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Abstract. In this paper, we investigate self-dual codes over finite rings, specifically theZgngf integers
modulo 2". Type Il codes ove,m are introduced as self-dual codes with Euclidean weights which are a multiple

of 2™, We describe a relationship between Type Il codes and even unimodular lattices. This relationship provides
much information on Type Il codes. Double circulant Type Il codes @gerare also studied.
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1. Introduction

In this paper, we consider self-dual codes over rings, specifically theZdngvhereZy
denotes the ring./kZ of integers modulk. A code of lengthn over the ringZy is a
subset ofZy, and if the code is an additive subgroup B} then it is a linear code.
Unless otherwise stated all codes will be linear. We define an inner produgf day
[X, YI=X1y1+ - -+ + Xn¥n (MOdK), wherex = (Xq, ..., Xy) andy=(yi, ..., Y¥n). The or-
thogonal to a code is defined in the usual way, Ce. = {v € Z | [v, w] =0 for allw € C}.
MacWilliams relations for codes over any Frobenius ring are given in [17]. A e
self-orthogonalf C € C+ andC is self-dualif C =C-. In this paper, two codes ovéi
are said to bequivalenif one can be obtained from the other by permuting the coordinates
and (if necessary) changing the signs of certain coordinates. Codes differing by only a
permutation of coordinates are calleermutation-equivalent

The paper is organized as follows. Section 2 examines the existence of self-dual codes
over Zy. Section 3 introduces Type Il codes ov& as self-dual codes with Euclidean
weights which are a multiple of"2?, and relates these codes with self-orthogonal codes
over Zom+1. In Section 4, we show a relationship between Type Il codes @Ayerand
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even unimodular lattices. This is a natural generalization of the result in [2]. The above
relationship provides much information on Type Il codes. In Section 5, we investigate
Type Il double circulant codes ov&em giving many examples of extremal Type Il codes
overZ,m for m=3,4 and 5. Section 6 describes the existence of Type Il codes of small
lengths ovetZ,» for all m.

We refer the reader to [6] and [17] for any elementary facts about codes over finite rings
that are used in this paper. For example, any @awerZ, has|C||C+|=k".

2. Self-dual codes over Z

Self-dual codes over fields are a well studied subject, see [11] for an extensive bibliography.
Recently, self-dual codes ov&y have been studied, see [1, 2, 6, 8-10, 14, 15]. Cyclic
codes ovelZy have been discussed by a number of authors, see, e.g., [3] and the references
given therein. In this section, we examine the existence of self-dual codegover

Lemma 2.1 If k is a square then there exist self-dual codes &efor all lengths.

Proof: If k=r? then the matrixr) generates a self-dual code of length 1. O

Lemma 2.2 If C is a self-dual code of odd length ovég then k is a square.

Proof: LetC be a self-dual code of odd lengttoverZ so thaiC|2 =k". Then|C| =Kz,
and sincen is odd,k must be a square. O

Now consider self-dual codes ov&gn. If mis odd then 2 is not a square and by the
previous lemma there are no self-dual codes of odd length.
If mis odd then the following matrix

generates a code that is self-orthogonal with 2" = 2" vectors and therefore is self-
dual. Using the well-known direct product construction, self-dual codes can be constructed
for all even lengths.

If mis even then2 is a square and self-dual codes exist &t for all positive lengths.

Theorem 2.3 There exist self-dual codes ov&# for all lengths if m is even. There exist
self-dual codes ovéf,m, m odd for all lengths n if and only if n is even.

It is not true that there are self-dual codes o¥grfor all even lengths for alk. For
example, fork =6 there are only two self-orthogonal vectors of length 2 and hence no
self-dual code of length 2.

Theorem 2.4 Let k be an integer that is not a square and assumelklf there exists an
elementy e Z, with 2 = —1 then there exist self-dual codes of length n d&eif and only
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if n is even. If there exist,% € Zy with x2 + y?> + 1=0 then there exist self-dual codes
overZy for all lengths n=0(mod 4.

Proof. If there existsy € Z with y?=—1 then(1, y) generates a code withvectors
which is self-orthogonal. Hence, there exist self-dual codes of all even lengthZaver
Sincek is not a square then there are no self-dual codes of odd length by Theorem 2.2. If
there exist, y € Zx with x2 + y2 + 1 =0 then the matrix

1 0 x vy

01y —x/’
generates a code wiltf vectors which is self-orthogonal, and therefore is a self-dual code
of length 4. O

3. Type |l codes over Zm

Type |l codes ovef, have recently been introduced in [1]. In this section, we introduce
Type Il codes ovefZ,n, and relate Type Il codes ové&rn to self-orthogonal codes over
Zom+1. Cyclic codes ovel,n have been discussed in [3].

