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The optimality system is given for a phase-constrained control problem governed by a linear parabolic
equation. The control may act on the boundary and the cost function may depend on the boundary
values of the final state. The optimality system follows from general results for convex state-constrained
control problems by means of the theory of convex duality, using a suitable perturbation.

1. Introduction

In this paper we consider an abstract scheme for the optimal control problem of linear
parabolic systems with phase constraints following the ideas proposed in [6] and [1] for the
optimal control of elliptic problems and similar to those used in [19] for the case of systems
governed by ordinary differential equations. We obtain optimality conditions using the
convex duality methods. To this end, we introduce a natural and versatile perturbation,
acting on the right member of the state equation, of a control problem governed by a
linear parabolic equation. Under some qualification assumption the duality scheme is
shown to be stable which yields immediately the optimality system by computing the
partial directional derivatives of the associated Lagrangian. This method provides an
alternative to methods using penalization of the state equation as in [4], although the
results obtained have the same form. However, we use a weaker constraint qualification
than in [4], [3] or [18], and our setting covers the results obtained in these papers. The
general setting considered leads us to use duality results in the framework of Fréchet
spaces (see [13], [22], and [23]). Applications are given to the case of boundary control
and/or observation (pointwise or zone), pointwise phase constraints and boundary final
cost functional. Some results of the present paper have been announced in [2]. Other
results about state constrained distributed systems can be found in [12], [11], [14], [7],
[10], [9].

2. The optimal control problem

2.1. The abstract framework

Let V, H be Hilbert spaces such that V is continuously and densely embedded in H.
Identifying H to its dual we have

VcHCV*

(each inclusion being continuous and dense). We shall denote by (-, -) the duality product
between V* and V' as well as the scalar product on H (because they coincide on H x V).
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We will consider also Banach spaces U (the control space), E; (the space of the final
states) with E continuously and densely embedded in H, the families A(t) € L(V, V™),
B(t) € L(U,V*), t € [0,T], and the convex functionals L : [0,T] x V x U — R U {400},
[:Hx E; - RU{+o0}.

We deal with the following (constrained) convex optimal control problem:

inf J(y,u) :/0 L(t, y(t), u(t)) dt + I(y(0), y(T)) (P)

subject to
%(t) + AW)y(t) = B)u(t) + £(2) ace. in |0,T] @2.1)
(y,u) € M C E(0,T) x LP(0,T;U), (2.2)

where M is a closed convex set and W (0, T) is the space

d
W (0,T) = {y € L2(0,T; V) : d—f € L2(0,T;V*)}

which is a Hilbert space endowed with the norm

1/2
) dt) :

We consider the space C(]0, T]; E1) which is a Fréchet space with the topology of uniform
convergence on compact subsets of |0, 7] and we endow the space C(]0,7]; E1) "W (0,T)
with the coarsest topology such that the injections of this space into C(]0,T]; E1) and
into W (0,T) are continuous.

Il = ([ Aol +1540)

e The space E(0,T) is a Fréchet space continuously and densely embedded in C(]0, T;
E) N W(0,T), and in W(0,T). Note that since C([0,T]; E1) is continuosly and
densely embedded in C(]0,7T]; E1) and in C([0,T]; H), and W (0,T) is continuously
and densely embedded in C([0,T]; H).

d
We denote by F(0,7) the linear space of the functions of the form ¢ — d—’:{(t) + A(t)y(t)

with y € F(0,T). Note that F(0,7) C L?(0,T;V*). We will consider F(0,T) endowed

with the finest topology which makes continuous the mapping y(-) — %()+A()y() from

E(0,T) to F(0,7). Thus F(0,T) is a Fréchet space continuously and densely embedded
in L2(0,7T;V*).

e For all y, z € V, the function t — (A(t)y, z) is measurable on |0, 7| and

sup |[A(t)]|zov,vey < +oo.
t€]0,T'|
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e  There exists & € R, w > 0 such that for all y € V and t €]0, T,

(A)y, y) + allylli > wliylly- (2.3)

e the map u(-) — B(-)u(:) is continuous from L?(0,T;U) to L?(0,T;V*) and from
LP(0,T;U) to F(0,T) where p € [2,+00] is fixed (in some applications we may have
p=+ocand f € F(0,T))

e The function [ is proper lower semicontinuous and L is a normal convex integrand
(see [21]). Thus J is convex proper and ls.c. on E(0,7) x LP(0,7T;U). We shall
assume that J is finite over M.

