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Abstract. Let (W, S, 0) be a Coxeter system: a Coxeter groupW with S its distinguished generator set and0
its Coxeter graph. In the present paper, we always assume that the cardinalityl = |S| of S is finite. A Coxeter
element ofW is by definition a product of all generatorss ∈ S in any fixed order. We use the notationC(W) to
denote the set of all the Coxeter elements inW. These elements play an important role in the theory of Coxeter
groups, e.g., the determination of polynomial invariants, the Poincar´e polynomial, the Coxeter number and the
group order ofW (see [1–5] for example). They are also important in representation theory (see [6]). In the present
paper, we show that the setC(W) is in one-to-one correspondence with the setC(0) of all acyclic orientations
of 0. Then we use some graph-theoretic tricks to compute the cardinalityc(W) of the setC(W) for any Coxeter
groupW. We deduce a recurrence formula for this number. Furthermore, we obtain some direct formulae ofc(W)

for a large family of Coxeter groups, which include all the finite, affine and hyperbolic Coxeter groups.
The content of the paper is organized as below. In Section 1, we discuss some properties of Coxeter elements

for simplifying the computation of the valuec(W). In particular, we establish a bijection between the setsC(W)

andC(0). Then among the other results, we give a recurrence formula ofc(W) in Section 2. Subsequently we
deduce some closed formulae ofc(W) for certain families of Coxeter groups in Section 3.

Keywords: a Coxeter system, Coxeter element, acyclic orientation of a graph

1. Some properties of Coxeter elements

Let (W, S, 0) be a Coxeter system. We shall first make some reductions for the computation
of the numberc(W). By abuse of notations, we shall identify an element ofS with the
corresponding vertex of0.

Lemma 1.1 Let (W, S, 0) and(W′, S′, 0′) be two Coxeter systems. Assume that there
exists a bijectionφ : S→ S′ such that s, t ∈ S are adjacent(i.e., they are joined by an edge)
in 0 if and only ifφ(s), φ(t) are adjacent in0′. Thenφ induces a bijection from the set
C(W) to the set C(W′) naturally.

Proof: Notice that two Coxeter elements of a Coxeter groupW are equal if and only if
any reduced expressions of these Coxeter elements can be transformed from one to another
by only using the commutative relations on the setS of W (i.e., the relations of the forms
st = ts for s, t ∈ S) successively [2, Ch. IV, Section 1, Proposition 5 and Exercise 13].
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Thus we can define a mapφ′ : C(W)→C(W′)as follows. Letw = t1t2 · · · tr be any reduced
expression of an elementw ∈ C(W) with ti ∈ S. We defineφ′(w) = φ(t1)φ(t2) · · ·φ(tr ).
By the above remark, we see that the mapφ′ is well-defined and bijective. 2

From this result, we see that the numberc(W) depends only on the underlying graph
|0|, but not on the particular labellings of the edges of the graph0, where the graph|0|
is obtained from0 by forgetting the labellings of all the edges. So from now on, we shall
identify a graph0 with its underlying graph|0|. Notice that a Coxeter graph0 is always a
simple graph, i.e., it contains no loop and no multi-edges. A graph mentioned in the present
paper will be assumed simple.

The next result will reduce the problem to the case when the graph0 is connected.

Lemma 1.2 Let{0i }1≤i≤n be the collection of all the connected components of the graph0.
Let (Wi , Si ) be the standard parabolic subgroups of W corresponding to0i . Then

c(W) =
n∏

i=1

c(Wi ).

Proof: Notice that for anyi 6= j in {1, 2, . . . ,n}, the elements ofWi commute with those
of Wj . So each Coxeter elementw of W can be expressed uniquely in the following form:

w = w1w2 · · ·wn, wi ∈ C(Wi ).

