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1. Introduction

In this paper we investigate optimal control problems governed by variational inequalities
of obstacle type. This problem has been widely studied during the last years by many
authors. It is now known that one cannot obtain classical optimality systems (in the sense
of Mathematical Programming) for such problems. This come essentially from the fact
that the mapping S which associates the state y solution of a Variational Inequality to
the control v, is not differentiable as pointed it out Mignot [9] and one can only define
a conical derivative for S. In [10], Mignot and Puel obtain optimality conditions using
the results of [9]. Different methods have been used to consider this problem. Barbu
[2, 3] studies approximations of the Variational Inequality which lead to optimal control
problems governed by variational equations. Then he gets existence results and optimality
conditions using a passage to the limit in the approximation process. In [5, 6], the first
author has obtained classical optimality systems for suitable approximations of the original
problem which can be easily used from the numerical point of view.

On the other hand, Rubio and Wenbin [14] obtain results for strongly monotone vari-
ational inequalities of obstacle type introducing a dual penalization for the variational
inequality on increasing radius balls. We have adopted these last authors point of view
to interpret the variational inequality in a dual way. Anyway the motivation is slightly
different since we have been thinking of conjugated functions occurring in classical convex
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analysis. So we define a regularized dual function which is C! to describe the Variational
Inequality. We do not claim that our results are completely new (though we are able to
weaken some assumptions that are commonly used) but we think that this method may
be extended to general Variational Inequalities and may provide some new results and a
better understanding of the behavior of solutions.

The paper is organized as follows. We first present the problem and set the basic as-
sumptions. Existence results are well known for this kind of problems and we are only
interested in optimality conditions. Then we define the dual functional h, give some
properties and reinterpret the original problem as a classical mathematical programming
problem with an C! equality constraint. A short example will show that it is hopeless
to obtain classical optimality systems so that usual results cannot be applied. So we use
a penalty method to get first-order conditions with additional assumptions. We end the
paper with applications.

2. Setting the problem

Consider the following abstract problem:
min J(y,v), (T(y,v),z—y) >0 Vze K, y€ K, v € Uy (P)

where

e Vs an Hilbert space and V' its dual; we denote by (, ) the duality product between
V and V', by (, ), the inner scalar product of V" and by || ||y the V-norm. We
shall omit the index for the space V' most of time, i.e. || || will mean || ||y;. Moreover
A : V — V' is the duality mapping (i.e. here the canonical isomorphism) and we
recall that:

V(y,2) e VXV (y,2)y = (y,Az).

e U is an Hilbert space and Ay : U — U’ denotes the duality mapping.
K and U, are non empty closed convex subsets of V' and U respectively.
e T:V xU—V'isan operator (not necessarily linear) which satisfies:

T is C' in the Fréchet sense. (2.1)
and
Vy e K v+ T(y,v) is strongly continuous from U to V. (2.2)

We recall (see for example Zeidler [15, p.515]) that T'(y,.) is strongly continuous if it is
weakly-strongly sequentially continuous, i.e.

v, = vinU = T(y,v,) = T(y,v) in V'.

e J:VxU — RU{+o0} is a proper, convex and lower semicontinuous functional;
moreover it is supposed to be bounded below and Gateaux-differentiable.

We assume also that
Problem (P) has at least one optimal solution denoted (y*,v*) € K X Ugg. (2.3)

All the previous assumptions are supposed to be ensured in the sequel of the paper. We
summarize them as assumption (#).
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Remark 2.1. We must underline that the Gateaux-differentiability assumption for the
cost functional J can be omitted. Indeed, using Moreau-Yosida approximation of J one
can replace the original problem by a similar problem where the cost functional is Gateaux-
differentiable (and even C!) and the results of this paper can be applied. Then, one can
pass to the limit in optimality systems to get the new one which involves sub-gradients
instead of Gateaux-derivatives (see Bergounioux [6] for instance). However, to make the
presentation clearer we decided to add this Gateaux-differentiability assumption for J.

2.1. Examples

Let us give some examples to illustrate such problems. Let A be an operator from V' onto
V' such that A is

e strongly monotone i.e.
Jv > 0 such that V(y,2) € V x V. (Ay— Az,y —z) > v|jy — 2|3 .
e demi-continuous, i.e. strongly-weakly sequentially continuous:
T, — x strongly in V = Az, — Az weakly in V.

Let ¢ : V — RU {400} be a proper, convex and lower semicontinuous functional such
that

A — Yo
Jy, € dom ¢ such that lim (Ay,y = yo) + ¢()
lyll—+o0 T

= +OO,

and f e V'
Then the following variational inequality has a unique solution y (see [3, pp. 125-127]):
VzeV (Ay,y—2)+o(y) —e(z) < (f,y—2). (2.4)

In particular we may choose (Ay, z) = a(y, z) where a is a bilinear, continuous and V-
elliptic (i.e. a(y,y) > plly||*) form and ¢ is the indicatrix function 1x of a nonempty,
convex and closed set K. We recall that

1k(y) =

0 itye K
+o0o else.

Then, the Variational Inequality (2.4) has a unique solution y and the application f +— y
is lipschitz-continuous from V' onto V.

Suppose now that we have V' C U C V' continuously and densely and define B a strongly
continuous operator from U to V' (B may be, for instance, the canonical injection if U is
compactly embedded in V') and assume, in addition that J is coercive. Then ([3, p. 151])
the problem (P) has at least one optimal solution. In this case T'(y,v) = Ay — Bv — f
and satisfies (2.2).

2.2. Reformulation of the Variational Inequality

We are going to transform the variational inequality via a duality process. For a > 0, we
define the functional h, : V X U — R as following:

1
ha(y,v) = sup | (=T (y,v), 2 —y) — =|lz = y||¥| - (2.5)
zeK 2
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Remark 2.2. « is a parameter that will be fixed later greater than v~!, where v will be
a monotonicity constant for 7', as it appears in Example 2.1 for instance. We will explain
this choice in the sequel of the paper.