Note that the initial condition
y(0) =yo € H (2.4)

(or, more generally, y(0) € Hy with Hy closed convex subset of H) or the possible final
restrictions might be included in the definition of M. In this way we may consider also the
case of the systems with unsufficient data (see [16], [17]). Note also that the hypothesis J
finite over the feasible set is not restrictive since the constraints are not included into the
cost via the indicator function, but are given separately. According to [15] the abstract
problem (2.1), (2.4) has a unique solution in W (0, T) for each v € L*(0,T;U) and y, € H.
As we have W (0,T) C C([0,T]; H) continuously (see [15, page 116, Th 1.1 and Th 1.2]),
our problem is well formulated. Finally we will assume that

e for each u € LP(0,T;U) the solution to (2.1), (2.4) lies in the space E(0,T),

e for each yy € H the solution to the homogenous equation (2.1), (2.4) with v = 0,
f =0 belongs to E(0,T).

The abstract problem (P) covers a large class of parabolic systems as we shall see later.
Notice that, taking p = 2, Ey = H, and F(0,T7) = W(0,T), we obtain the “classical”
case (which is considered in [15], [3] or [4]). However, considering different spaces E; and
E(0,T) we are able to handle the case of pointwise phase constraints and boundary final
cost criterium. The last case has been partially studied in [18] (for a particular parabolic
problem with the restrictive hypothesis yo = 0).

2.2. The constraint qualification

Let us consider the linear continuous operator
T :W(0,T) x L*(0,T;U) — L*(0,T; V*)
defined by
T (y,u)(t) = %(t) + A(t)y(t) — B(t)u(t) a.e. in ]0,T.
We need the following constraint qualification assumption:

There exists a Fréchet space Z(0,7T) continuously and densely embedded in F'(0,7") such
that

Z(0,T) CR(T(M) = f). (QA)

Let us compare the condition (QA) with the condition (#') used in [4, section 3] namely:
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There exists a Banach space Z(0,T) C L2(0,T; V*) with continuous and dense embedding
such that there exists M; C M bounded in C°(0,T; H) x L2(0,T;U) with

0 € Int(7 (M) — f) in the Z(0,T) topology. (H")

A~

In this case choosing p = 2, £y = H, E(0,T7) = W(0,T) and Z(0,7) = Z(0,7) it
is obvious that (H') implies (QA). This shows that (QA) is weaker than (#'). Also,
according to [4, proposition 1.1 and remark 1.1], we obtain that (QA) is strictly weaker
than classical Slater condition.

2.3. An example of a final boundary cost criterium with boundary control
and pointwise phase constraints system

Here we will slightly generalize the case studied in [18] and we will show how to use our
general framework for this particular problem. First we state the particular parabolic
problem. Let us consider a bounded open set {2 C R which is locally on one side of its
boundary I'. We assume I' is a C* manifold of dimension n — 1. Denote @ =]0, T[x (2,

¥ =]0,T[xI. For i, j =1,...,n let functions ay, a;; € D(£2) and real number ¢ > 0 be
given such that a;; = a;; and that for all § €e R*, 2 €

Z a;j(2)&&; > chf.

ij=1 i=1

With o > 0 and yo € L*(Q), we consider the state equation given by
oy .9 Jy .
9y I e N _ 2.
ot (t,x) Z oz, (a” (x) oz, (t, ac)) ao(z)y(z,t) in Q, (2.5)

$,j=1

9y
81/A

(t, &) + ay(t, &) = u(t,§) in %,
y(0,z) = yo(z) in Q. (2.6)
The phase constraints are of the form

y(t,z) € C(t,z) for all (¢,) €]0,T] x €, (2.7)

u € Uyg C L¥ (D). (2.8)

where C(, ) is a multifunction from ]0,7] x Q into R with closed convex values, and Upq
is closed and convex. Finally, the cost functional is given by

L(y(T)) + / / Li(t,y(t.€), ult, €)) dT di (2.9)

with [; : C(Q) — RU{+o0c} lower semicontinuous convex proper and L; : R® — RU{+o0}
normal convex integrand. Note that in [18] is considered the particular case with yo = 0,
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Uyg = L*®(X) and L; does not depend on y. To see how this particular problem of
minimizing (2.9) subject to (2.5)—(2.8), fits in our general framework, we shall consider
p = oo and the following spaces: H = L%(Q), V = HY(Q), E; = C(Q), U = L*(I),