Conversely, any element ofW of the above form is in the setC(W). Hence our result
follows easily from these facts. 2

In order to make further reduction, we need to investigate some properties for the reduced
expressions of a Coxeter element ofW. Given a reduced expressionξ : s1s2 · · · sl of a
Coxeter elementw ∈ W, we denotes→

ξ
t for s, t ∈ S, if the factors occurs to the left oft

in ξ .

Proposition 1.3 Letξ : s1s2 · · · sl , ζ : t1t2 · · · tl be reduced expressions of Coxeter elements
w, y of W respectively with si , t j ∈ S. Thenw = y if and only if for any adjacent pair
s, t ∈ S (see Lemma1.1), the relations s→

ξ
t and s→

ζ
t either both hold or both not.

Proof: (⇒)We see that applying the commutative relations ofS to the expressionξ does
not change the relationss→

ξ
t for any adjacent pairs, t ∈ S. So the implication in this

direction follows from the remark at the beginning of the proof of Lemma 1.1.
(⇐) Apply induction onl = |S| ≥ 1. It is nothing to prove for the casel = 1. Now

assumel > 1. We haveti = s1 for somei ≥ 1. By our condition, we havet j ti = ti t j for any
j < i . Soζ ′ : ti t1 · · · t̂i · · · tl is again a reduced expression ofy, where the notation̂ti means
the deletion of the factorti . Now ξ0 : s2 · · · sl andζ0 : t1 · · · t̂i · · · tl are reduced expressions
of s1w, s1y respectively, the latter are Coxeter elements of the Coxeter group generated by
S′ = S\{s1}. For any adjacent pairs, t ∈ S′, the relationss→

ξ0

t ands→
ζ0

t either both hold
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or both not by our condition. So we haves1w = s1y by inductive hypothesis and hence
w = y. 2

By the above proposition, it makes sense to writes→
w

t for any adjacent pairs, t ∈ S if
for some reduced expressionξ of w, the relations→

ξ
t holds.

An orientation of a graphG is a directed graph (or digraph for brevity), which is ob-
tained fromG by assigning to each edge an orientation. Then we have actually defined an
orientation of the Coxeter graph0 from a Coxeter elementw of W.

For our further discussion, we need some more terminologies and results in graph theory,
which we introduce now. We also refer the reader to [8] for more detailed references.

Let G be a digraph. A vertexv of G is called a source (resp. a sink), if for any vertex
u of G adjacent tov, we havev→ u (resp.u→ v). A directed pathρ of G is a sequence
of verticesv0, v1, . . . , vr in G such thatvh−1→ vh for all h, 1 ≤ h ≤ r . The numberr is
the length ofρ. Whenv0 = vr , we also callρ a directed cycle. A graph is acyclic, if it
contains no directed cycle. The following are some simple properties of an acyclic digraph
which we shall use later.

Lemma 1.4 Let G be an acyclic digraph with n≥ 2 vertices. Then
(1) G contains at least one source and one sink.
(2) Any vertex of G belongs to some directed path of G which is from a source to a sink.
(3) Any subgraph of G is again acyclic.

Proof: Any vertex ofG belongs to some maximal directed path ofG which can be shown
to start with a source and end with a sink. So (1) and (2) follow. The result (3) is obvious.

2

The following result establishes a relation between Coxeter elements and acyclic digraphs
which is the key to the subsequent discussion.

Theorem 1.5 Let (W, S, 0) be a Coxeter system. Then there exists a bijection between
the set C(W) of Coxeter elements of W and the set C(0) of acyclic orientations of0.