Theorem 2.3. h, is well-defined and

(i) YyeK,YveU hu(y,v)>0.
(i)  ha(y,v) = 3 [T (y,v) |3 — d% (y — aA T (y, v))], where di is the distance to the
set K.

(iil) Ra(y,v) = —a{T(y,v), yx — y)— 3llyx — yl|} where yx = Px(y — aA™'T(y,v)) and
Py is the V -projection on K.

Proof. Recall that
dic(y) = min ||z = ylly = lly = Pc)Ilv

Assertion (i) is obvious: one takes z = y to compute the supremum in (2.5).
Let (y,v) bein V x U.
Lo L2
ha(ya U) = <T(ya U)ay> - §||y” + sgllg <—O!T(y, U)a Z) - §||Z|| + (ya Z)V
= o (Tl,),) = 0l = inf 5121 = (v — AT, 0), 2)
b ) 2 ZEK 2 ) b 174 )
since (T'(y,v), z) = (A" T'(y,v), 2)v- So
ha(y,v)
1 1, _ 1 _
= o (Ty,0).0) — 5l — 5 L 1z~ (u — A~ T(w DI + 1y - oA~ T, )
a’ 2 L -1
= ST )~ iy — aA Ty, )

Setting yx = Px(y — aA™'T(y,v)), we have then

o? 1 B
ha(y,v) = 7||T(y,v)||2v' - 5lly—aA "T(y,v) — yxlly

1
ha(y,v) = —a(T(y,v), yx —y) = Sl - ylls-

O

Remark 2.4. We may relate this function A to the classical conjugate functions. Let us
call § = —aT (y,v) for a while:

) 1
ha(y,v) = sup |(5,z = y) = 5ll2 — yIIQ] ,
2€EK

1 3 3 1
= —§||y||2 — (¥,y) + sup [(y+Ay,Z) - §IIZIIQ] :
2zeK

= =5l = (G.) + sup (5 + Ay, 2) = w(2)].
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where 1(2) = 3||2]|* + 1k(2) is convex. So we get
* 1 2
ha(y, v) = ¥"(Ay — aT(y,v)) = S llylI° + a{T(y, v),y)

that is

i 1 o?
h’a(ya U) = w (Ay - OKT(y, U)) - _||Ay - aT(y: v)”%/" + _||T(ya U)“%/'a
2 2

where 9* is the conjugate function of ¢ (see [8] for example).

Theorem 2.5. If the operator T is Fréchet-C! then h, is Fréchet-C' and

e, (y, v)

=) AT = | () = el o) A AU = Py - aA~ T (),
where [T'(y,v)]* is the adjoint operator of T'(y, v).

Proof. We know that o : V — R such that o(y) = 2d% (y) = 3||(I — Px)(y)||% is Fréchet -
C' and o' = I — Px. (This is a consequence of Moreau-Yosida approximation theory: one

can refer to [3, p. 67] for more details). So h, is Fréchet-C' since T is.
Let us fix (y,v) € V x U and compute first (Vyhqa(y,v),2) for z € V.

As
hal0) = 5 [, DI — By — AT (y, )]
then
(Vyha(y,v),2) = & (T(y,v), T, (y,v)z),,
— ((I — Pg)(y — aA"'T(y,v)), 2z — ozA_lT;(y, v)z))v
= o? (AT (y,v), T, (y, v)z>V,V,
- <A(I — Pg)(y — aA 'T(y,v)),z — aAflT;(y, v)z)>v,,v
= o’ (T, (y,v) A" T(y,v), Z>v',v
— ([I = aA ' T (y, v)]*A(I — Px)(y — aA T (y,v)), z>V,,V.
So
Villh’a(ya ’U)

= T, (y,v)* AT (y,v) — [I — a(A™'T,(y,v))* ]A(I = Px)(y — aA™"T(y, v)). (2:6)
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Similarly one computes V,ho(y,v):

<Vvha(y7 U)a u>U’,U = a2 (T(y7 U)a Tqi(ya v)u)V’
— (I = Px)(y — aA ' T(y,v)), —aA T, (y,v) u)),,
= 0 (AT (y,0), T, v)u)y s
+a{A(I — Px)(y — aA"'T(y,v)), AT, (y,v) u)>v',v
= o’ (T, (y,v)*N"'T(y,v), u>U,,U
+ a{[AT (y,v)]*A(I — Px)(y — aA™"T(y,v)), u>U,,U.
Finally we get
Vvha(ya U) = QQTé(ya U)*A_IT(y, U) + O“/Tqi(y: U)*(I - PK)(y - O./A_IT(y, U)) ;

1.e.

Voha(y,v) = oy (y,v)* [y — Px(y — aA™' T (y,v))]. (2.7)

Theorem 2.6. For any o« > 0, the three following assertions are equivalent:

(1) ha(yav)zoa ZIEK; UEUad'
(i) (T(y,v),z—y)>0 VzeK, ye K, v e Us.
(111) Yy = PK(y - OJA_IT(y, U))a vE Uad-

Proof. We show (ii) = (i).
Let be v € U,q and y € K be a solution of

(T(y,v),z—y) >0 VzeK.

Then for any z € K and o > 0, we get

1
—oAT(y,v),2—y) — 5 ll2 = yl* <o,

so that h,(y,v) < 0. As y € K, we already know that hs(y,v) > 0 and we get (i).
Conversely: (i) = (ii).

1
ha(y,’()) =0— —OZ<T(y,’U),Z - y) - 5“2 - y||2 < O: Vz € K.
Let be t €]0,1[ and set z = (1 — t)y + t& with £ € K. we obtain
t? 2
—at(T(y,v),§ —y) = SlIE~yl" < 0.

