuting generators. By the Coxeter diagram, 
we mean the pair (1", M), regarding M as a weight function on the edges of  I'. 

2.1. Commutativity classes 

Let S* denote the free monoid generated by S. We will represent the members of  S* as 
sequences, so that s = (sl . . . . .  st) would be typical. By a subword of s, we shall mean 
a subsequence of  s occupying consecutive positions, such as (s,, s,+) . . . . .  st). Also, for 
integers m > 0 and s, t 6 S, let us define 

(s, t)m = ( s , t , s ,  t , s  . . . .  ) E S*. 

m 

For w 6 W, let e(w) denote the minimum length of  any expression w = sl - �9 - st with 
s, ~ S. Any such minimum-length expression for w is said to be reduced. It will be 
convenient more generally to declare any expression of  the form w = wl . . .  wt with 
//3 i ~ W to be reduced if e(w) = e (wl )  + . . .  + e(Wt). We let ~ ( w )  C S* denote the set 
of  all words s = (sl . . . . .  st) such that w = sl . - .  st and the expression is reduced. 

Let ~ denote the congruence on S* generated by the braid relations 

(s, t)m(s,t) "~ (t, S),n(s,t) 

for all s, t c S such that m(s, t) < c~. Of central importance for this paper is the fact that 
if s is any particular reduced word for w, then ~ ( w )  is the equivalence class of  s relative 
to ~ ;  i.e., any reduced word for w can be obtained from any other by means of  the braid 
relations ([4], Section IV. 1.5). 

Now consider the weaker congruence ~ on S* generated by the braid relations corre- 
sponding to pairs of  commuting generators (i.e., the relations (s, t) ~ (t, s) for all s, t 6 S 
such that m(s,  t) = 2). We remark that the quotient monoids S* /~ ,  known in the liter- 
ature as free partially abelian monoids, or commutation monoids, were first studied in a 
systematic way by Cartier and Foata [5]. (See also the survey in [ 14].) 

The equivalence class C of a given reduced word s (relative to ~)  consists of the words 
obtainable from s by transposing adjacent commuting pairs. We call C the commutativity 
class of s. Since ~ is weaker than ~ ,  it is clear that there is a decomposition 

7~(w) = r @ . - -  @ G 

of 7~(w) into commutativity classes. If  ~ ( w )  consists of just one commutativity class, we 
say that w is fully commutative. 

Proposition 2.1 An element w ~ W is fully commutative if and only if f o r  all s, t ~ S such 
that 3 < m(s,  t) < o~, there is no member o f  T"~(w) that contains (s, t)m(.,, t) as a subword. 
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Proof: Given the fact that any reduced word can be obtained from any other via the 
braid relations, the sufficiency of  the stated condition is clear. To prove that it is also 
necessary, suppose that s is a reduced word for some w 6 W, and that s, t 6 S are such 
that 3 < m(s, t) < or Every member of the commutativity class of  s can be obtained 
by exchanging adjacent pairs of  letters not including the pair s, t. It follows that the 
subsequence of  s formed by the occurrences of  s and t is an invariant of the commutativity 
class of  s. Therefore, ifs contains (s, t ) m as a subword (where m = m (s, t )), then the reduced 
word s' obtained by applying the braid relation (s, t)m "~ (t, S)m belongs to a different 
commutativity class, and hence w could not be fully commutative. [] 

2.2. Heaps 

Let s = (sl . . . . .  st) be an arbitrary (i.e., not necessarily reduced) word in S*. Define a 
partial ordering q on [l ] = {1, 2 . . . . .  l} via the transitive closure of  the relations 

i -< j if i < j and m(si, s j) ~ 2. 

In particular, i -< j if i < j and si = sj. The triple P~ = ([ l ], 4 ,  s) can be regarded as a 
labeled poset (i.e., a partial order in which the elements have special labels), the label of  
the ith vertex being si. Following the terminology of  [14], we call Ps the heap of s. 

Let P be any partial ordering of  [ l ]. By a linear extension of P ,  we mean a total ordering 
Jr = (rr(1) . . . . .  ~r(l)) of [ l ]  consistent with P;  i.e., zr(i) < zr(j) in P implies i < j .  We 
let E ( P )  denote the set of  all linear extensions of  P. Regarding s as a labeling of  P (i.e., 
the element i has label si), it is convenient to define 

s  s) = {(s.o) . . . . .  s.(t)) E S* :Jr 6 s  

In the case of  a heap, the elements with the same label are totally ordered, so there is at most 
one linear extension corresponding to any given word in S*. We will refer to the members 
of  s  s) as labeled linear extensions of  P.  

The following result is a standard part of the theory of  heaps (e.g., see Lemma 3.2 of  [14] 
or Exercise 3.48(b) of  [12]). 

Proposition 2.2 For s c S*, s s) is the commutativity class ors. 

Proof: Suppose that s' = (s~ . . . . .  s~) ~ s s) and that zr e s is the corresponding 
linear extension. Since adjacent elements in a linear extension must either be incomparable 
or a covering pair, it follows that for every k < l, either rr(k) and zr(k + 1) are incomparable 
in Ps, or else s~ and s~+ 1 do not commute. Therefore, the interchange of any pair of 
adjacent commuting generators in s ~ corresponds to the interchange of  a pair of  adjacent 
incomparable elements in zr, and hence yields another (labeled) linear extension of P~. 
Since s ~ s s), it follows that E(Ps, s) contains the commutativity class of s. 

Conversely, to prove that s s) only contains elements from the commutativity class 
of  s, we proceed by induction on the length of  s. Suppose that ~r and s' are as above. 
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Since i = zr(l) is a maximal element of  Ps, si must commute with sj for all j > i, so 
s ~ Stt  = ( S  1 . . . . .  S i - 1 ,  s,+t . . . . .  st, s,). However, (s' l . . . . .  s~_l) is a labeled linear exten- 
sion of  the heap of (sl . . . . .  s i - l ,  s,+l . . . . .  st), so by induction we obtain s' "-~ s" and the 
result follows. [] 

We remark that Ps is an invariant of  the commutativity class of  s in the sense that if s ~ s', 
then there exists a poset isomorphism tp : Ps --+ Ps' such that s, = s~(,). In particular, if w 
is fully commutative, the heaps of  the reduced words for w are all equivalent, so we may 
speak of  the heap of  w without ambiguity. 

2.3. The weak order 

The (right) weak ordering of (W, S), denoted <R, is defined to be the transitive closure of  
the relations w < Rws for all w E W, s ~ S such that e(w) < s  Equivalently, for all 
x, y 6 W one has x <R x y  if and only i f x y  is reduced (i.e., e(xy)  = e(x)  + e(y)).  The 
left weak ordering is defined similarly--one has y <L x y  if and only if x y  is reduced. We 
remark that the map w ~ w -1 provides an isomorphism between the left and right w e a k  
orderings of  W. Apart from the special case of  symmetric groups, the weak ordering of  
Coxeter groups seems to have been first studied by Bj6rner [3]. 

Proposition 2.3 For all x ,  y ~ W such that x <-R Y, we have 

{ w E  W : x  <R w<_R y} ~ - { w 6  W : w < R x - l y }  

as subposets o f ( W ,  <R). 

Proof:  The map w ~ x -1 w is easily shown to be an isomorphism. [] 

Note that an immediate consequence of Proposition 2.1 is the fact that if w is fully 
commutative and w' <R w, then w' is also fully commutative; i.e., 

Proposi t ion 2.4 The set o f  ful ly  commutative elements o f  W forms an order ideal with 
respect to the right (or left) weak order. 

F o r w  ~ W, let DR(w)  = {s ~ S : e ( w s )  < e(w)}  and DL(w)  = {s c S : e ( sw)  < •(w)} 
denote the right and left descent sets for w, respectively. It is well-known (e.g., [9], Section 
1.10) that for all J C S, 

W J = { w ~  W : s c  J ~ g ( w s )  > s  W : D R ( w )  A J = 0 }  

J W  = {w ~ W : s e J :=~ s  > g(w)} = {w 6 W : D L ( w )  A J = 0 }  

are, respectively, left and right coset representatives for the parabolic subgroup Wj generated 
by J.  Let us also note that for I, J C S, 

I W J  = l W  n W ~ = {w ~ W : DL(w)  f) I = D R ( W )  N J = 0} 

forms a set of  double coset representatives for Wf \ W / W j .  
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Proposition 2.5 For J C S, J W (resp., W J) is an order ideal o f  the right (resp., left) 
weak ordering o f  W. 

Proof: Let w 6 J W. If  w' _<R w, then there exists a reduced expression w = w'x  for 
some x ~ W. Hence for any s ~ J,  sw  = sw 'x  is reduced, so sw '  is reduced. In other 
words, e(sw' )  > e(w' )  for all s ~ J ,  so w' ~ J W. [] 

It should be noted that W J need not be an order ideal of the right weak order. 
We remark that if W is finite, with w0 c W being the longest element, the fact that 

s = e(xwo)  = e(wo) - e(x) for all x ~ W (e.g., [9], Section 1.8) shows that wo is 
the unique maximal element of  W with respect to <R and < f -  More generally, if w J 6 W J 
denotes the left coset representative for w0, we have the following. 

Proposition 2.6 For J C S, wg is the unique maximal element o f  (W J, <_L). 

Proof: Let x0 denote the longest element of Wj. Given w 6 W J, the expression wxo 
must be reduced (otherwise by the deletion property ([9], Section 5.8) w would not be 
the shortest member of  its coset). Similarly, the expression w0 = wgx o must be reduced. 
Therefore wxo <L Wo = w~x o, and hence also w <L to0 J. [] 

3. Charac ter iza t ions  o f  full commuta t iv i ty  

For any partial order P,  let J (P)  denote the distributive lattice of order ideals of P. 