Proof: It is easily seen that an orientation of0 coming from a Coxeter element ofW is
always acyclic. For any given acyclic orientationα of 0, we define a Coxeter elementw
of W as follows. LetI1 be the set of all elements inSwhich are sources inα. Inductively,
suppose that we have defined subsetsI1, . . . , Ii of S and that the setFi = S\(⋃i

j=1 I j ) is
non-empty. Then we define byIi+1 the set of all elements inFi which are sources in the
full subgraph ofα with Fi its vertex set. By Lemma 1.4, we get a sequence of non-empty
disjoint subsetsI j , 1 ≤ j ≤ p, of S whose union isS. Note thats, t commute for any
s, t ∈ Ii , 1 ≤ i ≤ p. We setw = ∏

s∈I1
s
∏

t∈I2
t · · ·∏r∈I p

r . Thenw is the Coxeter
element ofW whose corresponding acyclic orientation of0 is justα. Hence our result
follows by Proposition 1.3. 2

Thus computing the numberc(W) = |C(W)| is equivalent to computing the number
c(0) of all the acyclic orientations of0.
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By abuse of notations, we shall not distinct between a Coxeter element ofW (resp. the
setC(W)) and its corresponding acyclic orientation of0 (resp. the setC(0)).

It is well known that there is a natural bijection between acyclic digraphs and posets.
So Theorem 1.5 also establishes a relation between Coxeter elements and posets. We shall
give some detailed discussion on this correspondence elsewhere.

The following corollary is concerned with the condition on a Coxeter element to have
neighboring factorss, t ∈ S in one of its reduced expressions. This result is crucial in the
proof of Theorem 2.4.

Corollary 1.6 Let (W, S, 0) be a Coxeter system with l= |S| ≥ 2. For s 6= t in S,
an elementw ∈ C(W) has a reduced expression of the form· · · st · · · if and only if the
orientationα of 0 determined byw satisfies the following condition.

(A) There is no directed path from t to s and also no directed path of length greater than
1 from s to t.

Proof: (⇒) Obvious.
(⇐) It is nothing to prove ifl = 2. Now assumel > 2. We claim that there exists some

source or sinkr in α with r 6= s, t . For otherwise, the elementss, t would be the unique
source and sink ofα respectively by Lemma 1.4, (1), (2) and by the first half statement
of condition (A). Again by Lemma 1.4, (2), any vertexr in α with r 6= s, t (which does
exist by the assumptionl > 2) belongs to some directed path ofα from s to t . But this
is impossible by the last half statement of condition (A). Now assume that there exists a
sourcer in α with r 6= s, t . Let S′ = S\{r } and letα′ be the digraph obtained fromα by
removing the vertexr and all the edges adjacent tor . Thenrw is a Coxeter element of the
Coxeter group generated byS′ whose corresponding digraph isα′. By Lemma 1.4, (3), we
see thatα′ is acyclic, which clearly satisfies condition (A). By inductive hypothesis,rw has
a reduced expression of the form· · · st · · · and so does the elementw. The case thatr is a
sink inα with r 6= s, t can be discussed in the same way but withrw replaced bywr . 2

2. A recurrence formula

Theorem 1.5 and its corollary make it possible for us to use graph-theoretic methods in the
study of Coxeter elements. We shall deduce some formulae to relate the numbersc(W) as
W varies over some different Coxeter groups. In particular, we get a recurrence formula
of c(W).

An edgeE of a graphG is orient-free, if reversing the orientation ofE in any acyclic
orientation ofG results in another acyclic orientation ofG. For a given orient-free edgeE
of G, the process of reversing the orientation ofE gives rise to a fixpoint-free involutive
permutation on the set of all orientations ofG. An edge ofG is a bridge, if it does not
belong to any cycle ofG. Clearly, an edge of a graph is orient-free if and only if it is a
bridge. So we get the following result.

Lemma 2.1 In two Coxeter systems(W, S, 0) and(W′, S′, 0′), if 0′ is obtained from0
by removing a bridge, then c(W) = 2c(W′).
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Assume thats 6= t in Sare not two termini of any path of0. Let0′ be a graph obtained
from0 by fusings andt into one new vertexz and let(W′, S′) be a Coxeter system whose
Coxeter graph is isomorphic to0′. For example, we can defineS′ = {x′ | x ∈ S, x 6= s, t}∪
{z} such that for anyx, y ∈ S\{s, t}, o(x′y′) = o(xy), ando(x′z) = max{o(xs), o(xt)}.