An application of codes ovef, to unimodular lattices prompted the definition of the
Euclidean weight of a vector @&, (cf. [2]). Itis natural to define the Euclidean weights of
the elements 0t1, +£2, £3,..., +(2™1—-1), 2™ 10of Z,masQ1,4,9,..., (2™ 1 - 1)2
(2™1)2, respectively. The Euclidean weight of a vector is just the rational sum of the
Euclidean weights of its components. The Hamming weight of a vector is the number of
non-zero components in the vector. We defing/pe Ilcode ovetZ,m as a self-dual code
with all vectors having Euclidean weight a multiple 872. Form =1 this is the standard
definition of a Type Il code. Note that fon = 2 the standard definition of a Type Il code
requires that it contain the all-one vector as well.

Any code ovefZ,n is permutation-equivalent to a code with generator matrix of the form

ly A2 Az Agg - e Al my1
0 2, 2A23 2A24 --- e 2A2 mi1
0 0 4y 4Aga - - 4Agme1
, 1
0 1)
0 0 0 ... 0 2wl omlpl

where the matrice# ; are binary matrices far> 1.
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A code of this form is said to be afpefks, ko, ks, ..., kn} and it has

m
l_[(sz j +l)ki ,
j=1

vectors.
Define a mapb : Z3,,., — Zon by

®(vy, V2, ..., vn) = (v1 (Mod 2M), vo (Mod 2M), ..., v, (Mod 2M)).
For a codeC of lengthn overZow1 we denote its image under this map ®yC).

Lemma 3.1 The image of a self-orthogonal vector is a vector whose Euclidean weight is
a multiple of2™+1,

Proof:  Forv; in Zom1 we have thav? = (v (mod 2"))? (mod 2™+1). O
Lemma 3.2 For C a code oveZ,m:, ®(CL) C d(C)L.

Proof: If veC*t thenp, w]=0 forallw in C. Itis easy to see thab(v) and®(w) are
orthogonal inZ},. Henced (v) € ®(C)*. O

Theorem 3.3 If C is a self-orthogonal code oveét,m:: then®(C) is a self-orthogonal
code ovetZ,» such that the Euclidean weights of all vectors are a multip[2"5f.

Proof: Follows from the previous lemmas. O

Theorem 3.4 If C is a code of typéky, ko, K3, ..., kn} overZam, then®(C) is a code of
typefks, ko, . . ., km_1} overZom-1.

Proof: Any vector inC is a linear combination of the rows of a generator matrixCof
Any vector in®(C) is a linear combination of those rows read modulb2 Hence a
generator matrix of(C) is

e A2 Az Ag - e Al mi1
0 2|k2 2Azyg 2A2,4 cee ce e 2A2,m+1
0 0 4y, 4Azs --- cee 4A3 m+1
0 9
0 0 0 oo 0 2m_2|km_1 2m_2Am_1qm

which corresponds to a code of the required type. O
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Note that a generator matrix of a self-orthogonal code @er: does not necessarily
generate a self-orthogonal code o¥Zg# since the vectors may not be orthogonal.

Corollary 3.5 If C is a self-orthogonal code of tygk, ko, K3, . . ., Km, Kmi1} overZom:
of length n with(2™thki2Mke . .. (2)km = (2M)2 thend(C) is a Type Il code oveEm.

Proof: Thecodeb(C) is self-orthogonal by Theorem 3.3 and has tjipekz, ks, . . ., km}
by Theorem 3.4, wit2™hki(2myke ... (2)km = (2M)2. Therefored(C) is self-dual. O

4. Type |l codes over Zm and even unimodular lattices

A relationship between Type Il codes ov&f and even unimodular lattices was given in
[1] and [2]. In this section, we consider a relationship between Type Il code¥gvend
even unimodular lattices. This is a natural generalization of the above result.

Recall that a Type Il code ové#,m is a self-dual code which has all Euclidean weights
divisible by 2. The minimum Euclidean weighit of C is the smallest Euclidean weight
among all non-zero codewords ©f Form=1 and 2, an upper bound alz was given in
[12] and [1], respectively.