L e m m a  3.1 Let w E W be o f  length l. I f  P is a partial order o f  [ l ] and s E S* is a 
labeling such t h a t , ( w )  = / Z ( P ,  s), then {x E W : x 5 R w} ~- J ( P ) as posets. 

Proof :  We claim that for s 6 S, Cs :=  {i : si = s } is a totally ordered subset of  P. Indeed, 
if i and j were incomparable and si = sj = s, then there would exist a linear extension of  P 
in which i and j appear consecutively. However, the corresponding word in S* would have 
two consecutive occurrences of s, and hence could not be a reduced word for w, proving 
the claim. 

Now let s ~i) denote the ith smallest member of the chain C,, relative to P. For any 
s' 6 S*, define v(s, s t) to be the number of  occurrences of s in s'. 

Suppose that s' is a reduced word for some x <R w. Since any reduced word for x can be 
completed to a reduced word for w, it follows that s' is an initial segment of some labeled 
linear extension of  P,  and hence 

I(s ' )  : =  {s (') : i < v(s, s'), s ~ S} 

is an order ideal of  P.  Furthermore, we claim that if s" is another reduced word for x, then 
l (s ' )  = I(s") .  If not, then it would be necessary that v(s, s') # v(s, s") for some s ~ S. 
Since the suffix of  any completion of s' to a reduced word for w can also be used as the 
suffix for a completion of  s", it follows that there exist reduced words for w in which the 
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multiplici ty of  s varies. However by assumption, 7~(w) = s  s), so every reduced word 
for w must be a permutation of s. 

We can thus use I ( x )  to denote the common value of  I ( s ' )  for s ~ 6 7~(x). We claim that 
the map x w-> l ( x )  defines an order-isomorphism between {x 6 W : x <R w} and J ( P ) .  

To prove this, we first note that the map is order-preserving. Indeed, given any covering 
relation x < Rxs, we can choose a reduced word for x and complete it to a reduced word 
for xs  by appending s, and therefore I (x) C I (xs). 

To prove that the map is surjective, let 1 be an order ideal of P.  One can find s' c 12(P, s) 
so that some initial segment of  s', say s", is a labeled linear extension of  I .  However by 
hypothesis,  s '  must be a reduced word for w. Hence s" must be a reduced word for some 
x <R w and I = l ( s " )  = l ( x ) .  

To prove that the map is injective, suppose that l ( x )  = l ( y )  = 1 for some x, y <R w. 
In that case, there must exist a labeled linear extension of I belonging to 7~(x). Any 
complet ion of  this to a labeled linear extension of  P (thus yielding a reduced word for w) 
must be a reduced word for x -1 w. On the other hand, since I (y) = I ,  the same argument 
proves that it must also be a reduced word for y - I  tO, SO X = y. [] 

Let us declare a subset 7~ of  S* to be order-theoretic if there exists a partial ordering P 
of  [ l ] for some integer I > 0 and a labeling s ~ S* of P so that 7~ = s  s). 

T h e o r e m  3.2 For w ~ W, the following are equivalent: 
(a) w is fully commutative. 
(b) {x c W : x <R w}, as a subposet o f  (W, <R), is a distributive lattice. 
(c) {x ~ W : x <R w} ~- J(Ps)  for  some (equivalently, every) s E T~(w). 
(d) 7~(w) is order-theoretic. 
(e) ~ ( w )  = s s ) for  some (equivalently, every) s ~ ~ ( w ) .  

Proof :  The implications (c) =~ (b) and (e) =r (d) are immediate,  (e) =~ (c) and (d) :=~ (b) 
are special cases of  Lemma 3.1, and (a) =r (e) follows from Proposition 2.2. To complete the 
proof, it therefore suffices to establish (b) => (a). For this, assume towards a contradiction 
that {x c W : x _<R w} is a distributive lattice, but that w is not fully commutative. Among 
all such counterexamples,  assume that w is one that minimizes length. By Proposition 2.1, 
there must exist a reduced word s E R ( w )  and a pair s, t E S such that (s, t)m occurs as a 
subword of  s, where m = m(s, t) and 3 _< m < ~ .  However, Proposition 2.3 shows that 
if w'  E W has a reduced word that occurs as a subword of s, then {x ~ W : x <R w'} is 
order-isomorphic to a subinterval of  {x c W : x <R w}. Since subintervals of  distributive 
lattices are also distributive, the minimality of  s forces s = (s, t)m; i.e., w must be the 
longest element of the dihedral Coxeter group generated by {s, t}. Since the weak ordering 
of  such Coxeter groups is transparently not distributive for m __. 3 (e.g., see figure l (a)  for 
the case m = 4), we obtain a contradiction. I::3 

A subset C of a partial order P is said to be convex if i, j ~ C and i < k < j in P implies 
k 6 C. The following result provides an intrinsic characterization of the heaps of  fully 
commutat ive elements. 
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Proposi t ion 3.3 The heap P o f  a word s ~ S* is the heap o f  some fu l ly  commutative 

w E W i f  and only i f  
(a) There is no convex chain il < . . .  <im in P such that sit = si~ . . . . .  s and 

si2 = s,4 . . . . .  t, where 3 < m = m(s ,  t) < ~ .  

(b) There is no covering relation i < j in P such that s~ = sj .  

Proof:  For any convex chain (or covering relation) of a poset P,  there exist linear exten- 
sions in which the members of  the chain appear consecutively. Thus if s is a reduced word 
for some fully commutative w e W, Proposition 2.1 implies the necessity of (a). Since no 
reduced word can have two equal adjacent terms, (b) is also necessary. Conversely, given 
(a), Proposition 2.2 implies that the commutativity class of  s has no members that contain 
(s, t>m as a subword, for all s, t ~ S such that m = m(s ,  t) > 3. Therefore, the equivalence 
class of  s relative to the braid relations is the same as its commutativity class. If  follows 
that P is the heap of  some fully commutative member of  W, provided that s is a reduced 
word. However, this additional property is a consequence of  (b). [] 

4. Special properties 

Suppose that P is the heap of  (a reduced word for) some fully commutative w ~ W. Recall 
that for each s e S, the members of  P with label s form a chain. It will be convenient for 
what follows to let s (i) denote the ith greatest member of this chain with respect to P. (This 
is dual to the notation used in the proof of  Lemma 3.1, but should not cause confusion.) 

L e m m a 4 . 1  L e t s  ~ S, and let w c W be fu l ly  commutative with heap P. l f  ws  is not 
fu l ly  commutative,  then ws  is reduced and there is a unique t E S such that re(s, t) > 3 
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a n d s  (l) < t (1) in P.  Moreover,  m(s ,  t) < oo and 

s (k) < t (k) < s (k-I) < t (k-j) < �9 < s (]) < t (]) 

t (k) < s (k-~) < t (k-~) < . . .  < s (1) < t (1) 

( i fm( s ,  t) = 2k + 1) 

( i fm( s ,  t) = 2k), 

is a convex chain in P. 

Proof: Since the fully commutative part of W is an order ideal with respect to < R (Propo- 

sition 2.4), it follows that if ws is not fully commutative, then ws  is reduced. Now let P0 
be the heap obtained from P by appending s at the end of a reduced word for w, and let s (~ 
denote the new vertex. For ws  to not be fully commutative, it is necessary by Proposition 

2.3 that for some generator t E S such that 3 < m(s ,  t) < cxz, we have 

s (k) < t (t) < . . .  < s (1) < t (11 <s(0) 

t (k)< . . .  < s ( D < t  0 ) < S  (0) 

( i fm(s ,  t) = 2k + 1) 

(if re(s, t) = 2k) 

occurring as a convex chain in P0- If there were another t '  6 S such that m(s ,  t ')  > 3 (or 
m(s ,  t ') = ~ )  and s ~l) < (t~) fl) in P, then we would have s ~l) < (t') ~l) < s ~~ in P0, so the 

above chain would not be convex. [] 

4.1. Reduct ion to maximal  quotients 

For s ~ S, let (s) = S - {s}. Note that the maximal quotient W ~') consists of the identity 
element, together with those w 6 W with the property that every s 6 7~(w) ends with s. 
The fully commutative elements with this property are characterized by the fact that their 

heaps have a maximum element with label s. 

Theorem 4.2 I f  W is irreducible and w ~ W is fu l ly  commutative,  then there exists a 

fu l ly  commutat ive w'  > R w such that w'  ~ Wl"> f o r  some s E S. 

Proof: Let s be a reduced word for w and P = Ps the heap of w. We may assume that 
every s E S appears in s, since if s does not appear, then ws  > R W and ws  is still fully 

commutative. 
Let D = D R ( w )  C S denote the right descent set of w. Thus s e D if and only i f s  I1) is 

maximal in P.  If D = {s} is a singleton, then w ~ W ~s) and there is nothing more to prove. 
Otherwise, let us define the separation of D to be the minimum distance in the Coxeter 
graph P among all pairs of elements in D. (Note that F is connected since W is assumed 

to be irreducible.) We claim that there exists a fully commutative w' >R w such that either 

[DR(W')[ < [OR(w)[, or else ]DR(W')[ = IDR(w)[ and DR(W') has a smaller separation 
than DR (w). By iteration, this result would establish the existence of a fully commutative 

w' >R W such that IDR(w')I = 1, thereby completing the proof. 
To prove the claim, consider a pair s, t ~ D whose distance in F is minimal, and let 

s = so, st . . . . .  st = t be a shortest path from s to t. It is necessary that m ( s , - l ,  s,) > 3 
for 1 < i < l, m(s i ,  s))  = 2 for [i - j[  > 2 (otherwise the path is not minimal), and t >_ 2 
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(otherwise, s o) and t 0) would be comparable in P and hence could not both be maximal). 
In particular, since si-i  and s, do not commute, s ~  l and s~ 1) must be comparable in P. 
Bearing in mind that s 0) and t (1) are both maximal in P,  it follows that there must exist an 
index i such that 

SO (1) > S~ l) > . . .  > S~ 1) <s~ l )  1. 