Dividing by ¢ and letting ¢ tend towards 0 implies

Vf €K a(T(y,v),§ - y) > 0:
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i.e. (ii) since a > 0.
At last, it is clear that (ii) is equivalent to (iii) since (ii) is equivalent to
(AT (y,v),2—y),, >0 VzeK,
that is
(y=(y—aA T (y,v),2—y), >0 VzeK.

The characterization of the projection yields that

y = Pr(y — aA T (y,v)).

Finally, we have proved that problem (P) is equivalent to
minJ(y,U), ha(yav) :07 yEK? CAS Uad (Pa)

where h, is C! but not convex and a > 0.
We end this section with a lower semi-continuity result for h,. More precisely

Theorem 2.7. Let y, be in K and assume the operator v — T (y,,v) is strongly con-
tinuous at the point v, € U, then the function v — ha(yo,v) is weakly continuous at
Vp-

Proof. Consider a weakly convergent sequence v, — v, and a > 0; Theorem 2.3 gives

ha(yoa Un) = _<aT(yoa Un)a Zn — yo) - |Zn - yo”2

§|
where
Zn = P (Yo — @A T (Yo, v)) = 20 = P (Yo — aA™ T (1o, v,)).

(since T(yoa Un) — T(yoa UG)); 50

. . _ 1 _
lim ha(ymvn) = lim - <T(y07vn)7zn - yo> - §||Zn - yo”2 9

n—-+00 n—-+00

) 1
lim ha(yo: Un) =~ (T(yo, Uo)a 2o — yo> - 5”20 - ?10”2 = ha(yoa UO)-

n——+00

3. Classical Mathematical Programming Approach

In this section,we suppose that J is differentiable (in the Fréchet sense). Problem (P,)
appears to be a classical mathematical programming problem where the functions are
smooth and there are no inequality constraints. So we are going to see how general
mathematical programming methods in Banach spaces can be adapted here. Let us recall
a result mainly due to J. Zowe and S. Kurcyusz [16]. We consider real Banach spaces
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X,Y; let C be a convex closed subset of X and M a closed cone of Y with vertex at 0.
We deal also with:

f X = R, Fréchet-differentiable functional and
g: X — Y continuously Fréchet-differentiable.

Now, let be the mathematical programming problem defined by:
min{f(z) | g(z) € M, z € C}. (3.1)

We suppose that the problem (3.1) has an optimal solution that we call Z, and we introduce
the conical hulls of C' — {z} and M — {y}:

CZ)={z€X |IXN>0,3ceC, z=A(c—1T)},
My)={z€Y|3IN>0,3Ce M, z=(— My}

One may now enounce the main result about the existence of Lagrange multipliers for
such a problem.

Theorem 3.1. Let T be an optimal solution for problem (3.1) and suppose that the fol-
lowing regularity condition is fulfilled:

g'(@)-C@) - M(y(x) =) . (3-2)

Then a Lagrange multiplier u* € Y' exists such that

Vze M (u,z)yy =0, (3.3)
<M*7 g(-f»y',y = 07 (34)
f'(@) —p*od'(z) € O(2)", (3.5)

where AT = {z* € X* | (z*,a)x x> 0, Va € A}.

Remark 3.2. A classical regularity condition to ensure the existence of Lagrange multi-
pliers for such problems is one of the following:

either Z € Int C' and ¢'(Z) is surjective
or, there is some x € C(z) such that ¢'(z)x € Int M (g(x)).

These conditions are not fulfilled when the considered interiors are empty (which happens
quite often). The so-called Zowe and Kurcyusz regularity condition (3.2) is a weak variant
and allows to get (classical) Lagrange multipliers even if the previous regularity conditions
are not satisfied. Indeed, if (3.2) is fulfilled then the linearizing cone of the feasible set at
Z is included in the sequential tangent cone at T and therefore Lagrange multipliers exist.

Let us apply this formalism to our case with X =V x U, Y =R, f=J, g=h,, C=
K x Uyq and M = {0}. We set z = (y,v) and Z = (y*,v*). In our setting condition (3.2)
becomes

h’la(y*a U*) ) C(y*v ’U*) =R (36)

Applying the previous general result leads to
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Theorem 3.3. Let (y*,v*) be an optimal solution for problem (P) and suppose that (3.6)
is fulfilled.

Then, there exists \* € R such that
J (y*,v*) = Nh(y*,v*) € C(y*,v")™,
i.e.

Vze K (V,Jy",v") = X'Vyho(y",v"), 2 —y") >0, (3.7)

v =

Vo € Usg (Vo (y",v") = NViho(y*,v7), v — v")p iy > 0. (3.8)

The regularity condition involves the derivative of h, at (y*,v*) so we compute it:
Lemma 3.4.
Rl (y*,v*) = a T(y*,v*) € V.
Proof. We know that y* = Pg(y* — aA~'T(y*,v*)) because of Theorem 2.6. So
(I — Pg)(y* — aA™'T(y*,v%)) = —aA™'T(y*,v"%).
Using Theorem 2.5 we get: V(y,v) € V x U

(ha (", 0"), (y,0)) = & (T(y*,v*), T'(y", v") (Y, v)) v
+a (AT (Y5 v"),y — aA™ T (v, ") (y, v))v
= o’ (T(y",v"), T'(y", v") (y,0))y»
- (T(y*,v"), T'(y", ) (Y, )y + o (AT (y",0%),9),, -

Let us write the regularity condition (3.6). It precisely means:
Vi€ R, X >0, Jy € K such that Aa (T'(y*,v"),y) = t. (3.9)

We remark that the above condition does not depend on the set U,;. Nevertheless it is
quite difficult to ensure and we think that most of time it not useful since it cannot be
fulfilled. Let us give a simple example which is the case of obstacle problem.