An n-dimensional latticeA in R" is the set of integer linear combinationsrofinearly
independent vectors, . .., vy. An n x n matrix whose rows are the linearly indepen-
dent vectors is called a generator matrix of the lattice. dbal lattice A* is given by
A*={xeR"|[x,a] e Zforallae A}. A lattice A is integral if the inner product of any
two lattice points is integral, or equivalently,Af C A*. An integral lattice with det =1
(or A = A¥) is calledunimodular If the norm [, x] is an even integer for akt € A, then
A is calledeven The minimum norm ofA is the smallest norm among all nonzero lattice
points of A.

Applying Construction A in [7] to self-dual codes ovE&en, we have the following
construction of even unimodular lattices.

Theorem 4.1 If C is a self-dual code of length n ovEen, then the lattice

1
Am(C) = ﬁ{c + 2M7M,

is an n-dimensional unimodular lattice. The minimum normis{2™, dg /2™} where ¢

is the minimum Euclidean weight of C. MoreoyvéiC is Type Il then the latticé\ om (C)
is even unimodular.

Proof. Ifa;, a; € Aom(C)theng = (¢ +2Mz)/+/2™wherec; € Candz € Z" fori =1, 2.
SinceC is self-dual, the inner product af anda; is

1
[a, a] = Z—m{[Cl, col + 2™z, C5] + 2™[c1, 2] + 22M[z1, 2]} € Z,
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thus Aom(C) is integral. IfC has a generator matrix of the form (1), then the generator
matrix of the lattice can be written as

l, A2 Az Aig - e Al ms1
0 2|k2 2A2,3 2A2,4 T t 2A2,m+1
0 0 4 4Asq - - dAgmn
1 . . . . .
— | : : 0 ", ", : , 2
NeD @)
0 2™, 2™ 'Anmia

0 0 2"k

wherek=k; + --- +kyn. Thus the determinant of the matrix (2) is 1 ang«(C) is
unimodular. It is easy see that [a] > [¢ /+/2™, ¢ /+/2"] wherea; = (¢ +2"z)/v/2™M.
Thus the minimum norm is m{g™, dg /2™}.

In addition, if C is Type Il then since the Euclidean weights are divisible By'2 we
have

1
[a1, &] = Z—m{[CL cl + 2°M[z1, z1] + 2™ ey, z1]} € 22Z,

so that the lattice is even. O

Remark It was suggested in [1] that a construction similar to Theorem 4.1 be considered
in order to construct unimodular lattices with minimum ngun 4.

Theorem 4.1 provides much information on Type Il codes &gr. For example,
the following corollary characterizes divisible self-dual codes &grin terms of their
Euclidean weights.

Corollary 4.2 Suppose that C is a self-dual code o¥%gr. The greatest common divisor ¢
of Euclidean weights of all codewords of C is eit@8ror 2m*1,

Proof: If a unimodular lattice has the property that every norm is a multiple of some
positive integed, thend is either 1 or 2 (cf. [13]). IfC is self-dual themA,m(C) is uni-
modular. Thus must be either? or 2"+, |

Moreover, Theorem 4.1 gives the following restriction on the length of a Type Il code.

Corollary 4.3 If there exists a Type Il code C of length n 0%, then n is a multiple
of eight.

Proof: An even unimodular lattice of dimensiom can be constructed fron® by
Theorem 4.1. Even unimodular lattices exist if and only if the dimension is a multiple
of eight. Thusn must be a multiple of eight. O
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Now let us consider the converse assertion. Calderbank and Sloane [3] investigated cyclic
codes of lengtm over the ringZp. and over thep-adic numbers, wherp is a prime not
dividing n. In particular, they constructed remarkable cyclic codes Byewf length 7 for
anym. By appendig a 1 to thegenerator vectors of the above codes, Hamming céfies
overZyn of length 8 are constructed. It was shown in [3] that the cddgsare self-dual
codes. Moreover, it can easily be seen that all their Euclidean weights are divisible by
2™l Thus there exists a Type Il code of length 8 offer, which gives the following
proposition.

Proposition4.4 There exists a Type |l code ov& of length nifand onlyif == 0(mod §.

We now investigate the minimum Euclidean weight of Type Il codes @gr The
minimum normy of ann-dimensional even unimodular lattice is boundeddby 2| 5, | + 2
and even unimodular lattices with= 2| 7; | + 2 are calle@xtremalcf. [7]). The minimum
norm of the lattices constructed from Type Il codegives directly an upper bound on the
minimum Euclidean weight of.