In particular, there are (at least) two elements greater than s~ l) in P whose labels do not 
commute with si. Thus wsi is reduced and (by Lemma 4.1) fully commutative. Furthermore, 
in the heap of  wsi, we have 

So O) > s[ l) > . . .  > s ~  1 < s [  O. 

Hence by similar reasoning, tosisi_ 1 is reduced and fully commutative. Iterating this 
reasoning, we obtain that w' :=  ll3SiSi_ 1 ' ' '  S 1 is reduced and fully commutative. Moreover, 
we have s = So ~- DR(w'),  and there is only one element (namely, sl) of  DR(w') not in 
DR(w),  so I O R ( w ' ) l _  IDR(W)I. If  equality occurs, then we have sl, t ~ DR(w' )and  the 
separation of  DR(w')  is at most I -- 1. [] 

Let <LR denote the partial order on W generated by the union of  the left and right weak 
orders; i.e., the transitive closure of  the relations x <LR xy  and y <LR xy  for all x, y 6 W 
such that xy  is reduced. It is clear that the fully commutative elements of  W form an order 
ideal with respect to <LR. The following result shows that this order ideal is generated by 
members of  the maximal two-sided quotients of  W. 

Coro l la ry  4.3 I f  W is irreducible and w ~ W is fully commutative, then there exists a 
fully commutative w' > LR W such that w' E (s> Wit> for  some s, t E S. 

Proof :  By Theorem 4.2, there is a fully commutative w' >R w such that w' ~ W Is) for 
some s 6 S. It follows that s (1) is the unique maximal element of the heap of  w'. Without 
loss of  generality, we can assume that every member of  S occurs in some (equivalently, 
every) reduced word for w', so that adding elements at the bottom of the heap will not 
change the fact that s (l) is the unique maximal element of  the heap. In other words, for 
every fully commutative w" >L w', we have w" ~ W Is>. However, by the dual version of  
Theorem 4.2, we can find a fully commutative w" >L w' such that w" E It> W for some 
t E S, and thus w" ~ It) W tq W (s> = It) WIS>. [] 

4.2. The top tree o f  a maximal element 

By an ordering of a tree T with vertex set S, we mean a partial ordering of  S obtained by 
choosing a special vertex so 6 S, and declaring s < t if t is on the unique path from s to so. 
The Hasse diagram of such an ordering is the tree T, rooted at so. 

Let w 6 W be fully commutative with heap P. We will say that w is right-maximal 
(resp., left-maximal) if for every s ~ S, ws (resp., sw)  is either not reduced or not fully 
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commutative. In other words, w is maximal in the right (resp., left) weak order with 

respect to full commutativity. In case w is right-maximal,  it will be convenient to define 
p 0 )  = {s o) : s E S}, a subposet of P.  (We will sometimes abuse this notation and regard 
pO) as a partial order on S.) It should be noted that every generator must occur in any 
reduced word for a r ight-maximal element, so s 0) is indeed defined for all s c S. 

The following result explains why we refer to p(1) as the top tree 2. 

Theorem 4.4 Assume that W is irreducible. I f  w E W is fully commutative and right- 
maximal with heap P, then the Coxeter graph I" is a tree, pO) is an order filter o f  P, and 
p(1) is an ordering o f  the tree F. 

Proof: Choose s ~ S, and suppose that t (') covers s O) in P for some t c S and i > 1. It 
follows that s (1) < t (i) < t O) in P and m(s, t) > 3. Since ws cannot be fully commutative, 

Lemma 4.1 implies that the two-element chain s 0) < t (1) must be convex (i.e., a covering 
relation) in P ,  and therefore i = 1. In other words, the only members of  P that cover s (1~ 
are members of  pO);  thus p(l)  is an order filter of P.  

A second consequence of  Lemma 4.1 is that there can be at most one element covering 
s 0) in P.  Since Theorem 4.2 implies that the heap of  a r ight-maximal w has a unique 
maximal  element, it follows that p 0 )  is an ordering of  some tree. Hence to complete the 
proof, we must show that this tree is F. Certainly it is true that every covering relation of 
p(1) must involve a pair of  elements whose labels are non-commuting genera tors - - these  

are the adjacent pairs in 1-'. Conversely, given a pair of  non-commuting generators s, t E S, 
it must be the case that s (1) and t ~ are comparable in P;  say s (~ < t (l). In that case, since 
ws cannot be fully commutative, Lemma 4.1 implies that t (~) must be the only element 
greater than S (1) in P whose label does not commute with s, so it must cover s (t). [] 

4.3. The classification o f  top trees 

If  Q is an ordering of  a tree on the vertex set S, we will use the notation t +-- s to indicate 
the covering relation of  Q; i.e., t < s in Q and s, t are adjacent in the tree. 

The following result describes the irreducible Coxeter groups that contain r ight-maximal 
fully commutative elements, as well as the top trees of all such elements. Of course by the 
previous result, we know that W cannot contain any left- or r ight-maximal elements unless 
the Coxeter  graph I" is a tree, but this is far from sufficient. 

Theorem 4.5 Assume that r is a tree, and let Q be an ordering o fF .  There exists a fully 
commutative right-maximal w E W with top tree Q (i.e., pO) = Q for  the heap P of  w) if 
and only if the following conditions are satisfied for  all s, t, u E S: 
(a) re(s, t) < ~ .  
(b) I f  t +-- s, u +-- s and t • u, then m(s, t) = m(s, u) = 3. 
(c) l f u  +-- t +-- s, then m(s,  t) <_ 4. 
(d) l f u  +- t +-- s and m(s,  t) = 4, then m(t ,  u) = 3. 

Proof: We first prove that conditions (a)-(d)  are necessarily satisfied by any right-maximal 
w E W with heap P such that Q = pO). 
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(a) I f  s, t e S are such that m(s ,  t)  > 3, then either s (1) < t (1) or t (1) < s (1). Assuming  

the latter, w t  must  be reduced and therefore cannot  be fully commutat ive.  However  by 
L e m m a  4.1, this is possible  only  if  m(s ,  t) < oo. 

(b) Assume  towards a contradict ion that t +-- s, u ~ s, t # u, and m(s ,  t) > 4. In that 
case, tot  is reduced and therefore cannot  be fully commutat ive.  Thus by L e m m a  4. I, 
s ~2) < t <l) < s (1) mus t  occur as a convex chain in P .  However, u +-- s implies  that 

u (1) < s ~  is a covering relation of  P .  Since u (1) and s ~2) must  be comparable,  we there- 
fore have s (2) < u (1) < s (I), so the chain s (2) < t 0) < s (~) is not  convex, a contradiction.  

(c) A s s u m e  towards a contradict ion that u ~ t <-- s and m ( s ,  t)  > 5. As in the previous 

case, it follows that w t  is reduced and therefore cannot  be fully commutat ive.  Thus 
by L e m m a  4.1, t (2) < s (2) < t (1) < s (1) must  occur as a convex chain in P .  However,  

u <--- t implies  that u (l) < t (1) is a covering relation of  P .  Since u (1) and t C2) must  be  
comparable ,  it follows that t (2) < u (1) < t (1), so the chain t (2) < S (2) < t (1) < S (1) is not  

convex,  a contradict ion.  

(d) A s s u m e  towards a contradict ion that u ~-- t +-- s, re(s,  t) = 4, and re( t ,  u) > 4. In 
this case, both w t  and tou are reduced and hence neither can be fully commutat ive.  
By L e m m a  4.1, it follows that both s (2) < t (1) < s (1) and t (2) < u (l) < t (1) must  occur 

as convex chains  in P .  In particular, s (2) < t o) must  be a covering relation. However,  
s (2) and t (2) must  be comparable,  so t (2) < s (2) < t (1), contradict ing the convexity of  the 
chain  t (2) < U (1) < t (~). 

For  the converse,  we assume (a)-(d)  and construct  a r ight-maximal  w e W with top tree 

Q, by induct ion  on ISI. If  ISI = 1, the nonident i ty  member  of  W suffices. If ISI = 2, then 
(a) implies  that W is a finite dihedral  group, and it is straightforward to construct  a suitable 
e lement  to in this case. 

Otherwise,  we have ISI >_ 3. Let s ~ S denote  the root of  Q, and let Ql  . . . . .  Qk denote 
the ordered subtrees obtained by delet ing the root f rom Q. Each subtree has a root si E S. 

Furthermore,  the parabolic subgroups Wi generated by each a i  commute  with each other. 
By induct ion,  we can find a fully commutat ive  r ight-maximal  e lement  to, (relative to Wi) 

with top tree Q,,  for each i. 