E0,T) = C(]0,T];C(Q)) N W(0,T). Define A(t) = A € L(V,V*) and B(t) = B €
L(U,V*) by

dy 0
(Ay, 2) :/Q(Za,-jaTyja—;—i-aoyz) d:c—}-oz/ry(f)z(f) dl’

1,J
for all y, z € H(Q),
(Bu, z) / u(€)2(€) T
I

Using Green’s formula we have that (2.5)—(2.6) can be equivalently written as (2.1), (2.4).
On the other hand — A is the infinitesimal generator of a strongly continuous semigroup
{S(t) € L(V*):t € [0,+00[} in V* given by

S(t)yy = Ze"\’“t@, vg)vg for all y € V*
k=1

where A (resp. wvg) denote the eigenvalues (resp. eigenfunctions) of the operator A
and vy € C*(Q) C V. Moreover, the restrictions of S(¢) to V (resp. to H) are also
strongly continuous semigroups in V' (resp. in H). For a given u € L*(X), the solution

of (2.5)-(2.6) is
y(t) = S(t)yo +/O S(t — s)Bu(s)ds

and the last integral is a continuous function on @ (see [18]), and ¢ — S(t)yo belongs to
C(]0,T],C(€2)) (see [5]). Hence y € E(0,T).

3. Duality results

Here we will briefly recall some basic results on convex duality and some recent results
taken from [13] and [23] on duality in Fréchet spaces. Let X be a Fréchet space and let
X* be its (topological) dual space. The duality scalar product is denoted by (-,-) (or,
if necessary, (-, )xx+). Let I'o(X) be the set of all convex, proper (i.e with the range in
R U {400} not identically +oc) and lower semicontinuous. The conjugate of a function
f: X - R=RU{—o00,+00} is the function f*: X* — R given by

fr(@*) = sup{(z, ") — f(z)}.
The domain of a function f : X — R is the set
domf={ze€X: f(z) < +oo}.

The indicator function of a subset S of X is given by ig(z) = 0 on S and ig(z) = +o0
on X \ S. Consider now Fréchet spaces X, Y and F € I')(X x Y). The primal prob-
lem associated to the the perturbation function F' is inf,cx F'(z,0). The dual problem is
given by sup,.cy+(—F*(0,4)). The marginal function ¢ : Y — R, ¢(y) = infex F(z, y)
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verifies ©(0) = infzex F(z,0), ¢*(y*) = F*(0,y*) and ¢*(0) = sup,.cy«(—F*(0,97)) =
SUpy«cy«(—%*(y*))- The convex-concave Lagrangian associated to the perturbation func-
tion F' is the function L : X x Y* — R given by L(z,y*) = inf ey ( F(z,y) — (y, y*)). If the
marginal function ¢ is lower semicontinuous at 0 with ¢(0) finite, then inf,cx F(z,0) =
sup,-cy+(—F*(0,4)). On the other hand the existence of solutions to primal and dual
problem with the same optimal value can be expressed via the Lagrangian as in the next
theorem.

Theorem 3.1. The following conditions are equivalent:

(i)  (zo,y5) € X x Y™ solves

F(z0,0) = 12)f{ F(z,0) and F*(0,y;) = sup (—F"(0,y"))

y* €Yy *

with F(zy,0) = —F*(0,v5);
(ii)  (zo,ys) is a saddle point of the Lagrangian, i.e. L(zo,y*) < L(zo,ys) < L(x,ys) for
all (z,y*) € X x Y™

If we modify (i) (respectively (ii)) adding the requirement F(xo,0) is finite (respectively
L(zo,yg) is finite), then another equivalent condition is

(iii) L(zo,yg) is finite and Ly ((zo,y5); (x — 20)) > 0, Ly, ((zo,y5); (v* — y5)) < 0 for all
(z,y*) € X x Y™

Notice that the directional derivatives in (iii) exist by the fact that L is convex-concave.
The next result will be very useful in the sequel (see [13]) or [23]. Observing that dom ¢
is the projection of dom F' on Y, then Proposition 3.1 of [13] takes the following form.

Theorem 3.2. Assume that R, (dom ) is a closed subspace and that ¢(0) is finite. Then
inf,ex F(z,0) = maxy-cy+(—F*(0,y*)).