Proposition 4.5 Let de be the minimum Euclidean weight of a Type Il code of lei@gth
overZy. If | 3] <2™1—2, then

de < 2m+1<EJ + 1). (3)

Proof: Suppose that there exists a Type Il cadewith minimum Euclidean weight
de =2m+1(LgJ + 2). The minimum nornu of the even unimodular lattic&,»(C) con-
structed fromC is min{2™, 2L§J +4}. From the assumptiom:ZL%J + 4, which is a
contradiction. O

Whenm=1 and 2, the above bound (3) holds without the assumptidn< 2m-1_2,
Form=1, (3) is the well-known bound on binary doubly-even self-dual codes, given by
Mallows and Sloane [12]. The bound with=2 was presented in [1]. We conjecture
thatdg < 2™(1 3] + 1) for all m> 1 without the assumption.

A Type Il code meeting this bound with equality is caledremal Extremal codes have
the largest minimum Euclidean weight among all Type Il codes of that length. All Type Il
codes of lengths 8 and 16 are extremal.

The minimum Hamming weight of a Hamming co@éién is always 4 and for the first
few values ofm, the minimum Lee weights were determined in [3]. By Proposition 4.5,
the minimum Euclidean weight 6.~ is always 21,

5. Double circulant codes

We begin by characterizing the generator matrices of double circulant cogese Aouble
circulantcode of length & has a generator matrix of the forth, R) wherel is the identity
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matrix of ordem andR is ann x n circulant matrix

o r{ --- I
fh—1 fo ~--- - M2
R =
ri fr -+ Thno1 To

A code with generator matrix of the form

« B -+ B

1
: (4)

14

whereR’ is an(n — 1) x (n — 1) circulant matrix, is called bordered double circulardode
of length 2. These two families of codes are collectively caltilible circulantcodes.

5.1. Preliminaries
We first prove the non-existence of pure double circulant self-dual codes.
Theorem 5.1 There exists no pure double circulant self-dual code &erfor m> 2.

Proof: Suppose that there exists a pure double circulant self-dualCadéh generator

matrix of the form(l, R). SinceC is self-dual,RR" = —1 overZ,m, so then
> rZ=-1 and ) rir;=0.
O<i<n-1 i#]

Thus we have

(o+Tid -+ )’ =rf+rf+- 417,
=-1

Therefore—1 must be a quadratic residueZian. However,—1 is not a quadratic residue
in Zom for m> 2, which is a contradiction. O

Remark Similarly, if —1 is not a quadratic residue in a finite ring then there is no pure
double circulant self-dual code over this ring.
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Remark Conditions for the existence of double circulant self-dual codes over a finite field
GF(p) were given in [16]. It is known that pure double circulant self-dual codes exist for
m=1 (cf., e.g., [11]).

We now present two lemmas which are useful in checking the equivalences of bordered
double circulant self-dual codes. These lemmas can easily be proven.

Lemma 5.2 LetC, C’,C” and C” be codes with generator matrices of the fofin A),
(I, A), (1, Ay and(l, A”), respectivelywhere

a B - B —a B - B
14 -V
A= , A= ,
R R
14 -V
—a —B —p a —p —p
14 -V
A”— a.nd AW— ,
R R
14 g

and R is a square matrix. Then C’, C” and C” are equivalent.
Lemma5.3 Ifthe matrix(l, A) generates a self-dual code @en the matricegl, — A),

(I, ATy and(l, —A") generate self-dual codes which are equivalenttoBere A denotes
the transpose of the matrix. A

5.2. Aninfinite family of double circulant Type Il codes

We discuss lengths for which there exist Type Il double circulant codesvelFirst, we
provide a result required for a subsequent construction, namplsi7 (mod 8 then

1+ px? =0 (mod 2"),

has solutions for alin > 0, and if p=3 (mod 8 then
5+ px2 =0 (mod 2",

has solutions for alin > 0.

Although the following lemma can be obtained from Hensel's Lemma, we give an ele-
mentary proof to emphasize the forms of solutions.
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Lemma 5.4 Suppose that p and g are odd. If a is a solution t¢ gx2=0 (mod 2"),
with m> 3 then either a or a+ 2™ is a solution to ¢ px? =0 (mod 2"+1).

Proof: Leta be a positive integer such that- pa?> =0 (mod 2"), orq + pa? =r2™ for
some integer. If r is even, say = 2k, then

q + pa® = k2™ = 0 (mod 2™1),
If r is odd, say =2j + 1, then

q+ p@+2"1H? = q+ p@ +a2" 4 2°"?)
=2"2j + 1+ pa+ p2"?)
= 0 (mod 2",

sincea is odd. O
Proposition 5.5 If p=7 (mod 8, then there exists a solution for
1+ px? =0 (mod 2"),
forallm > 0. If p=3 (mod 8, then there exists a solution for
5+ px* = 0 (mod 2"),
forallm > 0.