Let 2 be a bounded open subset of R* (n < 3) with a smooth boundary. We set V = H}(Q)
and U = L?(Q).The isomorphism A is equal to —A+1 (where A is the laplacian operator.
We define T as: T'(y,v) = —Ay —v — f where f € H™'(Q2). T is of course a C'-operator
from H}(Q) x L*(Q) to H ().

Weset K ={yeV |y>0ae in Q} and & = T(y*,v*) = —Ay* —v* — f. Itisa
classical result (see [10, 5] for instance) that T'(y*, v*) > 0 a.e. and (T'(y*,v*),y*)v+v = 0.
Condition (3.9) becomes

Vit € R, 3A >0, Jy > 0 such that Aa (T'(y*,v"),y) =t.

This is obviously impossible for ¢ < 0.
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Remark 3.5. Lemma 3.4 gives the relation between h, and 7" when the pair (y,v) is so-
lution of the variational inequality i.e. hq(y,v) = 0. We get precisely T'(y,v) = éh’a (y,v).

The previous analysis shows that is hopeless to get “classical” Lagrange multipliers that
satisfy an optimality system as (3.7)—(3.8). Indeed, even a quite weak regularity condition
cannot be satisfied. One cannot use the general results of mathematical programming
theory. So we are going to use other techniques to get what we still will call Lagrange
multipliers; however these multipliers will satisfy more restrictive optimality systems.

4. The penalty method

4.1. Penalization of (P,)

We have underlined, it is hopeless to expect a “classical” optimality system as the previous
example shows it; however we are going to prove there exists some “weaker” optimality
conditions via a penalization method.

Let be (y*,v*) € K x U,q a solution of (P), and consider the following problem (PZ)
which is a penalization of problem (P,).

inf J,,(y,v), Vy € K, Yv € Uy (P2)
with
1 e 1 .
n(y,v) = I (y,0) + nha(y, v) + Slly = ¥°IIV + 5llv = o715

For a sequence ¢, — 40 there exists by Ekeland’s variational principle an element
(Yn, vn) € K X Ugq such that

1 . 1 . ,
T (Yns vn) + 1ha(Yns va) + 5llYn =y 15+ llon = Iz < inf (Py)+en

Y—Yn
UV — Uy

1 * 1 *
< J(ya U) + nha(ya U) + §||y -y ||%/ + 5“,0 -V ”%] V(y,’U) € K x Uad-

and

1 1
J(yn, Un) + nha(ym Un) + 5”2/11. - y*“%/ + §||Un - 'U*“?] —&n

VxU (4_1)

Theorem 4.1. Assume (H) and one of the following:
(1)  Either, y — T(y,v) is strongly monotone uniformly with respect to v € U, i.e

>0 (T(y,v) —T(z,v),y—z) > gHz —yll} Vy,z€ K, Yo € Uy (4.2)

and o > v 1,
(2)  Or T is weakly-strongly continuous with respect to both variables y and v i.e.

Yo =y and v, = v = T(yn,v,) = T(y,v) . (4.3)

Then, the sequence (Yn,v,) strongly converges to (y*,v*) in V x U.

Moreover limy, s 1o 1+ ho(Yn, v) = 0.
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Proof. With (y,v) = (y*,v*) € K X U, it follows from (4.1)
1 *||2 1 * |2
0 < nha(ynavn)+§||yn_y ||V+§||'Un_v 15}
Yn — y*
Uy — UF

If the cost function J : Y x U — R is convex, continuous and Gateaux-differentiable we
obtain

(4.4)
S J(y*av*) - J(ynavn) +5n

VxU

1 . 1 .
0 < nha(ynavn)+§||yn_y ||%/+§||Un_v ”?]
Yn — Y Yn —Y"
Uy — U* Up — U*

It follows that the sequences {v,} and {y,} are bounded. Therefore there exist a weakly
convergent subsequences of {v,} and {y,} (still denoted {v,} and {y,}) such that

(4.5)

+éen
VxU

< 1wl \

VxU

Up =0 E Uy and y, =~y € K. (4.6)
Moreover we see that
ha(Yn,vn) — 0 as n — +o0. (4.7)
Let us detail the two different cases occurring in the theorem.

(1)  We use assumption (4.2) (i.e the strong monotonicity of 7" with respect to y for any
v) to prove that y, strongly converges to y; we get

14 _ _ _
0 S §||yn_y”2 S (T(yn,vn)—T(y,vn),yn—m

[07% _ _ _ _
0 < 7llyn—yll2 < = AT Yy Vn)s T — Yn) — T (G, 0n), Y — T)

(av —1)

2 ||yn - :U”2 S ha(yna Un) - a<T(y: vn), Yn — g>

Moreover we assume that o > v~1. As the mapping v — T'(y, v) is strongly continuous for
any y € K (assumption (2.3)) T(y,v,) strongly converges to T(y,v). As ha(Yn,vn) — 0
as well, we finally get the strong convergence of y, toward .

As the operator T satisfies (2.1) and (2.2), h, is (strongly) continuous with respect to y
and weakly continuous with respect to v because of Theorem 2.7. Then using relation
(4.7) we get

0= lm hg(Yn,vn) > liminf he(yn, vn) > ha(y,v) > 0.

n—+o0 n—+oo
Thus, the pair (7, 0) is feasible for (P,).
(2) We assume (4.3) now. As z, = Px(yn — aA™'T(yn, v,)) we know that

20 = gll = 1P (g = &A™ T (g, ) = Py
< allT (g va)| < M.