Lemma 2.2 In the above setup, we have c(W) = c(W′).

Proof: Notice that in the above definition of the setS′, the orderso(xs) ando(xt) can’t
be both greater than 2 by our assumption. This implies that there is a natural bijection
between the edge sets of0 and0′, which induces a bijection between the orientations of
0 and0′. Since the vertexz does not lie in any cycle of0′ by the assumption ons, t , this
bijection induces a bijective map from the acyclic orientations of0 to those of0′. So our
result follows immediately by Theorem 1.5. 2

2.3. For anys 6= t in S, we denote by6(s, t) or 60(s, t) the set of all the elements
w ∈ C(W) having a reduced expression of the form· · · st · · ·. Then it is easily seen that
6(s, t) = 6(t, s) if and only if s, t are not adjacent. Whens, t are adjacent, we have
6(s, t) ∩6(t, s) = ∅ and|6(s, t)| = |6(t, s)|.

The following is our main result in this section, which can be regarded as a recurrence
formula for the numberc(W).

Theorem 2.4 Let (W, S, 0), (W′, S′, 0′) and (W′′, S′′, 0′′) be three Coxeter systems.
Assume that there are two elements s, t ∈ S such that
(1) s, t are adjacent in0.
(2) 0′ is isomorphic to the graph obtained from0 by removing the edge joining s, t .
(3) 0′′ is isomorphic to the graph obtained from0 by fusing two vertices s and t into a

new vertex z.
Then we have the relation c(W) = c(W′)+ c(W′′).

Proof: We writeS′ = {r ′ | r ∈ S} andS′′ = {r ′′ | r ∈ S\{s, t}} ∪ {z}, wherer ′ (resp.r ′′)
is the vertex of0′ (resp.0′′) corresponding to the vertexr of 0. LetC0(W) (resp.C0(W′))
be the complement of60(s, t) ∪60(t, s) in C(W) (resp.60′(s′, t ′) in C(W′)).

By Corollary 1.6, we see that60(s, t) can be regarded as the set of all acyclic orientations
of 0 with s→ t which contains no directed path of length greater than 1 froms to t . Also,
60′(s′, t ′) can be regarded as the set of all acyclic orientations of0′ containing no directed
path withs′, t ′ its two end vertices. On the other hand,C0(W) (resp. C0(W′)) can be
regarded as the set of all acyclic orientations of0 (resp.0′) containing a directed path of
length greater than 1 withs, t (resp.s′, t ′) its two end vertices. Note that in the case of0,
this directed path determines the orientation of the edge joinings, t . Letη be the map from
C(W) to C(W′) defined by removing the edge joinings, t from any element ofC(W),
where we regardC(W) (resp.C(W′)) as the set of acyclic orientations of0 (resp.0′) and
regard0′ as a subgraph of0. Then it is clear thatη induces bijections from60(s, t) (resp.
60(t, s)) to60′(s′, t ′) and fromC0(W) to C0(W′). Thus by the observation of 2.3, to show
our result, it is enough to establish a bijection between the sets60(s, t) andC(W′′).
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We observe that ifw ∈ S\{s, t} is adjacent to bothsandt , then for any acyclic orientation
of 0 in 60(s, t), the relationsw→ s andw→ t either both hold or both not.

Now we define a mapψ :60(s, t)→C(W′′). Forα ∈ 60(s, t), we define an orientation
ψ(α) of 0′′ as follows. For any adjacent pairu, v ∈ S\{s, t}, we setu′′ → v′′ if u→ v. For
anyu ∈ S\{s, t} adjacent to at least one ofs, t (say it is adjacent tos for definity), we set
u′′ → z (resp. z→ u′′) if u→ s (resp. s→ u). By the above remark, we see thatψ(α) is
well-defined. We claim thatψ(α) is acyclic. For, if not, then there exists some directed
cycleρ in ψ(α). By the acyclicity ofα, we see thatρ must containz as its vertex. But this
would imply that eitherα contains a directed cycle with at least one ofs, t as its vertex, or
α contains a directed path of length≥ 2 froms to t .