4. Optimality conditions

We go back to problem (P) stated in section 2. According to [15, page 116, Th 1.1 and
Th 1.2], we have that the linear continuous operator A : W(0,7) — L?(0,T;V*) x H
defined by

400 = (G0 + 400,00

is bijective (hence it is an isomorphism between topological vector spaces). Using our
hypotheses we obtain that the restriction of A to E(0,7) (which will be denoted by
A t00) establishes also a linear topological isomorphism from E(0,7) to F(0,7) x H.
Let us consider also f = (f,0) € L*(0,T; V*) x H and the linear continuous operators
B:L*0,T; U) — L?(0,T; V¥*)x Hand Z : W(0,T) — L?*(0,T; V*) x H defined by Bu =
(B(-)u(-),0) and Z(y) = (0,4(0)). Hence the system (2.1) can be written equivalently
as (A —T)y(-) = Bu + f. Note that the restriction of B to L?(0,T;U) (denoted also
by B) is a linear continuous operator from L?(0,7;U) to F(0,T) x H. Note also that
(A—T1)(y) — B(u) = (T (y,u),0) for all (y,u) € W(0,T) x L*(0,T;U). Let us consider
the perturbation function F : (E(0,7) x LP(0,7;U)) x Z(0,T) — R U {+o0} defined by

F((y’u)’g) = J(y’u) + ic((y,U),g),
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where
C={((,u),9) e Mx Z(0,T): T(y,u) - f =g}
Note that C is a closed convex subset in F(0,7) x LP(0,7; U) x Z(0,T), hence F €
Lo((E(0,T) x LP(0,T;U)) x Z(0,T)). The control problem (P) may be written equiva-
lently as
inf F 0

(40) €01 X L2 (0.130) (5 w),0)
and the associated Lagrangian £ : (E(0,7T) x LP(0,T;U)) x Z(0,T)* — R U {+oo} is
given by

I ,u) —(T(y,vw) — @) z0m)20m) if (y,u) €D
= {+oo i (y,u) & D

where D = {(y,u) € M : T(y,u) — f € Z(0,T)} is the projection of the set C on
E(0,T) x L?(0,T;U). Note that the dual space L?(0,T;X)* = L*(0,T; X*) where X
is a reflexive Banach space and for z*(-) € L?(0,T; X*), z(-) € L*(0,T; X) the duality
product is given by

(27 (), 2() = / (2 (£), 2(8)) x-xt

(see [8]). Since V** =V and Z(0,T) C F(0,T) C L?*(0,T;V*), continuously and densely
we have L?(0,7;V) C F(0,T)* C Z(0,T)* continuously. Thus the duality scalar product
between Z(0,7) and Z(0,T)* coincides with duality product between F'(0,7") and F'(0,7)*
on Z(0,T)x F(0,T)*, and it coincides with the duality scalar product between L?(0,T; V*)
and L*(0,T;V) on (Z(0,T) x (L*(0,T;V)) too. So we can denote all these scalar products

by (-,-), and sometimes we will write formally such products (z, z*) by fOT(:E(t), x*(t)) dt.
Note also that L?(0,T;V) c L?*(0,T; H) C L?(0,T;V*) continuously and densely because
we identify the Hilbert space L?(0,T; H) to its dual space. We will consider the adjoint
operators A* € L(F(0,T)* x H, E(0,T)*) and B* € L(F(0,T)* x H, L?(0,T;U)*).

Theorem 4.1.
(i) A pair (y,u) € M is optimal for the problem (P) iff there exists ¢ € Z(0,T)* such
that

T(y,u) = f, (4.1)

J'(G,0); (y—G,u—a0) —{(T(y—g,u—1),7) >0 for all (y,u) €D.  (4.2)

(ii)  If J is Gateauz differentiable with respect to y then (4.2) is equivalent to the existence
of some p; € F(0;T)* x H such that

Ay = J,(5,9) (4.3)

(Aly = ),01) = (T(y = J,u = 0),q) + (7, 8);u — 1) > 0 (4.4)

for all (y,u) € D, in which we denote by J.,((§,4);u — @) the directional derivative
with respect to u and by Jg’/(yj, u) the Gateaux derivative with respect to y.
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Moreover, if Z(0,T) = F(0,T), or g € F(0,T)*, or Z(0,T) = L*(0,T; H) and B(t) €
LU, H) a.e., inequality (4.4) becomes decoupled in

(A(ly —9),p1 — (4,0)) > 0 and J,((7,4); u — @) + (B*(3,0),u — @) >0

for all (y,u) € D.

Proof. Let g € Z(0,T). Assumption (QA) implies that there is (y,u) € M and A > 0
such that

A_lg = T(y: ’U,) - J.