Proof: Itis easily verified thak =1 is a solution fom=1, 2 and 3 in both cases. The
previous lemma shows that if there is a solutionrfor 3, there is one fom+ 1. Hence
by induction there is a solution for ath > 0. a

We now consider certain weighing matrices of ordeand weightn — 1. A weighing
matrix Wy « of ordern and weighk is ann by n (0, 1, —1)-matrix such thaWn,kW,Ik =k,
whereWnT « Is the transpose oV, k.

The following is a well-known method for constructing bordered circulant weighing
matrices. Suppose that= p+ 1 is a multiple of 4 wherep is a prime. LetP’ = (p;;) be
ap x p matrix where

0 ifi=j,
pj =41 if j —iisanonzero squargnod p),

—1 otherwise.
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The matrixP’ is called a Jacobsthal matrix (cf. [11]). Now consider the bordered circulant
matrix

Pn =
P’

-1

Clearly P,P = pl over the integers an&, = —P], so thatP, is a weighing matrix of
ordern= p+ 1 and weightp.

(1) The casgp =7 (mod 8: Consider a bordered double circulant code of lengtioZer
Zm with generator matrix of the forrdl, x B,). We denote this code Uy%ﬂ (X). Since
all distinct rows ofx B, are orthogonal oveZ, if 1 + px?=0 (mod 2") then D%Q (X)
is self-dual. Moreover, if & px?=0 (mod 2"*1) then D2%(x) is a Type Il code. It
follows from Proposition 5.5 that ip= 7 (mod 8 then there is an integersatisfying
1+ pa’?=0 (mod 2"Y) for m> 0. Thus the generator matricék, aP,) generate
Type Il bordered double circulant codes for - 0.

(2) The casg =3 (mod §: Consider the matriG = (I, 2| + xP,). SinceP,=—P], it
must be thaGG" = (5+ px?)|. By Proposition 5.5G generates a Type |l bordered
double circulant cod®37(x).

Thus we have an infinite family of Type Il bordered double circulant codes.

Theorem 5.6 Suppose that p is a prime number witl=8 (mod 4, and let n=p+ 1.
Then there exists a Type Il bordered double circulant code of leagtaverZ,n for all
m> 0.

Remark Whenm=2, the above double circulant codes were given in [9].

Corollary 5.7 Suppose that there exists a weighing matrix W of ordei(mod 4 and

weight k=3 (mod 4.

(1) Ifk=7(mod 8, then there exists an integef such that the matrikl , x, W) generates
a Type Il code oveF.,n for every m> 0.

(2) Ifk=3 (mod 8. If W=—WT, then there exists an integef,>such that the matrix
(I, 21 +xnW) generates a Type Il code ovE&pn for every m= 0.

5.3. Double circulant codes of length 8 ovey Z

Here we classify Type Il bordered double circulant codes of length 8&weBy exhaustive
search, we have found all distinct double circulant Type Il codes of length 8. For these codes,
the first rows ofR" and the values ok, § andy of the generator matrices (4) are given
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Table 1 Double circulant Type Il codes of length 8.

Code Firstrow ofR « B y Code Firstrow ofR  « B y
Cs1 761 2 3 3 Cg 17 721 6 3 3
Cs2 761 2 5 5 Cs 18 721 6 5 5
Cs3 761 6 3 5 Cs. 190 721 2 3 5
Csg.4 761 6 5 3 Cs 20 721 2 5 3
Css 671 2 3 3 Csg 21 271 6 3 3
Cse 671 2 5 5 Cg 22 271 6 5 5
Cg 7 671 6 3 5 Csg 23 271 2 3 5
Css 671 6 5 3 Cg 24 271 2 5 3
Csg 653 2 3 3 Cs 25 532 6 3 3
Cs 10 653 2 5 5 Cs 26 532 6 5 5
Csg 11 653 6 3 5 Cg 27 532 2 3 5
Cs12 653 6 5 3 Cs.28 532 2 5 3
Cs13 563 2 3 3 Cs.29 352 6 3 3
Cs14 563 2 5 5 Cs.30 352 6 5 5
Cs15 563 6 3 5 Cg 31 352 2 3 5
Cs.16 563 6 5 3 Cs 32 352 2 5 3
Table 2 Weight distributions of length 8 double circulant codes.
Wy W
Weight  Frequency Weight  Frequency
0 1 0 1
4 14 16 240
5 336 32 1472
6 672 48 1568
7 1680 64 702
8 1393 80 112
128 1

in Table 1. These codes have identical Hamming weight distributignsand identical
Euclidean weight distribution®/s. Wy andWe are listed in Table 2.