Case  1. k > 2, or  k = 1 a n d  m ( s l ,  s) = 3. Consider  w = wl  . . .  WkS. Since s does not 
occur in any reduced expression for wi,  it is clear that w is fully commutat ive.  To 
prove that w is r ight-maximal ,  choose t 6 S and consider  wt .  If  t --  s, then w t  is 

not  reduced. I f  t is an internal  vertex of  Q i ,  then w i t  is reduced and hence cannot  be 
fully commutat ive ,  since wi is r ight-maximal  for Wi. Hence,  w t  = Wl . . .  ( t o i l )  �9 �9 �9 WkS 

cannot  be fully commutat ive.  The remain ing  possibil i ty is that t = si for some i. If  
k > 2, then (b) implies  m ( s i ,  s )  = 3; otherwise, if k = 1 then we have m ( s i ,  s )  = 3 

by hypothesis.  Since si is the root of  Q i ,  every reduced word for wi ends with si, so 
w, ssi  is not  fully commutat ive,  so w t  = ws,  is not  fully commutat ive.  Thus w is indeed 
r ight-maximal ,  and it is clear that Q is the top tree of w. 

Case  2. k = 1 a n d  m ( s l ,  s)  = 4 .  (Since Ql  has two or more elements ,  (c) implies  that 
this is the only  remain ing  possibility.) Since Sl is the root of  Q1, there is a reduced 
expression for //)1 of the form wl = W'lSl, where w '  I ~ W 1. Consider  w = w' l s s j s .  
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Since w'ls is reduced (s does not occur in w'l) and w'lsl is reduced, it follows that w' 1 is 
the shortest representative of  its left coset, relative to the parabolic subgroup generated 
by {s, sl }. In particular, the expression W'lSSlS is reduced. 

We claim that w is fully commutative. To see this, we argue incrementally as follows. 
First, w'js is fully commutative, since s r W1. Second, w'lssl is fully commutative, 
since otherwise Lemma 4.1 (and the fact that m(s~, s) ---- 4) would imply that some 
reduced expression for w' l must involve s. Finally, it follows that w = w'lssls is fully 

commutative, since otherwise by Lemma 4.1, sl 2) < s <1) < sl l~ must be a convex chain 
in the heap of  w'lssl. Hence there would be a reduced expression for w' 1 ending with sl, 
contradicting the fact that wtl s is reduced. 

Finally, we claim that w is right-maximal. For this, choose t E S and consider wt, If  
t = s, then wt is not reduced. If  t = sl, then wt = w'lsslssl is transparently not fully 
commutative. Otherwise, t is an internal vertex of Q1. In particular, it commutes with 
s, and by maximality of  wl, w l t = w' lsl t is not fully commutative. If  t also commutes 
with sj, then w'jt must also not be fully commutative, and hence wt = w'Itssls is not 
fully commutative. Otherwise, by (d) we have m(sl,  t) : 3 and Lemma 4.1 implies 
that there is a reduced expression for w' 1 ending with t. Therefore, there is a reduced 
expression for wt ending with tsslst  = StSltS, which is not fully commutative. [] 

5. The classification of FC-finite Coxeter groups 

We will say that W is FC-finite if the number of  fully commutative w E W is finite. 
The simply-laced FC-finite Coxeter groups were classifed by Fan in his thesis [6]; in the 
following, we treat the general case. It is interesting to note that there are no "exceptional" 
FC-finite Coxeter groups, in the sense that the irreducible ones occur in seven naturally 
identifiable infinite families. (See figure 2.) 

Theorem 5.1 The irreducible FC-finite Coxeter groups are An (n > l), Bn (n > 2), Dn 
(n > 4), En (n > 6), Fn (n.> 4), H~ (n > 3), andl2(m) (5 < m < ~ ) .  

Before beginning the proof, let us outline the strategy. First, we derive a list of necessary 
conditions that collectively eliminate all Coxeter groups not named in the above list. For the 
converse, it is well known and easy to show that the groups An, Bn, Dn and 12(m) (m < cx~) 
are finite (and hence, FC-finite), so we confine our attention to proving that the groups En, 
Fn and Hn are FC-finite. 

Proof: Assume that W is irreducible and FC-finite. 

(1) F must be acyclic. Indeed, suppose that sl . . . . .  sn ~ S form a circuit of  F, so that st 
and s~+l do not commute for 1 < i < n (subscripts taken modulo n). It follows that 
any initial segment of  the word 

(Sl, S 2 , . - . ,  Sn, S1, S 2 , . . . ,  Sn , . . . )  
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F n 
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Figure 2. The FC-finite Coxeter groups. 

has no subwords of the form (s, t)m with m = m(s, t). Hence, any such word is not 
merely reduced, it is also rigid; i.e., it is the unique reduced word for some w c W. 
In particular, any such w is fully commutative, so W could not be FC-finite. 

(2) Every edge of I" hasfinite weight. If  m(s, t) = oo, then any initial segment of  the 
infinite word (s, t, s, t, s, t . . . .  ) is rigid. 

(3) F has at most one edge of weight > 4. Otherwise, there exists a path sl . . . . .  sn in F 
such that n > 3, m(s], s2) > 4, and m(Sn-l, Sn) > 4. However in that case, any initial 
segment of  the following infinite word is rigid: 

(S1,S2, - - - ,Sn-- l ,Sn,  Sn-l,  . . . , $ 2 ,  S1,S2, . . . ,Sn - l ,Sn ,Sn- - l ,  . . . ,  $2, S1,$2, - . . ) -  

We remark that an alternative proof of  (1) and (2) is provided by the fact that any FC-finite 
Coxeter group must contain right-maximal fully commutative elements, and hence must 
satisfy the conditions of  Theorems 4.4 and 4.5. We also remark that it is not hard to show 
that properties (1)-(3) characterize the (irreducible) Coxeter groups with finitely many rigid 
elements. 
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Figure 3. 

i n ,  
(a) . . . . .  

2 J 3  4 n-3 n - 2 ~ ~  n 

f 
n-1 

(b) . . . . . . .  
1 2 3 n-3 n - 2 ~  - -... .  

/ '/ 

(4) 

(5)  

I" has no vertex of degree > 4, and at most one vertex of degree 3. Otherwise, Y' 
contains an induced subgraph isomorphic to the one indicated in figure 3(a); the 
existence of a vertex of degree 4 corresponds to the case n = 5. Now consider the 
infinite word 

( S 1 , $ 2 , $ 3 ,  - - . , S n - 2 ,  S n - l , S n , S n - 2 ,  . . . , $ 3 , S 1 , $ 2 , $ 3 ,  . . . , S n - 2 ,  S n - l  , Sn,  S n - 2 ,  . . . ) .  

The only subwords of  the form (s, t),. with m = re(s, t) that occur in this word 
involve the commuting pairs (sl, s2) and (sn-l,  s .) .  Since this property is preserved 
when any of these pairs are transposed, it follows that every initial segment of this 
word is reduced and fully commutative. 
I" cannot have both a vertex of degree 3 and an edge of weight > 4. Otherwise, F 
contains an induced subgraph isomorphic to the one indicated in figure 3(b), with 
m(sl, s2) >__ 4 and n > 4. In this case, consider the infinite word 

( S 1 ,  $ 2  . . . .  , S n - 2 ,  S n - 1 ,  Sn, S n - 2 ,  �9 . �9 , $ 2 ,  S l ,  $ 2 ,  �9 �9 . , S n - 2 ,  S n - l ,  Sn, S n - 2 ,  �9 �9 . ) .  

The only subwords of the form (s, t)m with m = m(s, t) that occur in this word involve 
the commuting pair (s ._l ,  s .) .  Since this property is preserved when any of these pairs 
are transposed, it follows that every initial segment of  this word is reduced and fully 
commutative. 

Assuming W # A1, properties (1)-(5) imply that the Coxeter diagram (I ' ,  M) must be 
isomorphic to a member  of  one of the families Y (p, q, r)  or I (p,  q; m) indicated in figure 
4, with p,  q, r _> 1. Note that in the former case, every edge has weight 3; in the latter case, 
one edge has weight m for some (finite) m > 3, and the remainder have weight 3. 

(6) If max(p, q) >_ 2 and m > 6, then I (p , q; m) is not FC-finite. Indeed, if the generators 
are labeled so that re(s1, s2) > 6 and m(s2, s3) = 3, then the infinite word 

( $ 2 ,  S l ,  S 3 ,  S 2 ,  S I ,  S 2 ,  S l ,  S 3 ,  $ 2 ,  S I ,  S 2 ,  S I ,  S 3 ,  $ 2 ,  �9 . . )  
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Figure 4. 

has the property that the only subwords of the form (s, t)m with m = m(s,  t) that 
occur involve the commuting pair (sl, s3). Furthermore, when any of  these pairs are 
interchanged, the longest alternating (si, s2)-subword has length 5, and the occurrences 
of  (s2, s3) and (s3, s2) remain disjoint. Hence, any initial segment of  this word is 
reduced and fully commutative. It follows that if I" has an edge of  weight > 6, then 
W must be one of  the (finite) dihedral groups 12(m). 

(7) I f  p,  q > 2, then l ( p ,  q; 5) is not FC-finite. We can assume that the generators are 
labeled so that m (sl, s '  1) = 5, with Sl, s2 . . . .  and s '  1 , s~ . . . .  forming the two "branches" 
of  the Coxeter graph. Again we claim that there is an infinite word whose initial seg- 
ments are reduced words for fully commutative members of  W. However in this case, 
it is more helpful to describe the heap of this infinite word: See figure 5. (Note that the 
vertices of  the heap have been assigned the labels of  the corresponding generators.) 
One merely needs to check that this poset satisfies the criterion of  Proposition 3.3. 
Once this is done, it follows that every (finite) order ideal of  this poset is the heap of 
some fully commutative element. Thus if the group W = l ( p ,  q; 5) is FC-finite, it is 
necessary that min(p,  q) = 1; however in that case, W ~- Hp+q. 