Thus F((y,u),\"tg) = J(y,u) < oo, hence A~'g € dom ¢, since the marginal function
0 :Z(0,T) — RU {400} is given, for all g € Z(0,T) by

= inf F
©(9) waresor Loz ((y,u), 9)

with dom ¢ = T(M) — f. Observe that ¢(g) = infyy ,yerr J(y, u) for all g € dom ¢ since
J is finite over M. This proves that Z(0,T) = R; (dom¢). By Theorem 3.2 we get that

inf F((y,u),0) = max —F~((0,0),q).

(y,u)€ E(0,T)x LP(0,75U) q€Z(0,1)*

Hence, if (g, u) € M is optimal for the problem (P), then there exists ¢ € Z(0,T)* which
solves the dual problem (with a finite optimal value). Now using Theorem 3.1, we obtain
((g,1a),q) € (F(0,T) x L?(0,T;U)) x Z(0,T)* solves the primal and dual problems with
a finite optimal value iff ((7,4),q) € D x Z(0,T)*, (4.2) is fulfiled and

(T(y,u) — f,q—q) >0forall g€ Z(0,T)*.

The last inequality is equivalent to (4.1). Since the adjoint of a linear topological isomor-
phism is bijective, hence A* is bijective, let p; € F(0,7)* x H be the unique solution of
(4.3). Then (4.2) is equivalent to (4.4). It is easy to see that under the supplementary
conditions about Z(0,7’) or § we can decouple (4.4). O

By the surjectivity of A it is easy to see that, for a fixed yo € H, we have (A — I){y €
E0,T): y(0) =y} = F(0,T) x {0}. Thus, using also the fact that .4 is an open map,
the following remarks are straightforward.

Remark 4.2. If there exists an admissible pair (9, 4) € M (i.e., (g, @) verifies (2.1)) such
that § € intgm M '(u) (Slater’s condition) then (QA) holds with Z(0,7) = F(0,T).

Remark 4.3. If there are no state constraints, i.e., if M = {(y,u) € E(0,T)x LP(0,T;U)
: y(0) € K,u € Uyq} where K C H and U,q C LP(0,T;U) are closed and convex, then
(QA) holds with Z(0,T) = F(0,T). Moreover, if we put p; = (p,h) € F(0,T)* x H then
(5.13) is equivalent to ¢ = p and

{h,y(0) — (0)) = 0.
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5. Applications

First we will write some parts of Theorem 4.1 in a more explicit form. Assume that J, L
and [ are Gateaux differentiable with respect to y € F(0,7T), y € V and all the variables
respectively, and for all y, w € E(0,7), u, uy € L?(0,7;U),

(Jy(y; u), w) By BOT) = /0 u(t)), w(t))v-vdt +
(I (y(0),y(T ))aw(0)>H+<l2( ( ), y(1)), w(T))E;m,

(I denotes the Gateaux derivative with respect to the i-component, ¢ = 1, 2). Of course,
we have assumed that for ally € E(0,T), u,u; € LP(0,T;U), the map t — Ly (¢, y(t), u(t))
belongs to L?(0,T;V*), and the map t — (L (t,y(t),u(t)),ui(t))y-r belongs to L'(0,T).
Let us put p; = (p,h). Suppose p € W(0,T) (recall that W(0,T) C L?(0,T;V) C
F*(0,T)). Then the equation (4.3) can be written as

fif( 1) + A*(8)p(t) = L (1, 5(1), a(t)) ae. in ]0, T, (5.1)
p(T) = L,(5(0), 4(T)), (5-2)

and
h = p(0) + 11 ((0), 5(T)). (5.3)

Note that if I5(g(0),5(T)) € H, (for example if [ is defined and Gateaux differentiable on
H x H) then (5.1), (5.2) has a unique solution p(-) € W(0,7T) (see [15, Theorem 1.1, page
116] and change t in T — t).

However, in general we have I5(¢(0),y(T)) € Ef (and H C EY), so we will define the
generalized solution p to (5.1), (5.2) as being the projection on F(0,T)* of the solution p;
to (4.3). In general F'(0,T)* is not a subspace of the space D*(]0, T'[; V) of the distributions

from 0,7 to V, so the derivative ((11—]? has no meaning in the sense of distributions. But,
in the particular case when E(0,T) = W(0,T) we have F(0,T) = L?(0,T;V*), hence
F(0,T7)* = L*>(0,T;V) c D*(]0,T[;V) and the derivative % can be considered in the
sense of distributions.