340 M. Bergouniouz, H. Dietrich / Optimal control of problems

since (yn, v,,) weakly converges to (7,7) and T is weakly-strongly continuous. Therefore
there exists a subsequence of z, (still denoted in the same way) weakly convergent to
some Z € K. In addition the characterization of the projection operator yields that

(yn — AT (Y, Vp) — 20y 2 — zn) < 0 VzeKkK.
Setting z =y, € K we get

1 1
_”Zn - yn||2 < - a<T(ym Un)a Zn — yn) - _||Zn - yn||2 = ha(ynavn)-
2 2

So (4.7) gives the strong convergence of z, — y, to 0 and Z = . Moreover as
(Yn — 20,2 — 2n) < T (Yn,Vn),2 — 2n) VzEK
and T is weakly-strongly continuous we finally obtain
0<(T(g,9),z—7) Vz€eK.
Therefore (y,v) satisfies hq(7,v) = 0.

So in both cases (7, ) is a feasible element of (P). Then from (4.4) we obtain

: 1 * 1 * * ok — =
0< Tlim |1 ha(n, va) + 5llgn = y7lIy + Sllon =075 | < J @7 07) = J(g,0) <O

n=+oo
Finally
Yn =Y =7, v, = v* =0 strongly , and n - ho(Yn, vs) — 0. (4.8)
U

Now we set first order optimality conditions for problem (P?) (though the pair (y,,v,) is
only an “e,-minimizer” for this problem). Then we shall pass to the limit as n — +o0.

By (4.1) it follows with y =y, +ts, s € K —y, and v =v, +tr,r € Uyg — v, and t > 0

J(yn + tS, Un + tT) - J(yna Un) +n [h'a(yn + tS,Un + t?“) - ha(ynavn)]

()

Dividing by ¢t and letting tend ¢ — 0, this implies with s = 2z — y,,, 2 € K, and r =
U — Uy, U € Uyq, the inequality

(7o (220) ) (o), (S22
(ant —o) (20 += (G 20)

1 *
+ S2Is I + HA G — y7). )

1
+ §t2||7°||2 + t{Ay (v, — V%), r) + ent > 0.

VxU

(4.9)
> 0

VxU
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for all (z,u) € K X Ugq.

As we assumed that the operator T : V' x U — V' is continuously Fréchet-differentiable,
Theorem 2.5 gives, with

Zn = Prc(yn — @A™ T (Yn, vn)) (4.10)

(v (;2)) = (e (20 ms)

+ <aT(yn7 Un)a © = yn> + <A(Zn - yn)a 2 yn>

So with (4.9), we get

<J'(yn, n) = 1T (Yny V) (Zn = Yn), (Z - yn) >

U — Up

+ (nA(2n = Yn), 2 = Yn) + 1T (Yns Vn), 2 = Yn) (4.12)

{2 ()= G20)

and for u = v, € Uyq with p, := n(z, — y,) from (4.12)

> 0

VxU

Vze K <Jg’/(yna Un) - aTg;*(yn? Un)pn: = yn> +n (aT(yn, Un), %= yn)

(4.13)
+ <A(yn - y*), Z— yn> +n <A(Zn - yn)a Z = yn) + 5n||z - yn” 2 0.
For z = y,, € K it follows from (4.12)
Vu € Uad <J1,;(yna Un) - O,/T;)*(yn, Un)pn: u— Un> + <AU(U’IL - U*), u— Un>
(4.14)

+enllu —v,|| > 0.

4.2. Passage to the limit

We would like to pass to the limit in the previous inequalities. Beginning with relation
(4.14) we realize that all the n-quantities are either bounded or convergent except p,. So
we first give an estimation on p,,.

Theorem 4.2. Assume (H) and one of the following:

(1)  Either (4.2)
(2)  Or T, is coercive in the following sense:

A(p,v) >0, Y(y,v) € K X Uyg, Yz €V

, v (4.15)
st lzlly 2 n 5 (Ty(w,0)2,2) 2 Il

and o > v L.
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Then, there exists k > 0 such that

VneN |pullv < &.
Proof. Let us take z = 2z, = Px(yp — aA™'T(yn, v,)) in (4.13); this gives
<J;(yn, vn) - naT;*(yna Un)(zn - yn)a Zn — yn> +n (aT(yn, Un), Zn — yn>

+n<A(zn _yn)azn_yn) + (A(yn_y*)azn_yn) +5n||zn_yn” 2 0.

AS ho(Yn, ) = =T (Yn, Vn), 20 — Yn)— 2|12n — Ynl|* (Theorem 2.3(iii)) we get
(T Yns Vn)s 20 — Yn) — Mg (Y )
= llzn = vall” + A = ). 70— ) (4.16)
F AW =)y 20— Yn) Fenllzn =l > 10T, (Yn, v0) (20 — Un); 20 — n)-

(1) The operator T is strongly monotone with respect to y so (see Shi [12])

<T;*(y,u)z, z> > g||z||2v VzeV Wy e K, Ve Up.
With he(Yn, v,) > 0 relation (4.16) gives
(s 00), 20 = 0 )+ Sl =l + (AW = 57), 20 = o +Enllzn = vall = n2 |20 =i

So
% n
”ng;(ynavn)” +lyn =y || +n > 5(”04 — D20 = yall-

As the left-hand side quantities are uniformly bounded with respect to n we get the desired
result (analog to Shi [12] and Wenbin and Rubio [14]).

(2) We now assume (4.15). Relation (4.16) gives

o <TZ§ (yn’ Un) (pn)apn>
A

. 1
1Ty s v )| + Y — [ + €0 > —5llpall (4.17)

If p,, is not bounded, one can suppose (up to a subsequence) that ||p,|| — oo and relation
(4.15) is true for n large enough. Relation (4.17) gives

v—1
2

. o
1y W v )l + Ny — 47|l + 60 = [[nll,
and we get a contradiction. O

Then one can extract a subsequence of {p,} (still denoted {p,}) weakly convergent to-
wards p* as n — +o0o, and by (4.14) and « > v~ we obtain

<J;(y*,v*)—aT;*(y*,v*)p*,u—v*> > 0 Vu€eUy (4.18)
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From (4.8) we know that n - ha(yn, v,) — 0, so that (with (2.5))

1
— (0T (g 00), ) = Gl = gnll =0 a5 0> oo,

Since p, — p* and z, — y*, it follows that the following equation for the adjoint state p*

(T(y*,v"),p") =0 (4.19)
is fulfilled (one may compare to the results of Shi [12]).