(8) I f  p,  q > 3, then I (p,  q; 4) is not FC-finite. Let us continue the labeling of  the gen- 
erators established in (7), except that we now have re(s1, stl) = 4. In this case, the 
infinite heap of  figure 6 satisfies the conditions of  Proposition 3.3, and hence proves 
that the group in question is not FC-finite. It follows that if W = l ( p ,  q; 4) is FC- 
finite, then min(p,  q) = 1 or 2. However in that case, W is isomorphic to Bp+q or 
Vp+q . 

The only remaining groups of the form l ( p ,  q; m) are those for which m = 3; however, 
these are Coxeter groups of  type A. 

(9) I f  p,  q, r >_ 2, then Y (p,  q, r) is not FC-finite. Let us suppose that the generators are 
! t I I  I t  labeled so that so is the vertex of  degree 3, with sl, s2 . . . .  ; s 1 , s 2, .. �9 and s I , s 2 . . . .  

forming the three branches of F. In this case, the infinite heap of  figure 7 proves that 
these groups cannot be FC-finite. 

(10) I f  p,  q > 3 and r > 1, then Y (p , q, r) is not FC-finite. Continuing the labeling used 
in (9), the infinite heap of  figure 8 proves that these groups cannot be FC-finite. 
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Properties (9) and (10) prove that if W = Y(p ,  q, r) is FC-finite and p > q > r > 1, then 
(q, r)  = (1, 1) or (q, r) = (2, 1). However in these respective cases, one has W -~ Dp+ 3 
and W ~- Ep+4. 

To complete the proof of  Theorem 5.1, it remains to be shown that the groups En, Fn, 
and Hn are FC-finite. Continuing the notation of  Section 4, given a heap P and s �9 S, let 
s (i) denote the ith greatest vertex of  P with label s, relative to the partial order. [] 

Lemma 5.2 Let W = An and s �9 S. l f s  has degree one in F (or n = 1), then there is at 
most one occurrence o f  s in any reduced word for  any fully commutative w �9 W. 

Proof: Let P be the heap of  some fully commutative w e W in which two or more 
vertices are labeled s. Clearly n > 2, so there is a unique t e S such that m(s,  t) = 3. It 
follows that the convex subposet Q = {j e P : s (2) < j < s (1)} of  P is the heap of  some 
fully commutative member w' of  the parabolic subgroup of  type A generated by S - {s}. 
Since Q is nonempty (Proposition 3.3(b)), it follows that at least one member of  Q covers 
s (2) and at least one is covered by s 0). The labels of  such elements cannot commute with 
s, and hence must be t. However by induction with respect to n, every reduced word for w'  
has at most one occurrence of  t. Thus in fact Q must consist of  a single vertex with label 
t; given that w is fully commutative, this contradicts Proposition 3.3(a). [] 
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Suppose that the parabolic subgroup of W generated by some J C S is of type A. If 

there is a unique s ~ J and a unique t c S - J such that re(s, t) > 3, and if moreover s is 
an "end node" (i.e., IJI -- 1 or s has degree one relative to J),  then we will say that J is 

a branch of S, with s and t being the points o f  contact. If m(s, t) = 3, the branch will be 
said to be simple. 

L e m m a  5.3 Let J be a branch o f  S with points o f  contact s ~ J and t E S -  J. I f  P is 
the heap o f  some fully commutative w c W, then for  each i > 1 such that t <i) is defined, 
there is at most one vertex j o f  P with label s such that t Ci~ < j < t ~'-1) in P. In that case, 
the chain t (') < j < t ( i -1)  is unrefinable. 

Proof: Let t (0 = j0 < j l  < �9 ". < jm = t ( i - l )  be an unrefinable chain of P with at least 
one member having label s. The label sequence corresponding to j0 . . . . .  jm must form a 
path in F from t to t with no intermediate vertex of label t and at least one vertex with 
label s. Given that J is a branch of S, this is possible only if j l  and Jm both have label 
s. It follows that Q i  = {k E P : t (i) < k < t ( i -1)  } is the heap of some fully commutative 
member of W j ,  a Coxeter group of type A. However by Lemma 5.2, any such heap can 
have at most one vertex with label s, so j l  = jm and m = 1. [] 



FULLY COMMUTATIVE ELEMENTS OF COXETER GROUPS 371 

, 

,, 

2 

Figure 7. 

L e m m a  5.4 Let  J be a simple branch o f  S with points  o f  contact s ~ J and t ~ S - J. 

I f  P is the heap o f  some fu l ly  commutative w E W and there is an unrefinable chain 

il < j l  < i2 < j2 < "'" < im+l in P such that il . . . . .  im+l have label t and j l  . . . . .  jm have 

label s, then m < I J I. 

Proof:  Proceed by induction on m, the case m = 1 being trivial. We note that J - {s} 

is also a simple branch of S, with the points of contact being s and some s '  ~ J - {s}. 

By Proposition 3.3, the chain j l  < i2 < j2 cannot be convex, so there must exist some other 
vertex k of P such that j l  < k < j2, with k covering j l .  Since J is a branch, the only 
generators not commuting with s are t and s', so this is possible only if the label of k 
is s'. However in that case, Lemma 5.3 implies that the chain j l  < k < j2 is unrefinable. 
Iterating this argument, we obtain an unrefinable chain j l  < kl < j2 < k2 < - �9 �9 < jm in P 
such that k l , . .  -, kin-1 have label s'. Hence by the induction hypothesis, we must have 
m - l _ < l J l - 1 .  [] 

Proof  tha t  H~ is FC-finite:  For W = Hn, there exist generators s, t ~ S such that 
m(s ,  t) = 5 and S - {t} is a branch, with the points of contact being s and t. Now 
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suppose that P is the heap of  some fully commutative w ~ Hn, and let il < �9 . .  < im be 
the vertices of  P with label t. Since s is the only generator that does not commute with 
t, Lemma 5.3 implies that there is an unrefinable chain il < j l  < i2 < j2 < "'" < im in P 
such that j l  . . . . .  jm-1 have label s. Now by Proposition 3.3, il < j l  < i2 < j2 < i3 cannot 
be a convex chain in P.  On the other hand, there is a unique s '  ~ S - {s, t} that does not 
commute  with s and there is no such vertex that does not commute with t. It follows that 
there must be some vertex k ~ P with label s '  such j l  < k < j2. Iterating this argument, we 

obtain the existence of  a chain j l  < kl < j2 < k2 < - . -  < jra-1 in P in which kl . . . . .  kin-2 
have label s ' .  By Lemma 5.3, this chain must be unrefinable. Furthermore, since S - {s, t} 
is a simple branch of  S of size n - 2, Lemma 5.4 implies that m - 2 < n - 2. In other 
words, every fully commutative w ~ Hn uses the generator t at most  n times. Thus any 
such element can be expressed in the form w o t w x t w 2 . .  �9 twin, where m < n and each wi 

belongs to the (finite) parabolic subgroup generated by S - {t}. [] 

Proof  that Fn is FC-f in i te :  Let s, t ~ S denote the two generators of  W = Fn with 
m(s ,  t) = 4, and let t '  ~ S denote the end node with re(t,  t ' )  = 3 and the property that {t'} 
is a branch of  S. Now suppose that P is the heap of some fully commutative w ~ Fn. We 
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first claim that for each i such that t (i+1) o c c u r s  in P,  there must exist a vertex labeled s in 
the convex subposet Qi = {k E P : t (i+1) < k  < t(i)}. Otherwise, Qi is the heap of  some 
fully commutative w' in the parabolic subgroup generated by S - {s, t}. However, the only 
member of  S - {s, t} that does not commute with t is t', so by Lemma 5.3, Qi m u s t  consist 
of  a singleton vertex with label t'. This contradicts Proposition 3.3, so the claim follows. 

Secondly, we claim that ai and Qi+l cannot both contain vertices with label t'. Oth- 
erwise, there would exist a chain t (i+2) < k~ < t(i+l) < k2 < t ('), necessarily unrefinable 
(Lemma 5.3), in which kl and k2 both have label t'. However, {t'} is a simple branch of  S, 
so this contradicts Lemma 5.4. 

Let il < - . .  <im denote the vertices of  P with label t. By the first claim, there is a 
chain il < jl < i2 < j2 < "'" < im in P such that jl . . . . .  jm-i have label s. By Lemma 5.3, 
this chain must be unrefinable. By the second claim, there is either no vertex k of P with 
label t '  such that il < k < i2 or else no such vertex with i2 < k < i3. If  the former holds, 
consider the chain il < jl < i2 < j2; if the latter, consider jl < i2 < j2 < i3. By Proposition 
3.3, neither chain can be convex. Since every generator commutes with either s or t, and 
we have eliminated the possibility of  a vertex labeled t '  between il and i2 (the former case) 
or between i2 and i3 (the latter case), the only remaining possibility is that there is a vertex 
k such that jl < k < j2, with the label of  k being a generator not commuting with s, other 
than t. Note there is a unique generator, say s', with this property. Note also that S -  {s, t, t'} 
is a simple branch of S, with the points of  contact being s and s'. 

