Journal of Convex Analysis, Vol. 6, No. 1, pp. 13-28 (1999)

Memory Effects and $\boldsymbol{\Gamma}$-Convergence: A Time Dependent Case

Anca-Maria Toader

Centro de Matematica e Aplicacoes Fundamentais, F.C.U.L., Av. Prof. Gama Pinto, 2, P-1699 Lisbon, Portugal,

Abstract: We study the asymptotic behavior of the energy functional associated to the parametric equation $\partial_t u_\varepsilon(t, x)$ $+ a_\varepsilon(t, x) g (u_\varepsilon(t, x)) =f(t, x)$, $u_\varepsilon(0, x) =u_0(x)$. Techniques of Young measures are improved in order to characterize the $\Gamma$-limit of the sequence of energy functionals in terms of the oscillations of $a_\varepsilon$. We assume some sort of independence between time and the oscillating character of $a_\varepsilon$. The example of a periodic mixture of two materials with coefficients analytic in time is presented.

Full text of the article:

[Previous Article] [Next Article] [Contents of this Number]
© 1999--2000 ELibM for the EMIS Electronic Edition