It remains to pass to the limit in relation (4.13). Let us precise this point.

Let A:V x U — 2" be the following set-valued mapping

{z € K|[{aT(y,v) + Alyx —y),z—y) <0} if (y,v) € K X Uy

0 else. (4.20)

Aly,v) = {

where yx = Px(y — aA™'T (y,v)).

For (y,v) € K X Uy, y € A(y,v) so that A(y,v) # 0 and dom(A) = K x U,q; moreover
the set A(y,v) is convex and closed. If (y*,v*) € K X Uy, is the solution of (P), then
y* = Pr(y* — aA"'T(y*,v*)) yields

Ay, v") = {z € KT (y*,v"),z —y") <0, }.
On the other hand we have seen (Theorem 2.6(ii)) that
Vze K (T(y",v"),z—y") >0,
so that we get
A(y*,v*) ={z € K|(T(y*,v"),z — y*) = 0}. (4.21)

Moreover, one can easily see that relation (4.13) implies that

Vz € A(ym Un) <J;;(yn7 Un) - ozT;*(yn, Un)pm &= yn>

+{(AYn —Y*), 2 —yn) tenllz —uynl| > 0.

(4.22)

To study the asymptotic behavior of this inequality we need some continuity properties
for A.

We recall (see Berge [4] or Aubin-Frankowska [1] for example) that the inf-limit of a
sequence of non empty subsets {A,} of X (where X is a Banach space) is defined as
following:

ligll&fAn ={reX| Hz,}:2,€ A, and z, -z}

(Note that it is also called the Kuratowski-Painlevé set convergence). The set-valued
mapping A : V xU — 2K is said to be lower semi-continuous (l.s.c.) at (y*,v*) € K xUpg
if

Aly",v") C lim inf A(yn, vn)
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holds for every sequence (yn,v,) € K X Uy with y, — y* and v, — v*. Since the set
A(y*,v*) is closed, it follows in addition that

A(y*, v*) = lim inf A(y,, vy,)-

n—-+00

Consider now (4.22) and let n — +o0; then we obtain

Vz € liminf A(y,, v,), <J;(y*,q)*) _ aT;*(y*’ v)p*, 2 — y*> > 0. (4.23)

n—+oo -

Finally we get

Theorem 4.3 (Weak Variant). Suppose that assumptions of Theorems 4.1 and 4.2
are fulfilled; let (y*,v*) be an optimal solution of (P). Then, there exists ¢* = a p* €V
such that

Yu € Uyqg <J;](y*,v*) — T;*(y*,v*) q*, u— v*> > 0, (4.24)
Vz € liminf A(y,v J(y* ") = T (y*, ) ¢, z—y*) > 0, 4.25
Jminf Aw,v)  (000) =T 6 2 y) > (4.25)

(T(y*,v"),q") =0. (4.26)

If we suppose that A is L.s.c. at (y*,v*) we obtain a strong variant of the previous result.

Corollary 4.4 (Strong Variant). Suppose that assumptions of Theorem 4.3 are ful-
filled; let (y*,v*) be an optimal solution of (P) and assume that A is Ls.c. at (y*,v*).
Then, there exists ¢* € V' such that relations (4.24) and (4.26) are satisfied with

Vze K st (T(y*,v"),z—y"y=0

1/ % % 'x( x % * * (427)
<Jy(yav)_Ty (yav)qa Z—?J)EO

These results are to be compared with those obtained by Barbu [3] where the operator T
is defined as in Example 2.1 by

VeV (Ay,y—2z)+o(y) —¢(z) <(f +Bv,y - 2),

and A is a linear continuous operator from V' to V' and U,y = U. The cost functional J
is defined as

J(y,v) = g(y) + h(v),

with appropriate continuity, convexity and coercivity assumptions on g and h (we refer
to [3, p.150]). Then, we get:

Theorem 4.5. Let (y*,v*) be an optimal pair for problem (P). Then there ezists p* € V
such that

—A*p" —n € dg(y"), (4.28)
u* € Oh(B*p"). (4.29)

where 1 is the weak limit of a sequence V2¢®(y.)p. in V' with p. — p* and y. — y*.
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Thus, the multiplier p* is not completely “known” since it depends on the choice of an
approximation ¢, of ¢ and on the approximated quantities y. and p.. This comes from
the approximation method to get the system. Instead of a penalization of the whole
state (in)equation as we have done (via the h, function), this author had rather used an
approximation ¢, of the ¢ function to get an equation approximating the inequation.

In our setting, ¢ = 1x and g and h are differentiable, but A is not necessarily linear.
Anyway, relations (4.28) and (4.29) become
—A*p* —n=Vyg(y*), v = Vh(B*p") .

We can see (and it is a general remark) that informations are less precise with Barbu’s
approach. Indeed, taking into account general problems do not allow to use properties of
particular cases. We shall meet this problem again when we shall investigate the linear
obstacle problem in the next section.