Now that we get a mapψ from60(s, t) to C(W′′). To showψ is bijective, it is enough
to find its inversing map. To any acyclic orientationα′′ of 0′′, we define an orientation
λ(α′′) of 0 as below. For any adjacent pairu′′, v′′ ∈ S′′\{z}, we setu→ v, if u′′ → v′′.
For anyv′′ ∈ S′′\{z} adjacent toz, we setv→ r (resp. r→ v) for anyr ∈ {s, t} adjacent
to v, if v′′ → z (resp. z→ v′′). Finally, we sets→ t . By the acyclicity ofα′′, it is easily
seen that the orientationλ(α′′) so obtained is acyclic and is in60(s, t). Therefore we get
a mapλ from C(W′′) to60(s, t). We see thatλ is the inversing map ofψ and henceψ is
bijective. 2

For a graphG, we denote byv(G) (resp.e(G)) the number of vertices (resp. edges) ofG.
Then in Theorem 2.4, we havev(0) = v(0′) = v(0′′)+ 1 ande(0) = e(0′)+ 1> e(0′′).
Thus Theorem 2.4 actually provides us a recurrence formula for the numberc(W), where
the recurrent step is taken on the sumv(0)+ e(0) ≥ 1.

3. Some closed formulae

Keep all the notations given before. In particular, let(W, S, 0) be a Coxeter system. In this
section, we shall use the results of the previous sections to deduce some closed formulae
for the numberc(W) in some special cases.

The following two extreme cases are the simplest ones.

Lemma 3.1
(1) c(W) = 1 if e(0) = 0.
(2) c(W) = l ! if 0 is a complete graph withv(0) = l.

In general, we have 1≤ c(W) ≤ l ! if v(0) = l .
The next simplest cases are a tree and a cycle.

Lemma 3.2
(1) If the graph0 is a tree with e(0) = l, then c(W) = 2l .
(2) If the graph0 is a cycle with e(0) = l, then c(W) = 2l − 2.

Proof: We know that the number of orientations of a graph0 is equal to 2e(0). When0
is a tree, all the orientations of0 are acyclic. When0 is a cycle, all the orientations are
acyclic except for two directed cycles. So our result follows by Theorem 1.5. 2
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Now we want to deal with some slightly complicated cases. To do this, we need first
establish two propositions.

Proposition 3.3 Let0 be a connected graph covered by two subgraphs01 and02. Assume
that the intersection of01 and02 is a cut vertex x of0. Let (Wi , Si ) (i = 1, 2) be the
Coxeter system with0i its Coxeter graph. Then c(W) = c(W1) · c(W2).

Proof: Let 0′ be a graph consisting of two connected components0′1 and0′2, where0′i
(i = 1, 2) is isomorphic to0i . Let (W′, S′) be the Coxeter system with0′ its Coxeter
graph. Then by Lemma 1.2, we havec(W′) = c(W1) · c(W2). Let us denote the vertex of
0′i corresponding tox ( with respect to a fixed isomorphismφi : 0i →0′i ) by xi . Then up
to isomorphism,0 can be obtained from0′ by fusingx1 andx2 into one vertexx. So we
havec(W) = c(W′) by Lemma 2.2. This implies our assertion. 2

By the above result, we can split a graph0 into some relatively simpler subgraphs0i ,
i = 1, 2, . . . when0 contains cut vertices, by which the computation of the numberc(W)

can be reduced to the computation of these simpler numbersc(0i ).
The next result provides some more simplification.

Proposition 3.4 Let0 be a connected graph covered by two subgraphs01 and02. Assume
that the intersection of these two subgraphs is an edge(in other words, a tree with two
vertices s, t). Let(Wi , Si ) (i = 1, 2) be the Coxeter system with0i its Coxeter graph. Then
c(W) = 1

2c(W1)c(W2).