From Lemma 5.2, the four cod€s 4 11, Cg 4i+2, Cs.4i+3 andCg 4 +4 are equivalent for
0<i <7. In addition, it follows from Lemma 5.3 that the four cod&sg,, Cg s, Cs.15 and
Csg 22 are equivalent, and the four cod€gg, Cg 13, Cg 30 andCg 26 are equivalent. Thus
the equivalence of only two codeSg ; andCg g, needs to be checked further. Using the
following method, we have determined the inequivalence of these codes; (Eebe the
number of pairgx, y) of codewordx andy, of Hamming weight, such that the Euclidean
weight of a vectoix — y is e. Note thatd; (0)=A; and)_, di(e) = Ai2 where A; denotes
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Table 3 Classification of double circulant codes of length 8.

Code ds5(0) ds(16) ds(32) d5(48) ds5(64) ds(80) ds(96)  d5(112 ds5(128)

Cs1 336 12032 58208 31168 11152 0 0 0 0
Cso 336 11648 59360 30016 11536 0

the number of codewords of Hamming weighSince the Euclidean weights of codewords
X —y andy — x are the same, the numbedgs) are invariant under the equivalence of
codes ovefZg for eachi ande.

For codesCg; andCgg, We have obtained the numbeige) for e =0, 16, ..., 128,
and the results are given in Table 3. This table establishes that there exists exactly two
inequivalent double circulant self-dual codes of length 8 @ger

5.4. Double circulant codes of length 16 over Z

By exhaustive search, we have found all distinct double circulant Type Il codes of length
16 overZg. The only values o for which there exist bordered double circulant Type I
codes are 0 and 4.

We first consider only double circulant codes with=0. Due to space limitations,
we list in Table 4 only those codes which must be checked further for equivalences. The
corresponding Euclidean weight distributiond;, are given in Table 5. Note that the
borders for these codes ate, 8, y) = (0, 3, 3). The distinct codes can be determined
using Lemmas 5.2 and 5.3.

We now classify the double circulant codes with weight distributidhdor 1 <i <6.
Obviously, there exists a unique double circulant code, up to equivalendé/zfand Ws.
Let R; andR; be circulant matrices with first rows (3731110) and (3171310), respectively.

Table 4 Length 16 double circulant Type Il codes with= 0.

Code FirstrowofR W Code FirstrowofR W
Ci61 3731110 Wy Ci611 7353510 Ws
Ci62 3171310 Wy Ci612 5571330 Ws
C163 7113310 Wy Ci16,13 5135730 Ws
Ci64 7753110 W, Ci6,14 5535330 Ws
Ci65 7317510 W, Ci6.15 3775110 Wy
Ci66 5171730 W, Ci6.16 7157310 Wy
Cie7 7717110 W3 Ci6,17 3375510 Wy
Cies8 3135310 Wy Ci6,18 3571710 Wy
Ci69 3331510 Wy Ci6,19 3535710 Wy

Cie,10 5331130 W Ci6.20 5375130 W
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Table 5 Weight distributions of length 16 double circulant codes wita 0.

Wi W W3 Wy W5 We Wy

Weight  Frequency Frequency Frequency Frequency Frequency Frequency  Frequency

0 1 1 1 1 1 1 1

16 480 480 480 480 480 480 480

32 58976 59368 59368 58976 58976 58976 58976
48 732152 729072 728904 732320 732152 732320 732152
64 2866004 2876196 2877148 2865052 2866004 2865052 2866396
80 4972248 4954272 4952256 4974264 4972416 4974432 4970120
96 4641960 4659376 4660944 4640392 4641344 4639776 4646552
112 2480520 2472512 2473296 2479736 2481136 2480352 2475704
128 831326 831606 829254 833678 831606 833958 833566
144 168872 169600 171168 167304 168032 166464 168760
160 22936 23272 23048 23160 23328 23552 22824
176 1568 1232 1064 1736 1624 1792 1456
192 172 228 284 116 116 60 228
256 1 1 1 1 1 1 1

SinceR; andR; areR’ of the generator matricesGfs 1 andCis 2, these codes are equivalent
if there exist permutation matricésandQ such thatR; = PR,Q. The following matrices

1000000\ 0010000\
0000010 0000010
0001000 0100000
P =| 0100000 and Q =] 0000100],
0000001 1000000
0000100 0001000
0010000 0000001

satisfy the equalityr; = PRQ, and so establish the equivalenceda§; andCie 2. In this

way, it can be determined th@tg;, Ci6;+1 andCig ;2 are equivalent when=1, 4, 8 and

11. Therefore, we obtain a complete classification of the Type Il double circulant codes
with weight distributiondp; for 1 <i <6.