By iterating this argument, we obtain a chain jl < kl < j2 < k2 < �9 �9 �9 < j , , - t  in P with 
the property that kl . . . . .  kin-2 have label s'. By Lemma 5.3, this chain must be unrefinable. 
Furthermore, since S - {s, t, t'} is a simple branch, Lemma 5.4 implies that m - 2 < n - 3. 
In other words, every fully commutative w ~ Fn uses the generat'or t at most n - 1 times. 
Thus any such element can be expressed in the form wotwltW2 ...  twin, where m < n and 
each w, belongs to the (finite) parabolic subgroup generated by S - {t}. [] 

Proof tha t  En is FC-finite: We can label the generators of  W = En so that t has degree 
3 in F, and s, s ' ,  s" are the generators adjacent to t. We can arrange the labels so that there 
are (simple) branches of  sizes n - 4, 2 and 1, with points of  contact t and (respectively) s, 
s '  and s". Now suppose that P is the heap of some fully commutative w ~ En. Assuming 
that t ( i+ l )  O c c u r s  in P,  consider the convex subposet Qi = {k ~ P : t  (i+l) < k  < t (i)} of 
P. The possible labels of  elements covering t ~'+1~ are s, s ' ,  s ' .  Since each of  them is a 
point of  contact for a branch at t, Lemma 5.3 implies that each such element must also be 
covered by t ~'). Since Proposition 3.3 implies that Q, cannot be a singleton, there are three 
remaining possibilities: 

(a) Q, is a tripleton, with vertices labeled s, s', and s". 
(b) Qi is a doubleton, with vertices labeled s and s'. 
(C) Qi is a doubleton, with vertices labeled s and s ' .  
(d) Qi is a doubleton, with vertices labeled s '  and s ' .  

Note that the members of  ai are incomparable in P. 
Given that there are m occurrences of  the Label t in P,  we can construct a word ot of  length 

m -- 1 in the alphabet {a, b, c, d}, according to the type of  each subinterval Q1 . . . . .  Qm-I. 
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Since {s"} is a simple branch of S, Lemma 5.4 implies that there can be no subword of or of 
the form xy, where x, y ~ {a, c, d}. Furthermore, we claim that the letter d can appear only 
at the beginning or end of or. Otherwise, the only possible subword of the form xdy that 
avoids the previously forbidden subwords of length 2 is bdb. However if this occurs, then 
for some i, each of ai, ai+l, Qi+2 contain vertices labeled s', contradicting Lemma 5.4 
and the fact that there is a simple branch of size 2 connecting s '  and t. 

Since d is the only interval-type omitting vertices labeled s, it follows that Q2 . . . . .  Qm-2 
must each contain a vertex labeled s. Since there is a simple branch of size n - 4 connecting 
s and t, Lemma 5.4 implies that m - 3 < n - 4. In other words, the generator t can appear 
at most n - 1 times in any fully commutative w e En. Thus any such w can be expressed 
in the form WotWltw2.. .  twin, where m < n and each wi belongs to the (finite) parabolic 
subgroup generated by S - {t}. [] 

6. Fully commutative quotients 

By Theorem 4.2, we know that the order ideal (with respect to <R) of fully commutative 
elements of W is generated by the fully commutative parts of the maximal parabolic quo- 
tients W <s> for s ~ S. Thus to a large extent, the task of determining all fully commutative 
elements of W reduces to the corresponding question for maximal quotients. In the case of 
the symmetric groups, the situation is particularly simple, since it is known (and it also fol- 
lows from what will be demonstrated below) that every member of every maximal quotient 
is fully commutative. This raises the question: Which parabolic quotients of Coxeter groups 
(not necessarily maximal) have the property that every member is fully commutative? As 
we shall see, apart from degenerate cases, the answer to this question also turns out to be 
the answer to several very natural order-theoretic questions about parabolic quotients. 

Let J C S. The quotient W J will be said to be minuscule if W is (isomorphic to) a finite 
Weyl group and the subgroup Wj is the stabilizer of a minuscule weight ~.. (A nonzero 
weight ~. is minuscule if there is a representation of a semisimple Lie algebra with Weyl 
group W whose set of weights is the W-orbit of ~..) The classification of minuscule weights 
is well-known and can be found in Exercise VI.4.15 of [4], for example. Assuming that W 
is irreducible, the pairs (W, W j)  such that the quotient W J is minuscule are as follows: 

1. W - - - - - A n ; J = S - { s } f o r a n y s ~ S .  
2. W ----- Bn; Wj ~ Bn-l or An-1. 
3. W ~ Dn; Wj ~- Dn-I or An-1. 
4. (W, Wj)  -~ (E6, Ds) or (E7, E6). 

Note that all irreducible minuscule quotients are also maximal quotients. 

Theorem 6.1 Assume that W is irreducible. I f  J is a proper subset of S, then every 
member of  W J is fully commutative if and only if one of the following is true: 
(a) Every edge o f f  has infinite weight (i.e., m(s, t) > 3 ~ m(s, t) = oo). 
(b) W J is minuscule. 
(c) (W, Wj) ~ (Ha, 12(5)) or (12(m), Al). 
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Proof:  First, we show that properties (a)-(c) are each sufficient to imply that every member 
of  W J is fully commutative. Indeed, if (a) holds, then the only braid relations involve 
pairs of  commuting generators, and hence every member of  W is fully commutative. If  
W = 12(m), then there is only one member of  W that is not fully commutative; namely, the 
longest element w0. It has (right) descent set S, and hence does not belong to W s unless 
J = 0 .  

In case W ~ H3, label the generators Sl, s2, s3 so that m(st,  s2) = 5 and re(s2, s3) = 3. 
Also, set J = {sl, s2}, so that Wj ~ / 2 ( 5 ) .  Now consider the heap P of 

s = (s3, s2, sl, s2, s3, sl, sz, Sl, sz, s3) 

depicted in figure 9. Using only Proposition 3.3, it is clear that P is the heap of  some 
fully commutative w e W. Furthermore, since the unique maximal element of  P has 
label 3, we have w e W J. Beating in mind that the longest elements of /43 and 12(5) 
have respective lengths 15 and 5, it follows that w must be w0 J (the longest element of  
W~), since it has length 15 - 5 = 10. However, wg is the unique maximal element of 
W J with respect to <L (Proposition 2.6), so every member of  W j is fully commutative 
(Proposition 2.5). 

Now consider (b); i.e., we suppose that W is a finite Weyl group with a crystallographic 
root system �9 embedded in some real Euclidean space E with inner product (., .), simple 
roots A C ~,  weight lattice A C E, and Wj is the stabilizer of  some minuscule weight 

~ A. For each ot e ~ ,  let s,~ e W denote the reflection on E fixing the hyperplane 
perpendicular to or, so that S = {so : ot ~ A}. 

Temporarily, let us discard the hypothesis that ~. is minuscule, and instead merely assume 
that ~ 6 E belongs to the closure of  the fundamental chamber (i.e., (L, ~) > 0 for all 

E A). In this case, one knows (e.g., [9], Section 1.12)that the stabilizer of)~ is W j,  where 
J = {s,~ ~ S : 0-, or) = 0}. 



376 STEMBRIDGE 

Lemma 6.2 Given w ~ W ~ and ot ~ A ,  we have saw < LW if  and only if (w)~, ot) < O. 

Proof :  If  saw <LW, then it is necessarily the case that saw)~ 7~ w)~; otherwise, saw 
would be a member of  w W j ,  contradicting the fact that w is the shortest member of its 
coset. Hence, (w~., ot) ~ 0. However since e(saw) < e(w), it follows that w-lot  must be a 
negative root (e.g., [9], Section 1.6). On the other hand, ~. is in the closure of  the fundamental 
chamber, so we must have (w~., ta) = (~., w-lot) < 0. Conversely, if (~., w-lot)  < 0, then 
W--I t? / i s  a negative root, so s < s (again [9], Section 1.6), so saw <L W. [] 

Now suppose that w ~ W J is not fully commutative. By replacing w with some w' < Lw 
if necessary (cf. Propositions 2.1 and 2.5), we can assume that w has a reduced expression of 
the form xoy, where x0 is the element of length m(s, t) in the parabolic subgroup generated 
by some {s, t} C S such that m(s, t) > 3. Now let ot,/~ ~ A denote the simple roots 
corresponding to s and t, so that s = sa and t = s~. Since e(sxo) = e(txo) < e(xo), it 
follows that sw,  tw  <L W, and hence by Lemma 6.2, (w~., or) < 0 and (w)~,/~) < 0. 

For 2: e q~, let yv  = 2 y / ( y ,  y )  denote the corresponding co-root. Since r is assumed 
to be crystallographic, it follows that (w~., ot v) and (w~., fly) are negative integers. Fur- 
thermore, since s and t generate an irreducible Weyl group of  rank 2, it follows that there is 
at least one root in the positive integral span of  oe and/~, and the same is true of  otv and ~v 
relative to the co-root system , v .  That is, there exist integers ci, c2 > 0 and y e q~ such 
that yV = Clot v + c2~V. Thus we obtain 

(11)~., ~/V) ~--. Cl(tO~,,  otV) "Jr C2(10~., f l v )  _~< _ C  1 _ C2 _~< - - 2 .  

However, by Exercise VI.1.24 of  Bourbaki [4], one knows that if ~. is minuscule, then 
(w~., yv )  ~ {0, 4-1} for all y ~ q~ and w e W. This contradicts the hypothesis that W J 
contains elements that are not fully commutative. 

We remark that in Proposition 10 of  [6], Fan gives a different proof that every member 
of  a simply-laced minuscule quotient is fully commutative. 

Turning to the converse, we derive a series of  conditions that are necessary for every 
member of  W J to be fully commutative, and we show that these conditions collectively 
eliminate all parabolic quotients other than those listed in (a)-(c). To begin with, we will 
assume that F has at least one edge of  finite weight (since otherwise (a) applies). 