Also, each time we will consider the adjoint system in the form (5.1), (5.2) we will assume
that its solution p € C([0,T[; H). Thus (5.3) has a precise meaning. In the examples
considered later this assumption is always fulfilled. Moreover, in the next subsection we
will consider an important example (final boundary observation and boundary control)
with E(0,7) = C(]0,T];V) N W(0,T"), when the solution to the adjoint system has a
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precise meaning and is continuously differentiable. Also, we can write formally (4.4) as

|20+ At - i, p0) i -

|20+ A6 - Do) - Bl - ). a0)de +
+ J,((7, @); w — @) + {y(0) — §(0), p(0) + 1 (5(0),5(T))) > 0
for all (y,u) € D.

5.1. A particular case with applications to a final boundary observation and
boundary control

Let us consider the following particular problem. The operator A is time invariant (A(t) =
A) and verifies the coercitivity condition (2.3) with a = 0. Also A is symmetric i.e.

(Av,w) = (Aw,v)

for all v, w € V. Since V C H C V* we can consider A as un unbounded operator from
V* to itself defined on a dense subspace, hence an eigenvector is defined as usually. We
denote by {v, : n € N} C V an orthonormal basis constituted of eigenvectors associated
to an increasing unbounded sequence eigenvalues {\, : n € N} C R,. Next, according
o (2.3), we will renorm equivalently the space V' (using the same notation for the new
norm) by

|v||} = (Av, v) Z)\ v, Up)?

neN

for all v € V The corresponding norm in V* is given by

* 1 *

[[0*]
neN

for all v* € V*. Note that V = {v € V* : 3 An(v,v,)? < 400} and H = {v € V*:
Y nen(V, vn)? < +o00}. Let us put forevery ¢ > 0andv € V*, S(t)v = Y, cye (v, v) vy
It is easy to see that the family {S(¢)}:>0 is a strongly continuous semigroup of linear
bounded operators in V* (and in H or V as well) having as infinitesimal generator —A
(and the restrictions of —A to A™'H or A'V respectively).

Lemma 5.1.

(i)  For everyt >0 we have S(t) € L(V*,V) and £S(t)v = —AS(t) for allv € V* for
the strong topology of V.

(ii)  For each v € V*, the mapping t — S(t)v is indefinitely differentiable from |0, +oo[
toV.

Proof. The first part of this lemma results from

D AlS v, vn)” = A v, 0,)” < C1)||v1}

V*

with C(t) = sup, \2e~?»! < +00. Thus the semigroup S(t) (considered in V*) is differen-
tiable. The second part can be proved directly or using the properties of the differentiable
semigroups (see e.g. [20]). O
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Recall that for f € L?(0,T;V*) and y, € H, the abstract Cauchy problem:

dy .
dt( )+ Ay(t) = f(t) a.e. in ]0, T (5.4)

y(0) = yo (5.5)

has a unique solution in W(0,7) [15, page 116, Th 1.1 and Th 1.2]. Moreover, the

7)
solution is given (a.e. in |0,T]) by
)= SO+ [ S 5)f()ds S+ ( / PG, 00) ds ) v,

the last series being uniformly convergent (with respect to ¢ € [0,7]) in H and convergent
in L?(0,T;V). Our aim is to prove next that, considering two particular cases for the
function f (which correspond to L boundary control and to L? distributed control) the
corresponding solution belongs to C'(]0,7]; V). Also we will consider the case with the
initial condition 39 € V* which will allow us to treat explicitly the adjoint system. Recall
that the mild solution to (5.4),(5.5) is the function given by ¢ — S(t)yo-l-fOT S(t—s)f(s)ds
which coincides in L?(0,7T; V*) with the function y given by (5.7).

Theorem 5.2. Let
k
= wiw;, ae in]0,T] (5.6)
=1

with u; € L*(0,T;R) and w; € V*, or
feL*0,T;H).

Then, for yo € H, the (unique) solution y € W(0,T) to the Cauchy problem (5.4), (5.5)
verifies

y € C°(J0,T}; V).

The solution is given by
t
y(t) = St)yo + Z </ e M=9)(£(s), vn)ds> vp a.e. in |0, T (5.7)
- 0

the last series being uniformly convergent (with respect to t € [0,T]) in V. Moreover,
considering yo € V*, the function y given by (5.7) is the unique mild solution to the
problem (5.4), (5.5) and belongs to C°(]0,T); V)N C([0,T];V*) N L?(0,T; H).