Proof: Define a graph0′ to be a disjoint union of the graphs01 and02, where the vertices
s and t in 0i (i = 1, 2) are denoted bysi and ti respectively. Thus the graph0 can be
obtained from0′ by fusing the verticess1, s2 into s, and t1, t2 into t . Let (W′, S′) be
the Coxeter system with0′ its Coxeter graph. We define the following four subsets of
C(W′): for α 6= α′ in {s1, t1}, andβ 6= β ′ in {s2, t2}, let6(α, α′;β, β ′) be the set of all
the elementsw of C(W′) such that there exists a reduced expression ofw of the form
· · ·αβ · · ·α′β ′ · · ·. ThenC(W′) is a disjoint union of these four subsets, each of which has
the same cardinality14c(W′). There exists a well-defined mapφ from the set6(s1, t1; s2, t2)
toC(W) by replacing the factorss1s2 andt1t2 bysandt respectively in a reduced expression
of an element ofC(W′) of the form · · · s1s2 · · · t1t2 · · ·. Also, there exists a well-defined
mapψ from the set6(t1, s1; t2, s2) to C(W) by the same replacement on the factors of a
reduced expression of an element of the form· · · t1t2 · · · s1s2 · · ·. We see that both mapsφ
andψ are injective and thatC(W) is a disjoint union of the sets imφ and imψ . Hence our
result follows. 2

Now we shall give some applications of Propositions 3.3 and 3.4.

Proposition 3.5 Let 0 be a graph containing exactly r cycles of m1,m2, . . . ,mr edges
respectively. Assume that no vertex of0 belongs to more than two cycles and that no pair
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of cycles of0 share more than one common vertex. Then

c(W) = 2n
r∏

i=1

(2mi−1− 1),

where n= l + r −∑r
i=1 mi and l is the number of edges of0.

Proof: Let 0′ be the graph obtained from0 by removing all the edges not belonging to
any cycle and by splitting each vertex belonging to two cycles into two vertices, one in each
cycle. Then0′ consists ofr isolated cycles ofm1,m2, . . . ,mr edges respectively, together
with some isolated vertices. Let(W′, S′) be the Coxeter system with0′ its Coxeter graph.
Thenc(W′) = ∏r

i=1(2
mi − 2) by Lemmas 1.2 and 3.2, (2). Thus our result follows by

Lemma 2.1 and Proposition 3.3. 2

Remark 3.6 The result of Lemma 3.2 covers all the irreducible finite and affine Coxeter
groups. Then Proposition 3.5 further covers all the irreducible hyperbolic Coxeter groups
with three exceptions whose Coxeter graphs are as below:

(a) (b) (c)

Figure 1.

where (a) is a complete graph which has been included in Lemma 3.1; (b) and (c) will be
included in Theorem 3.8. Theorem 2.4, together with Propositions 3.3, 3.4, can be used to
simplify the calculation of the numberc(W) in many cases. In particular, this is the case
whens, t ∈ S in the theorem form a vertex cut set of the graph0 (i.e., the removal of these
vertices increases the number of connected components of0). Let us illustrate this point
by some examples.

Example 3.7 Let (W, S, 0) be a Coxeter system. Recall that the notationc(0) stands for
the numberc(W).

(1) Let

0 =

Then by Theorem 2.4 and Propositions 3.3, 3.4, we have

c(0) = c

( )
+ c

( )
= c(01)+ c(02)
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c(01)= c

( )
+ c

 
= 2 · c

( )
+ 1

2
· c
( )2

= 2 · 254+ 1

2
· 302 = 958.

c(02) = c

( )
+ c

( )
= c(0′)+ c(0′′).

c(0′)= c

( )
+ 2 · c

( )
= 4 · c

( )
+ 2 · 1

2
· c
( )

· c
( )

= 4 · 62+ 6 · 30= 428.

c(0′′)= c

( )
+ c

( )
= 2 · 1

2
· c
( )

· c
( )

+ 1

4
· c
( )2

· c
( )

= 6 · 30+ 1

4
· 62 · 14= 306.