5. Applications and Examples
5.1. Comparison with Rubio-Wenbin results

Let us compare the results of the previous section to those of Rubio and Wenbin in [14].
Following these authors, we define the set

W={eV |3 e|JMK —z), & —¢

A>0
and limsup n {7 (Yn, vn) + A2n — Yn), &) < 0}

n—s+00
Since
n{aT (Yn, vn) + Mzn — Yn), & — Yn) =
AT (Yn, vn) + Mzn = Yn), € = 2n) + (0T (Yn; V) + Azn = Yn), Pn)
and

n—0o0

it is easy to see that the passage to the limit in relation (4.13) gives
VEeW <J;(y*,u*) — Ty, v") q*,5> > 0. (5.1)

Proposition 5.1. We have

UMK = z.) N0 (2 — K)] C W

A>0

Moreover, if the map y — (K —y) N (y — K) is lower semi-continuous at y*,

UNE -y)n @y -K)]cw.

A>0
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Proof. Let & be in (J,, A[(K — 2,) N (2, — K)] and &, € \[(K — 2,) N (2, — K)] such
that & — & As &, € [Jyog A(K — 2z,) it remains to show that

lim sup n (&1 (Yn, vn) + A(2n — Yn), &n) < 0. (5.2)

n—+o00

As z, = Px(yn — aA YT (yn, vn)), the characterization of the projection on K yields
Vze K {aT(Yn,vn) + A2z — Yn), 20 — 2) < 0.

As &, € A\y(2z, — K) we may choose z = 2, — f\_::, € K in the previous relation to get

Then it is clear that (5.2) is satisfied and £ € W.
The end of the proposition is obvious since z, — y*. O

This proposition means that our results include those of Rubio and Wenbin [14]. There-
fore, they can be applied in all the cases given as examples in the cited paper.

5.2. Lower-semicontinuity criteria for A

We are going to precise a little more the set-valued application A4 and give some cases
where one has the desired lower semi-continuity. To simplify the presentation we define
the functional ® : V x U — V as

®(y,v) = — ([Px(y — AT (y,v))] = [y — aA™' T (y, v)]),

LI

so that

Aly,v) ={z € K[ (®(y,v),z — y)y < 0},
if (y,v) € K x Uyg. Note that ® is continuous and ®(y*,v*) = A~'T(y*, v*).
Let us call F'and G : V x U — V the following set-valued applications

F(y,v)=K -y, and G(y,v)={z€V | (2(y,v),2), <0},
so that
V(y,v) € K x Uga, A(y,v) = [F(y,v) N G(y,v)] + y.

Lemma 5.2. The set-valued applications F' and G have conver and closed values. More-
over they are lower semi-continuous at any (y,v) € K X Uyq such that ®(y,v) # 0.

Proof. The first assertion is obvious. Let us show now the lower semi-continuity of F'
and G.

Let be (y,v) in V x U and define a sequence (y,,v,) of V x U converging to (y,v); choose
z € K —y. Then, it is clear that the element 2, = z + y — y,, converges to z and belongs
to K — y,,. Therefore F' is lower semi-continuous at (y,v).

The lower semi-continuity of G is not so obvious. Let be z € G(y, v).
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. If (®(y,v), 2);, < 0 then the continuity of ® implies (®(yn,vy),2); < 0 for n large
enough so that one can choose z, = z.
) If (®(y,v),2);, =0 then o, = (®(yn,vn), 2); converges to 0. If (y,,v,) # 0 we
set
D(Yn, vn)
Zn =2 — ||
1D (Y, o) |2

and z, = z otherwise. So (®(yn, vn), 2n)y is either equal to 0 or to o, — || it is
less than 0 in any case; s0 z, € G(Yn, Un)-

D (1, vp)

12 (yn, vn) |2
So z, converges to z in V' and the lower semi-continuity of GG is proven in this case. [

If ®(y,v) # 0 then ®(y,,v,) # 0 for n large enough and remains bounded.

Now we may conclude using a result of Penot [11, Proposition 2.3 and Corollary 3.3] on
the persistence under intersection that we recall:

Proposition 5.3. Let F' and G be two convex-valued multifunctions from V x U into V
which are l.s.c. at (y*,v*) and assume that F has a convex graph, is closed valued and
that int F(y*,v*) is non empty.

Then, if G(y*,v*) Nint F(y*,v*) is nonempty, F NG is l.s.c. at (y*,v*).

Before we apply this result, we may notice that it is “symmetric” and one could replace
F by G (and conversely) in the previous proposition. However, in our case

F(y*,v*) Nint G(y*,v*) = {z € K|{T(y*,v"),z — y*) < 0},

is always empty. This justifies the choice of F' and G.
We may now enounce the following

Theorem 5.4. Suppose that assumptions of Theorem 4.3 are fulfilled and assume that
K has a nonempty interior; let (y*,v*) be an optimal solution. Then, there exists ¢* € V
such that relations (4.24) and (4.26) are satisfied with

. either T'(y*,v*) =0,
° or

Vze K s.t. (T(y*,v"),z—y") =0

1 (% % '/ % % * * (5'3)
<Jy(y 0°) =T, (y",0") ¢ z—y>20.
Proof. If T'(y*,v*) # 0, then ®(y*,v*) # 0 and Lemma 5.2 gives the lower semi-continuity
of F and G at (y*,v*). Moreover F is closed-valued and its graph is convex since K
and U,y are convex. In addition if the interior of K is nonempty then the interior of
F(y*,v*) = K —y* is nonempty as well. So Proposition 5.3 gives the lower semi-continuity
of FNG at (y*,v*). It is easy to conclude that A is Isc at (y*, v*) as well. O

Remark 5.5 (Finite Dimensional Case). As usual, hypothesis are simplified and
much easy to ensure in the Finite Dimensional Case. As there is no difference between
the strong and the weak convergence, the continuity of 7" yields the strong continuity.
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On the other hand, one can use the previous results easily since convex sets with nonempty
interiors are more easy to describe in finite dimensional spaces. This in particular the
case for the obstacle problem where K is a convex-cone of the type

K={yeR"|[y>4}.