We now investigate the six codes with weight distributifa Since there exist permu-
tation matricesP and Q such thatR;s= PR7Q, whereR;g and Ry7 are R of codesCig
andC,7, respectively, the two codes are equivalent. Similahs andC,o can be shown
to be equivalent. For cod€3s 15, C1616 C16.18 andCigs 19, We have calculated;(¢). The
values ofd;(16) for these four codes are 2522620 2184 and 2184, respectively. Thus
there are at least two inequivalent codes. Since the two d@ggsandCig;1, for both
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i =15 and 18, have identical values @f(¢), additional values were calculated fiy(e)
for 4< j <9. However, these were also found to be identical. If two codes are equivalent
then there is an equivalent map from one to the other. We have tested several maps, but
have been unable to determine the equivalence or inequivalence of these codes.

Next we consider double circulant codes with 8, y) = (4, 3, 3). Twenty codes need
to be checked for equivalences, and these codes can be obtained from those in Table 4 by
replacing 0 in the first row oR" with 4. We denote the code obtained fr@xye; by Cig;.
The Euclidean weight distributions are listed in Table 6, and the codes corresponding to
these distributions are given in Table 7.

The above arguments for codes with= 0 show that there exists a unique Type 1l double
circulant code withW; (i =8, 9, 12 and 13. Moreover, codes in the following groups are

H ! ’ i ’ ’ ’ ’ / / /
equivalent(Cig 4, Cig5, Ci66): (Cia11- Cip12: Cla13)s (Cig16: Cla17) @NA(Clg 19, Ci20)-

Table 6 Weight distributions of length 16 double circulant codes with 4.

Wg Wy Wio Wi Wi Wiz

Weight Frequency Frequency Frequency Frequency Frequency Frequency

0 1 1 1 1 1 1

16 480 480 480 480 480 480
32 58752 59144 58752 58752 58752 58752
48 733888 730808 733552 733888 733888 733216
64 2860344 2870536 2862444 2860736 2860540 2864348
80 4982136 4963992 4976928 4980008 4980960 4972896
96 4632440 4650472 4638880 4637032 4635744 4642016
112 2484664 2476040 2480576 2479848 2479008 2482144
128 831830 831830 833286 834070 837990 828582
144 167752 169320 166912 167640 163776 170048
160 23048 22992 23776 22936 24224 23328
176 1768 1376 1488 1656 1824 1152
192 112 224 140 168 28 252
256 1 1 1 1 1 1

Table 7 Length 16 double circulant codes with= 4.

W Codes

Ws C/16,1v Cie,z’ CZ/I.6.3

Wo C/16,8v Cie,9’ C:/I.6.10

Wio C/16‘4’ Cie,5’ CiS.G’ C/16,11’ Cie,lzv Cie,ls
Wiy C/16.15’ C:,I.6,16’ 016,17» Cia,lss C16.19’ Cie,zo
Wiz C1a7

’
Wiz C16,14
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Table 8 di(¢) for length 16 double circulant codes with= 4.

Code d7(0) d7(16) d7(32 d7(48) d7(64) d7(80) d7(96) d7(112  d7(128

Clea 1344 2800 65184 207648 646800 286720 488208 12208 95424
Cle1n 1344 2744 64960 208096 646912 286328 488320 12208 95424
Cle1s 1400 1568 58856 226072 639352 412776 474712 69552 75712
Cle1s 1400 1568 58856 226072 639352 412776 474712 69552 75712
Clg1s 1400 2016 61992 218848 643608 406616 483448 67704 74368
Clg19 1400 2016 61992 218848 643608 406616 483448 67704 74368

Further, Table 8 gives the valuda(e) (¢ =0, 16, ..., 128) for Cg 4, Cig 11, Ci6 15 Cig16
Cle1s @andCiq 4. This table establishes that there exists at least 8 inequivalent Type I
bordered double circulant codes with=4.