(1) Every edge o f f  hasfinite weight. Otherwise, given s e S - J ,  there are three possibili- 
ties: (i) there is apair  t, u e S such that m(s, t) = oo and 3 < re(s, u) < cx~, or there is 
a path sl, s2 . . . . .  sn = s in r' such that (ii) m(sl ,  s2) = c~ and m(s2, s3)  = m < co, or 
(iii) m(sl ,  s2) = m < oo and m(s2, s3) = 00. In these respective cases, we claim that 
the following are reduced words for some member of  W J that is not fully commutative: 

(i) s = ((s, U)m, t, s), where m = re(s, u). 
(ii) s = ((s2, S3)m, S l ,  S2 . . . . .  Sn). 

(iii) s = ((sl, S2)m, S3, S2, S3 . . . . .  Sn). 

In each case, it is straightforward to check that s is indeed a reduced word for some 
w ~ W. In fact, one finds that ~ ( w )  has either two or three members, depending on 
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whether  t and u c o mmu t e  (case (i)) or sl and s3 commute  (cases (ii) and (iii)). It is also 

t ransparent  that to is not  fully commutat ive.  Since each of  the two or three members  

of  the braid equivalence class of  s ends with s, it follows that w 6 W j and the c la im 

follows. 
(2) W ~ is a maximalquotient. Otherwise,  let s = sl . . . . .  s ,  = t be a path in F' that connects  

s, t ~ S - J ,  and consider  the word 

s = ~(s l ,  S2)m, S3 . . . . .  S . ) ,  (*) 

where m = m(sl,  s2). (We may assume m < o0, by (1).) It is easy to see that s is 
a reduced word for some w 6 W that is not fully commutat ive.  Furthermore,  every 
m e m b e r  of  the braid equivalence class of  s ends with either t = sn or s = sl ,  and the 
latter occurs if  and only  if sl commutes  with s3 . . . . .  s , .  Hence  DR(to) C {s, t} and 
t oE  W s. 

Henceforth,  we may  assume that J = S - {s} for some fixed s 6 S. In this situation, we 
have to 6 W J if and only  i f  DR (w) = {s } or to = 1. Thus  we can reformulate our  objective 
as one of  ident i fy ing condi t ions  that force the existence of  to 6 W with DR(to) = {s} that 

are not  fully commutat ive .  

L e m m a  6.3 Let l C S - {s}, and suppose there is a path in I" from some t ~ I to s that 

meets I only at t. l f  there is some w ~ Wt with DR(w) = {t} that is not fully commutative, 

then there is some w' E W with DR(w') = {s} that is not fully commutative. 

Proof: Let t = s l ,  �9 �9 �9 sn = s be the given path in F, and suppose that w ~ Wt is not  
ful ly commuta t ive  and Dn(w)  = {t}. Consider  w'  = ws~s3 . . . sn .  Every reduced word for 
w ends  with t. Fur thermore,  since s2 . . . . .  sn do not  appear in w and si does not com m ute  

with s i+l ,  it follows that the expression ws2s3 . . .  sn is reduced, and every reduced word 
for w'  consists  of  a reduced word for w followed by (s2 . . . . .  s , ) .  Therefore w'  is not fully 

commuta t ive  and Dn(w')  = {s}. [] 

(3) I" is acyclic. If not, then by L e m m a  6.3 we can assume that there is a circuit  of  I" through 

s. Assuming  that Sl . . . . .  sn = s are the vertices of  a min imal  circuit, so that s, and 
s,+l do not  comm u t e  for 1 < i < n (subscripts taken modulo  n),  consider  the word s 
o f ( * )  and the corresponding w c W. In (2), we noted that DR(w) C {Sl, sn}, and that 

sl ~ DR(w) i f  and only  if  sl commutes  with s3 . . . . .  sn. However  in this case, sl and 
s,  do not  commute ,  so DR(w) = {sn} = {s}. 

(4) I" has no vertex of  degree > 4, and at most one vertex o f  degree 3. Otherwise, by fol- 
lowing a path from s to a vertex of  degree > 3, we can use L e m m a  6.3 to reduce to a 
configurat ion in which there are generators sl . . . . .  sn c S that induce a subgraph of I" 
i somorphic  to the one in figure 3(b), with s = s2. (The case n = 4 occurs when there 
is a vertex of  degree > 4.) In that case, consider  

S = ( (SI ,  S2)m,  $3 . . . . .  S n - 2 ,  Sn- - l ,  Sn,  Sn--2 . . . . .  $3, $2),  
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where m = m(sl ,  s2). By examining the heap o f s  and the equivalent word obtained by 
applying the braid relation (s2, Sl)m ~ (s2, Sl)m, one can see that s is a reduced word 
for some w ~ W that is not fully commutative. Both heaps have a maximum element 
with label s = s2, so DR(w)  = {s}. 

(5) Either W is o f  type A,  or s is an end node. If  I" has a vertex of  degree 3 and s has 
degree > 2, then there is a configuration in I" isomorphic to the one in (4). Otherwise, 
r is a path. Assuming W # An and that s has degree 2, it follows that there is a 
p a t h s l  . . . . .  sn in F such t h a t n  > 3, m(sn_l , sn)  > 4, a n d s  = s2. In that case, 
consider 

S : ( (S l ,  S2)m, S 3 . . . . .  Sn--l, Sn, Sn-- I . . . . .  S3, S2), 

where m = re(s1, s2). By reasoning similar to (4), s is a reduced word for some 
w ~ W (sl that is not fully commutative. 

Since every maximal  quotient of W = An is minuscule, for the remainder of  the proof  
we may assume that W is not of  type A, and hence also that s is an end node of  I'. 

(6) I" cannot have both a vertex of  degree 3 and an edge o f  weight > 4. Otherwise, by fol- 
lowing a path from s we will reach either a vertex of  degree 3 or an edge of  weight > 
4. I f  the former occurs first, then by Lemma 6.3, we can reduce to a configuration of  the 
type that was eliminated in (5). If  the latter occurs, we can use Lemma 6.3 to reduce to 
a configuration of  generators Sl . . . .  , sn E S that induce a subgraph of 1" isomorphic to 
the one in figure 3(b), with s = Sl and m = m(sl ,  s2) > 4. However in that case, 

( (S l ,  S2)m, $3 . . . . .  Sn-2 ,  S n - l ,  Sn, Sn-2  . . . . .  $2, S l )  

is a suitable reduced word for some w ~ W ~s) that is not fully commutative. 
(7) I" has at most one edge o f  weight > 4. If  I" has two or more edges of weight _> 4, then 

1" must be a path and s must be an end node, thanks to (5) and (6). By following the 
path from s, we can use Lemma 6.3 to reduce to the case of a path s = sl ,  s2 . . . . .  sn in 
1" such that m = re(s1, s2) >_ 4 and m(sn- l ,  s , )  _> 4. However in that case, 

( (SI ,  S2)m, $3 . . . . .  S n - l ,  Sn, Sn-I  . . . . .  S3, S2, S l )  

is a suitable reduced word for some w ~ W ~~) that is not fully commutative. 

In the following, we will continue to construct explicit  reduced words for members of  
W that are not fully commutative; however, in most of  the remaining cases, the structure of  
the commutativity and braid equivalence classes are sufficiently complex that it is easier to 
deduce what is needed by examining heaps. More specifically, in (most of) the remaining 
constructions, we present a pair of heaps, and it is left to the reader to check the following: 
(i) Each heap has exactly one convex chain with alternating labels i, j ,  i . . . .  of  cardinality 
m = m(s i ,  s j )  >__ 3 for some pair of generators si, sj .  (ii) The braid relation (s,, sl)m 
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(s j ,  Si)m, when applied to a linear extension of each heap, interchanges the two heaps. (iii) 
Both heaps have a maximum element, and the label of this element corresponds to s. These 
properties collectively imply that some w ~ W Is) has exactly two commutativity classes 

and hence cannot be fully commutative. 

(8) An  edge o f  weight  > 4 mus t  be adjacent  to an end node. Otherwise, by Lemma 6.3 we 

can reduce to a case in which there is a path s = s,, s2, s3, s4 with m(s2, s3) > 4. By (7), 

we may also assume that m(sl ,  s2) = 3. However in that case, the pair of braid-related 
heaps in figure 10 prove the existence of some w 6 W/'0 that is not fully commutative. 

Suppose now that 1-" is a path, say sl, S 2  . . . . .  S n .  By (5), (7) and (8), we may assume 
that m = m(s l ,  s2) > 4, all other edge weights are 3, and s = sl or s = sn. If n = 2 

then W is a dihedral group (a case covered by (c)), so assume n > 3. We may also assume 
m > 5, since otherwise m = 4, W = Bn, and both end nodes correspond to minuscule 
quotients. I f s  = sl,  m > 5 and n > 3, then w = s2s3s2sls2sl is a member of W ~s> that is 

not fully commutative, so we can assume s = s,.  If n = 3 and m = 5, then W = / / 3  and 

W j  = 12(5) (a case covered by (c)). I f n  = 3 and m > 6, then w = $2s3s2s1s2sis2s3 is a 
member of W ~*1 that is not fully commutative. With Lemma 6.3, this eliminates all cases 

with n > 3 and m > 6. Finally, if n = 4 and m = 5 (i.e., W = H4, Wj = H3), then the 

pair of braid-related heaps in figure 11 prove the existence of some w ~ W I''~ that is not 
fully commutative. With Lemma 6.3, this eliminates all cases with n > 4 and m = 5. 