This set has a nonempty interior in R" (but unfortunately the interior of such a set is
empty in the infinite dimensional space L?(2) for example).

5.3. The Linear Obstacle Problem
Let us present the linear obstacle problem case as given in Mignot-Puel [10] as an example.
Let © be an open, bounded subset of R* (n < 3) with a smooth boundary 92. We set

V = HXQ), U = L*) and T(y,v) = Ay — v — f where A is the continuous linear
operator from H}(Q) to H™'(Q) defined by

Ay = - Z Or; (aij(2)0z;y) + ag(z)y with

2,j=1

aij, a0 € C2(Q) for 4,7 =1,...,n, inf{ap(z) | z€Q} >0 (5.4)

Zaij(x)fz’fj > 526? Vz e QVEER,§ >0,
i=1

ij=1

and f € L?(Q). The compactness of the injection of H}(Q2) in L?(Q) implies that (2.2) is
satisfied. The linearity of A gives (2.1). Moreover is we choose

1
J(y,v) = 9 ly — yd”%z(n) + pllv — Ud”%m)) )

where yq € L?(Q), ug € L?(Q) and p > 0, assumption (2.3) is fulfilled as well. So (#) is
satisfied. Moreover, the H'(Q)-ellipticity of A yields (4.2).

Let us consider
K={ycHNQ) |y> ¢>0a.e. in Q}, (5.5)

where ¢ € H!(Q). This set is a non empty, closed, convex subset of H, (). Unfortunately,
the H'(Q)-interior of K is empty except for n = 1. So we would like to choose another

suitable state-space, using the regularity properties of A which is an isomorphism from
H?(Q) N HX Q) to L*(Q).

So, we set from now V' = H2(Q)NH}(Q) which is an Hilbert-space continuously embedded
in C°(Q), since n < 3. As the interior of K is non empty for the L°°- norm, it is nonempty
as well for the V-norm. Moreover, assumption (#) is still fulfilled.

Nevertheless it remains a difficulty: A is (generally) no longer V-elliptic. We may conclude
however. We precisely need the results of Theorems 4.1 and 4.2. As relation (4.2) seems
to be impossible to ensure, let us focus on (4.3). The compactness of the injection of
L*(Q) in H7'(Q) (and the continuity of the injection of H~*(Q) in (H2(2) N HX(Q))" )
yields this property immediately. So results of Theorem 4.1 are still valid. In Theorem
4.2 we have seen that p, could be bounded. We may prove this also if U,g = L*():
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Lemma 5.6. If U,y = L?(2), then the result of Theorem 4.2 is still valid.
Proof. If U,y = L*(0), relation (4.14) with u = v, + v gives
Yo € L2(Q)  (p(vn — vq) + vy — 0%, V)r20) — @ Py Vv + Enllvllz2@) = 0.

As the n-quantities (except p,) are bounded, this implies that p, is bounded in L?(£2)
independently of n and therefore weakly converges to p* in L?((2). O

We can conclude that Corollary 4.4 may be applied. Let us precise the notations: we set
E=Ay"—f—v" and Ky ={2z€ K—y" | (5*,,2)]:2(9) =0}.

We may note that (£*,y*) = 0 (this is a genuine property of the obstacle problem) so that
we get K, = K N (y*)* . This gives

Theorem 5.7. Assume U,y = L*(Q) and let (y*,v*) be an optimal solution of (P). Then,
there exists ¢* € L*(Q) such that

¢+ p(v*—vg) =0, (5.6)
FEither
Ay  —v* = f =0, (5.7)
or
(&, Q*)Lz(n) =0, (5.8)
Vz € Ky (V" —ya— A" q",2) o) > 0. (5.9)

Let us compare this result with the one of Mignot and Puel [10]. Let us set
Sy ={z2€L*Q) | (€, 2) 2 =0 and 2 >0o0n {y"=01}}.
In [10], these authors obtain the following

Theorem 5.8. Assume U,y = L*(Q) and let (y*,v*) be an optimal solution of (P). Then,
there erists ¢* € L*(Q) such that (5.6) is satisfied and

(&, @) =0, andq >0on{y =0}, (5.10)

Vz € Sy (V" = ya— A" ¢",2) 20y = 0. (5.11)

As K, C Sy we see that we have lost informations between (5.9) and (5.11). We cannot
avoid it because of the (general) method we have used. From the very beginning (in the
penalized system) we have been considering elements of K; so it is hopeless to get an
optimality system dealing with elements which would not belong to K. Another lack
of information concerns ¢*. We have lost the property that ¢* > Oon{ y* = 0 } .
Once again, this comes from the fact that we have used a quite general method for quite
general problems and we have not been taking into account all theparticular properties
of the linear obstacle problem.
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Remark 5.9. Though the exact computation of the h, function is not useful, since it
does not appear in the final optimality system, we may precise it in the linear case, for
T(y,v) = —Ay — f — v for instance. Of course, it depends on the norm of the space V.
If V.= H,(Q) is endowed with the norm ||y||1,, = [[Vy|lz>@) we see that A = —A =T,
So, using Theorem 2.3(ii), we get AT (y,v) =y — (=AY (f +v) and

halr0) = 5 [02lly = (=AY + DI, = (1= )y +a(=A ) +2)) ]

Let us set yo = (1 — a)y + a(=A7")(f +v)) and compute d% (ya) = ||ya — yx|l;, Where

yx is the H}(Q)-projected element of y, on K. A classical calculus shows that yx is the
solution of the following obstacle problem

/ VyxV(z — yx) dx > / fa (z—yr)dzx, VzeK
Q Q

yK€K7

(5.12)

where f, = —Ay, = —Ay — a(—Ay — f — v). Finally

ha(y,v) =

e =4l — e — yxlli, | = /Q[V(ya — )P = [V(¥a — yx))* da.

DO | =
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