5.5. Extremal Type Il codes of other lengths

The most remarkable length for extremal Type Il codes is 24, because of the connection
with the Leech lattice (cf. Lemma 6.1).

Proposition 5.8 There is no extremal double circulant Type Il code d¥giof length24.

Proof: The possible borderg, 8, y) of length 24 are only+2, +1, +1) since the first
row of the generator matrix must be self-orthogonal. Thus the Euclidean weight of the first
row of the generator matrix (4) is only 16, so the code cannot be extremal. O

It seems infeasible to construct all distinct Type Il double circulant codes Zyef
larger lengths. For lengthn2=48, we have determined thE§8(3) contains vectors of
Euclidean weight 32 and so is not extremal.

5.6. Examples of Type Il codes overgand Zs;

Here we give examples of Type Il double circulant codes @&grandZs,. First, some
examples of Type Il bordered double circulant codes @&grof length 8 are given in
Table 9. This table also contains the Euclidean weight distributions of the six codes, and
establishes that these codes are inequivalent.

We now present Type Il codes ovEg, of the same length. For bordegs, 8, y) =
(6, 3, 3), the eight codes with first rodd8 7 1, (159 2, (31 25 2, (29 26 3, (1110 5,
(272110, (261913, (23 18 17 are Type Il codes. Moreover, we have verified that these
codes have different Euclidean weight distributions and so are inequivalent.
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Table @ Type Il double circulant codes of length 8 ov&ys.

(o, B, y) (2,3,3 (2,3,3 (2,3,3 6,3,3 (6,3,3 (6,3,3)
First row 761 14133 14115 721 1592 11105
Weight Frequency Frequency Frequency Frequency Frequency Frequency
0 1 1 1 1 1 1

32 240 240 240 240 240 240

64 2160 2160 2160 2160 2160 2160

96 6272 6272 6272 6272 6272 6272
128 12560 12560 12560 12560 12560 12560
160 14024 14000 14096 13968 14016 13992
192 14464 14560 14176 14688 14496 14592
224 8188 8080 8560 7904 8144 8024
256 5130 5070 5070 5150 5150 5150
288 1776 2016 1536 2016 1776 1896
320 552 336 720 368 560 464
352 156 240 144 192 144 168
384 12 0 0 16 16 16
512 1 1 1 1 1 1

6. Type Il codes over Zn of small lengths and related even unimodular lattices

In this section, we consider Type Il codes o#gr of small lengths.

In Section 4, we described the Hamming cotigs as Type |l codes of length 8. Theorem
5.6 describes the existence of Type Il bordered double circulant codes of length 8. Thus we
obtain two infinite families of Type Il codes of length 8. Applying Theorem 4.1 to the above
codes, we obtain an infinite number of alternative constructions of the unique 8-dimensional
even unimodular lattice, which is called the Gosset latfige

Now consider Type Il codes of length 1B,m & Hom is a Type Il code oveFm of length
16. There exist Type Il bordered double circulant coDé%(x) over Z,n for anym. For
every codeC overZym, there is an associated binary ca@lé’ = {c (mod 2 | ce C}. Itis
easy to see that the binary codes associated Msthd Hom and D%ﬁ(x) are doubly-even
self-dual codes. Moreover, they agandd;; in [5], respectively. Thugtom & Hom and
D%S(x) are inequivalent for eactm. The latticeA om (Hom @ Hom) is the even unimodular
lattice Eg @ Eg, which is one of the two even unimodular lattices of dimension 16.

For the Leech lattice, we have the following lemma.

Lemma 6.1 Suppose that there exists an extremal Type Il code C of letfplrer Zom.
Then the Leech lattice can be constructed from C by Thedrgifior m > 2.

Proof: The lattice constructed froi@ by Theorem 4.1 is an even unimodular lattice of
dimension 24 with minimum norm 4, which must be the Leech lattice. O
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Form= 2, several extremal Type Il codes of length 24 were constructed in [2] and [4].
These codes gave simple alternative constructions of the Leech lattice.

The lifted Golay codes of length 24 ovEp» were constructed from the binary Golay
code by Hensel lifting (cf. [3]). The lifted Golay codes are Type Il codes; however, we
have verified that the lifted Golay code ov&s is not extremal by computer. In addition,
it is shown in Proposition 5.8 that there is no extremal Type Il double circulant code over
Zg of length 24. Fom=1 and 2, there are extremal Type Il double circulant codes over
Zom of length 24 and the Hensel lifted Golay code o¥%aris extremal. Thus it would be
worthwhile to construct extremal Type Il codes oi#grof length 24.
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