This impliesc(0) = 958+ 428+ 306= 1692.
(2) Suppose that the graph is as below.

0 =

Then by Theorem 2.4 and Propositions 3.3, 3.4, we have

c(0)= c

( )
− c

( )

= 1

4
· c
( )

· c
( )

· c
( )

− 2 · c
( )

· c
( )

= 1

4
· 30 · 6 · 14− 2 · 14 · 6= 462.
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We can deal with even more general cases than that in Examples 3.7, (2). Consider a
Coxeter graph0 satisfying the following conditions.

(i) There aren+ 2 vertices in0 with n = m(1)+m(2)+ · · · +m(r )− r , wherer ≥ 1,
1 ≤ m(1) ≤ m(2) ≤ · · · ≤ m(r ) andm(2) > 1. These vertices are labelled by(i, j ),
(1≤ i ≤ r , 1≤ j < m(i )), andx, y, respectively.

(ii) The edges of0 are {(i, 1), x}, {(i,m(i ) − 1), y} (1 ≤ i ≤ r ), {(i, j ), (i, j + 1)}
(1≤ j < m(i )− 1). In the case whenm(1) = 1, {x, y} is also an edge.

We use the notationλ(m(1),m(2), . . . ,m(r )) for the numberc(W) when the graph0
satisfies conditions (i) and (ii). Then we have the following formula:

Theorem 3.8 In the above setup, we have

λ(m(1),m(2), . . . ,m(r ))

= 2
r∏

i=1

(2m(i ) − 1)−
r∏

i=1

(2m(i ) − 2)

=
∑

0≤t≤r

(−1)r−1−t (2r−t − 2)
∑

1≤i1<···<i t≤r

2m(i1)+···+m(i t ). (3.8.1)

Proof: Let (W′, S′, 0′) be a Coxeter system such that0′ is obtained from0 by adding
an edge{x, y} if m(1) > 1 or that is isomorphic to0 if m(1) = 1. Let (W′′, S′′, 0′′) be a
Coxeter system such that0′′ is obtained from0 by fusing the verticesx andy into a new
vertex. By repeatedly applying Propositions 3.3 and 3.4, we have

c(W′) = 1

2r−1

r∏
i=1

(2m(i )+1− 2) = 2
r∏

i=1

(2m(i ) − 1) (3.8.2)

and

c(W′′) =
r∏

i=1

(2m(i ) − 2). (3.8.3)

So by Theorem 2.4, the first equality of (3.8.1) follows from (3.8.2) and (3.8.3). Then the
second equality of (3.8.1) can be obtained by directly calculation. 2

Theorem 3.8 holds even without the restrictionm(i ) 6= 1 for 2 ≤ i ≤ r . This can be
seen directly from formula (3.8.1). On the other hand, we see that Examples 3.7, (2) is a
special case of Theorem 3.8, where we haver = 3, m(1) = 2, m(2) = 3 andm(3) = 4.
Thus by formula (3.8.1), we get

λ(2, 3, 4) = 22+3+4− 2(22+ 23+ 24)+ 6= 462,

just the same as that we got before. Figures 1(b) and (c) are also special cases of Theorem
3.8; the corresponding values ofc(W) areλ(1, 2, 2) = 18 andλ(2, 2, 2) = 46, respectively.
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In particular, whenm(1) = m(2) = · · · = m(r ) = k ≥ 1, we denote the number
λ (k, k, . . . , k︸ ︷︷ ︸)

r factors

simply byλ(kr ). Then (3.8.1) becomes

Corollary 3.9

λ(kr ) = 2(2k − 1)r − (2k − 2)r =
r∑

t=0

(−1)r−1−t

(
r

t

)
(2r−t − 2)2tk.
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