Proof. According to Lemma 5.1, it is sufficient to prove that the function

o) =" ( /0 t e M9 £(s), v,) ds) v ae. in 0, T]

n
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belongs to C°([0,T]; V). If f verifies (5.6), then taking M = max;<;<y ||u;]|z~ we have

Z)\ / I (f(5),vn) ds)? < ZZ 2)\ ~22n8) (w;, v,)?)
< M Z||wz|

for all ¢ € [0, 7], hence the series is uniformly convergent (with respect to ¢t € [0,7]) in
V. If f € L*(0,T; H) the uniform convergence of the same series results from

Z)\ / (=9 (£(s5), v ds)? < ;)\n/Ote_z’\"(t_s)ds/ot(f(s),vn)st

V*

< S Bamy

In the case yy € V* the uniqueness of the mild solution is proved in the theory of semi-
groups. U

Now we can give the abstract example with applications to the final boundary observation
and (distributed or boundary) control. According to the last theorem, we obtain the
following.

Theorem 5.3. Suppose the operator A as considered in this subsection. If we take E; =
V and E(0,T) = C(]0,T);V)nW(0,T), then
k
{f(t) =) ui(t)w; a.e. in]0,T[:u; € L*(0,T;R), w; € V*} C F(0,T),

i=1

L*(0,T; H) C F(0,T).

Corollary 5.4. With A as above, if the operator B(t) = B € L(U,V*) is given by U =
R*, Bu = Zle u;w; with w; € V*, 1 =1,...,k, and considering p = oo we can take
E, =V and E(0,T) = C(]0,T7; )ﬂW( ) On the other hand, if B(t) € L(U, H) a.e
in 10, T[ such that t — B(t)u(t) belongs to L*(0,T; H) for every u € L*(0,T;U) then,
considering p = 2, we can also take Ey =V and E = C(]0,T]; V)N W(0,T).

Also we can better explain the adjoint system. Thus changing ¢ in 7" — ¢ and using
Theorem 5.2 we have the following.

Remark 5.5. With A as above and E; = V, the adjoint system (5.1), (5.2) has its
mild solution in the space C°([0,T[; V) N C°([0,T]; V*). The relation (5.3) is meaningful.
However we cannot gurantee that its mild solution is an element of F*(0,7), i.e., we do
not know if the mild solution coincides with the generalized solution.

Example 5.6. Now let us consider the operator A € L(H'(Q),(H'(Q))*) defined in
subsection 2.3 with ag > 0 and the following boundary control parabolic problem:

or1 = o (a2 0.0)) ~ (e ) in @ 5:5)

irj=
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k
dy .
va i=1
y(0,z) = yo(z) in Q (5.9)
The functions g; € L?(T'), 7 = 1,... ,k are given. We consider the (usually unknown)

initial condition yy € L?*(Q) and the controls u; € L*®(0,T;R), i = 1,...,k. We
will consider the following spaces By = V = HY(Q), H = L?>(Q), U = R, £(0,T) =
C°(0,T); V)N W (0,T), and p = co. Defining the operator B € L(R*,V*) by

(Bu,o) =Y / s(Ou(€) T = Y uiw,

for all v € V where w; € V*, (w;,v) = fr givdl', we can write our parabolic problem in
abstract form
dy

E(t) + Ay(t) = Bu(t) a.e. in 0,77, (5.10)

y(0) = %o (5.11)

Since the conditions of Theorem 5.3 and its corollary are fulfiled, we obtain that the choice
of the final state space E; and the state space F(0,T) is justified and we can consider the
following cost functional:

J(y,u) = / (y(T, €) — 24(€))* dT + [lull%

where I'; C I' is a C* manifold of dimension (n — 1), 24 € L?(I';y) is given and || - || is
a norm in L*®(0,T;RF) (e.g. ||ullec = ess Supyepo,ry|u(t)| where |- | is a euclidean norm in
R¥). This functional corresponds to a regional boundary final observation. Assume also
that the phase constrains are of the form (y,u) € M C E(0,T) x L*(0,T;RF), with M
closed and convex and the constraint qualification (QA) is fulfiled . So, our problem (P)
is to minimize J over the elements of M wich are verifying the problem (5.8)—(5.9). This
problem has a unique optimal solution due to the fact that the functional u +— J(yy, u),
(with ¥, the solution of (5.10), (5.11) associated to u) is convex, continuous and coercive
on L*°(0,T;R*), hence it is weakly * lower semicontinuous on the closed balls because a
convex bounded set is closed iff it is weakly * closed. Thus, taking a minimizing sequence
(un) with (y,,,u,) € M, the coercitivity implies that (u,) is bounded, hence we can find
a cluster point for the weakly * topology which is the optimal control. In this case the
adjoint system (5.1), (5.2) is given by