The only remaining possibility is that W = Y ( p ,  q, r) (see figure 4), and that s is the 
end node of (say) the branch of length p. Continuing the labeling established in Section 5, 

' " " " denote we let so denote the vertex of degree 3, and let Sl, . . . ,  sp; s l, . . . ,  Sq, s I . . . . .  s r 

the generators along the three branches of I'. If q = r = 1, then W = D, and W J is 
minuscule. On the other hand, if q, r > 2, then the braid-related heaps in figure 12 provide 
a member of W J that is not fully commutative for the case p = 1, and hence we may also 
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eliminate p > 1 (Lemma 6.3). For what remains, we may thus assume q > 2 and r = 1. 
Now if p = 1 then W = Dn and W J is again minuscule, so we may further assume that 
p > 2. If  q > 3, then the heaps in figure 13 provide a member of  W ~ that is not fully 
commutat ive for the case p = 2, and hence we may also eliminate p > 3 (again Lemma 

6.3). Thus q = 2. If  p = 2, then W = E6 and W~ = Ds, and if  p = 3 then W = E7 
and W j  = E6, both of which yield minuscule quotients. All  that remains is p > 4, q = 2, 
and r = 1; however in that case, Lemma 6.3 and the heaps in figure 14 prove that W J has 

members  that are not fully commutative. [] 

7. Consequences for the Bruhat order 

Let T = { w s w  - t  : w ~ W,  s ~ S} denote the set of  (abstract) reflections in W. The 
Bruhat order (e.g., [3, 9]) may be defined as the partial ordering <n on W generated by the 
transitive closure of  the relations 

w <B w t  whenever e(w) < e ( w t )  

for all w ~ W, t ~ T. We note that there is no distinction between a "left" and "right" 
Bruhat order, since t w  = w ( w - l t w )  >B w if  and only if e ( t w )  > e (w) .  It is also clear 
that the Bruhat order refines both the left and right weak orders; i.e., x <LR Y ::* X <8 Y 
for all x,  y ~ W. However, unlike the weak ordering, the fully commutative part of W and 
the parabolic quotients W J need not be order ideals of (W, <B). 

In [11], Proctor classifies the parabolic quotients of finite Weyl groups whose Bruhat 
orderings are lattices; aside from the minuscule quotients, the only other examples  occur in 
the case W = G23. Also,  it is implicit  in [11] and explicit  for the symmetric group case in 
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([3] (4.9)) that the Bruhat ordering and weak ordering of a minuscule quotient are identical. 
The following result characterizes the parabolic quotients of  arbitrary Coxeter groups with 
these properties. 

T h e o r e m  7.1 I f  W is irreducible and J is a proper subset o f  S, then the following are 
equivalent. 
(a) ( W  J, <_B) is a lattice. 

(b) ( W  J , <B) is a distributive lattice. 
(c) ( W  J, < L ) is a distributive lattice. 
(d) ( W  J, <B) = ( W J, <-~L). 

(e) W J is minuscule, or (W, W j )  -~ (//3, 12(5)) or (I2(m), Al)  (possibly m = c~). 

Proof:  First we show that each of the quotients listed in (e) satisfies properties (a)-(d). 
In case W is a (possibly infinite) dihedral group and J is a singleton, it is easy to check 
that ( W  J, <L) is a total order. In particular, it is a distributive lattice. Since the Bruhat 
order refines the weak order, it follows that the two orders must coincide. Otherwise, in 
the remaining cases W J is a quotient of  a finite group, and thus (Proposition 2.6) has a 
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unique maximal element with respect to <L. By Theorem 6.1, every member (including 
the top element) of  W J is fully commutative, so by Theorem 3.2 it follows that ( W  J , <L) 

is a distributive lattice. To prove that the remaining properties hold, it thus suffices to show 
that the Bruhat order and weak order coincide on W ~. 

In case W = H3 and W j  = 12(5), Theorem 3.2 implies that ( W  J, <L) is isomorphic to 
the lattice of  order ideals of  the heap in figure 9. One can see directly that this lattice has 
exactly two incomparable elements; namely, wl = sls2sls2s3 and w2 = $3s2sis2s3 (using 
the labels for generators introduced in Section 6). Since these two elements have the same 
length, they must also be incomparable in the Bruhat order. Thus the two orders coincide 
in this case. 

Now consider the minuscule case. Continuing our previous notation, let E, A, and 
be as they were defined in Section 6, and let )~ be a minuscule weight with stabilizer W j .  

Define r to be the linear functional on E satisfying r(~)  = 1 for all ot 6 A. 

L e m m a  7.2 For w E W J, we have s  = r(~.) - r (wL) .  

Proof :  The case e(w) = 0 is obvious, so assume e(w) > 1 and choose o t e  A so that 
saw < LW. By Lemma 6.2, it follows that (wL,  oe) < 0, so by Exercise VI.1.24 in [4], we 
have (w~., ot v) = - 1 .  Hence sa(w~.) = w~. + or, so r(s~w~.) = r(w3.) + 1 and the result 
follows by induction with respect to e(w). [] 

Now let t E T, w E W be such that t w  < Bw is a covering relation. We have t = s,~ for 
some (positive) t~ ~ ~.  It is necessary that twO. ~ w~.; otherwise, t w  would be a shorter 
member of  the coset containing w. Therefore (w~., ~) ~ 0, and hence by the Bourbaki 
exercise (ibid.), (w)~, ~v) = +1.  It follows that tw)~ = w)~ + or, so r(ot) = s  - e(tw), 
by Lemma 7.2. However, the Bruhat order is graded by the length function (e.g., [9], 
Section 5.11), so the only covering relations involve pairs with a length difference of  one. 
It follows that r ( a )  = 1, so ~ is a simple root and t w  < Lw. Thus every covering relation 
of the Bruhat order is also a covering relation of  the weak order, so the two coincide. 

Turning to the converse, we show that if W J is any of  the quotients not listed in (e), then 
none of  the properties (a)-(d) hold. By Theorem 6.1, there are two possibilities: either W J 

contains elements that are not fully commutative, or W has rank >_ 3 and every edge-weight 
of  I" is infinite. 

Suppose that w ~ W J is not fully commutative. By replacing w with some w' <L w if 
necessary, we can assume that there is a reduced expression of the form w = xoy,  where x0 
is the element of  length re(s, t) in the parabolic subgroup generated by some {s, t} c S such 
that m(s ,  t) > 3. Consider the subinterval of  ( W  J, <--L) from y to w. By Proposition 2.3, 
this interval is order-isomorphic to the weak ordering of  the parabolic subgroup generated 
by {s, t } (cf. figure 1 (a)). This interval is not a distributive lattice, so (c) does not hold. (This 
fact is also an immediate consequence of  Theorem 3.2, given that W J contains elements 
that are not fully commutative.) Furthermore, with respect to the Bruhat order, this interval 
contains additional relations, such as sy  <B s t y  and ty  <B t sy  (cf. figure l(b)), so (d) does 
not hold. Since we also have sy  <B t sy  and ty  <B s ty ,  it follows that sy  and ty  have no 
least upper bound relative to the Bruhat order, so and (a) and (b) do not hold. 
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The remaining possibility is that W has rank > 3 and every edge of I" has infinite 
weight. It follows that there must exist generators s, t, u e S such that s ~ J ,  and either 
(1) m ( s ,  t )  = m ( s ,  u) = oo or (2) m ( s ,  t )  = m ( t ,  u) = o~. In case (1), consider the 
elements u t s ,  s t s ,  s u t s ,  and u s t s .  It is easy to see that every reduced word for these 
elements ends with s, so they all belong to W J. Secondly, it is not hard to show, using 
the subword property (e.g., [9], Section 5.10) or otherwise, that the two elements of  length 
four are both upper bounds for the two elements of  length three with respect to the Bruhat 
order, so (a) and (b) do not hold. The fact that s t s  and s u t s  are unrelated with respect 
to the weak order shows that (d) does not hold. We also claim that the elements s t s  and 
u t s  have no upper bounds relative to <L. By definition, the upper bounds for s t s  are the 
reduced expressions of  the form w s t s .  Since the only braid relations in W involve pairs 
of  commuting generators, it follows that every reduced word for w s t s  must have at least 
two occurrences of  s following any occurrence of  u. In particular, no such reduced word 
can end with (u, t, s), so w s t s  cannot be an upper bound for u t s .  Hence (W J, <L) is not 
a lattice and (c) fails. 

In case (2), consider the elements t u t s ,  s u t s ,  t s u t s ,  and s t u t s .  Again, it is easy to see 
that every reduced word for these elements ends with s, so they all belong to W J. Using 
the subword property, one sees that both elements of  length five are upper bounds for both 
elements of  length four with respect to the Bruhat order, so (a) and (b) fail. Also, t u t s  and 
t s u t s  are unrelated with respect to <L, SO (d) fails. Finally, we argue that t u t s  and s u t s  

have no upper bounds relative to <L. Indeed, if x = w s u t s  is reduced, then every reduced 
word for x must have exactly one t occurring between the last two occurrences of s. In 
particular, no such reduced word can end with (t, u, t, s), so x cannot be an upper bound 
for r u t s .  Hence (W J, <L) is not a lattice and (c) fails. [] 

Notes 

1. A Coxeter group is simply-laced if the product of any pair of noncommuting generators has order 3. 
2. We thank R. Proctor for suggesting this terminology. 
3. However in [11], Proctor also remarks without proof that among the finite Coxeter groups, the Bruhat order 

on W ~ with (W, W j)  -~ (H3, A2) is a lattice. Theorem 7.1 shows that this is incorrect. 
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