op ~ 0 op
_8_}Z(t’ z) = ”ZZI e (aij($)%(ta 3?)) — ao(2)p(t, z) in Q
op

g, (L8 +ep(t,§) =0in X
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ﬁ(Ta ) = AZ(')a

where z is the solution of the elliptic problem

i 5%1 (“z‘j(x)%zj(x)) —ao(z)z(z) =0 inQ

0z _ (T8 —2%¢) inly
Jua &) T ozl) = {0 in T'\ I

To see this consider the operator C : V +— L?*(T') Cv = xr,v and note that
1(y(0),y(T)) = ICW(T) — 2H)IZ2r),

hence the right hand side of (5.2) is (changing p in 2) equal to C*C(y(T) — 2¢). Since A
is also the canonical isomorphism between the Hilbert space V' (endowed with the scalar
product (vy,vs) — (Avy,v9)) and its dual V*, a simple computation gives the above
systems.

Theorem 4. 1 and Theorem 5.2, along with the fact that (Az,v,) = A\, (2, v,) and that we
have (Az,v) = [ (4(T,€) — 2 4(&))v(€) dT by the definition of z, imply the following.

Theorem 5.7. A pair (y,u) € M is optimal for the problem (P) if and only if there
exist § € Z(0,T)* and p € F(0,T)*NnC°([0,T[,V)NC°([0,T],V*)NL*(0,T; H) such that

y(t,x>=z( / ovn+z / "9, (s)ds / (f)vn(adr)vn(x),

n

= e [~ el ),

/0<d(yd;g)()+A(y y)(t),p(t)) dt—

[ @)+ A= 90 - B )0, q0)de + (5.12)

((u); (u—u)) 20
for all (y,u) € D. ®((u);(u — u)) is the directional derivative of the conver map u —
\lull2,- Moreover, if Z(0,T) = F(0,T) or ¢ € F(0,T)* or Z(0,T) = L*>(0,T;H) and
B e L(U, H), the inequality (5.12) becomes decoupled in

[ D04 - 90,50 - a0 > o, (513
and

2@ =) + [ (B0 - o) i > 0
for all (y,u) € D.
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5.2. The linear-quadratic problem with phase constraints

A particular and very important problem is the case when the cost function is quadratic

J(y,uw) = |Cry(T) — 2117, +/0 (IC2()y(®) — 2517, + (N (Du(®), u(®))) dt  (5.14)

Unless otherwise stated we keep all the notations and hypotheses of the previous sec-
tions, but U is assumed a Hilbert space. Z;, Z, are Hilbert spaces (output spaces)
Cy € L(E1, Zy), Cy(t) € L(V,Z,), N(t) € L(U,U), for all t € [0,T], the maps ¢ +—
|Ca(t)|| 2v,22), t = [IN ()|l belong to L>(0,T’), N(t) is self adjoint and positive. In
this case all the hypotheses about J are fulfilled. Moreover J is Fréchet differentiable. We
will denote by A; (respectively Ay) the canonical isomorphism from Z; to Z}, i € {1,2}
(resp. from U to U*). Then, assuming (QA), Theorem 4.1 implies the following.

Theorem 5.8. A pair (y,u) € M is optimal for the problem (5.14) if and only if there
exist ¢ € Z(0,T)* and p € F(0,T)* such that

%(t) + A@)y(t) = B(t)u(t) + f(t) a.e. in]0, T,
_%(t) + A*()p(t) = Cy(t)* Ay (Ca(t) (y(t)) — 22(t)) a-e. in ]0,TT,

p(T) = CTA(Ci(y(T)) — 21),

/0 <d(ydl d (t) + A(t)(y — 9)(t), p(t)) dt—

+ / (N()a(e), ult) - a(t))v dt + (4(0) — 5(0), 5(0)) = 0

for all (y,u) € D. Moreover, if Z(0,T) = F(0,T) or ¢ € F(0,7)* or Z(0,T) =
L?(0,T; H) and B(t) € L(U, H), for all t, the inequality (5.15) becomes decoupled in

/0 <d(yd; 9 () + AWy — 5)(6),B8) — a(5) dt + (4(0) — 5(0), 5(0)) > 0.

and
/0 (N()a(t) + A7 B* (0)a(t), u(t) — a(t))y dt > 0

for all (y,u) € D.
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