
Journal of Convex Analysis

Volume 7 (2000), No. 2, 445–452

Minimal Pairs Representing Selections of Four Linear
Functions in R3

J. Grzybowski
Faculty of Mathematics and Computer Science,

Adam Mickiewicz University, Matejki 48/49, 60769 Poznań, Poland.
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In this paper we investigate minimal pairs of continuous selections of four linear functions in R3. Our
purpose is to find minimal pairs of compact convex sets (polytops) which represent all 166 (see [2])

continuous selections in CS(y1, y2, y3,−
∑3

i=1 yi) in R3. We find that these 166 selections are represented
by 16 essentialy different minimal pairs which were studied in [5], [9]. Three out of 16 cases are minimal
pairs that are not unique minimal representations in their own quotient classes. One of these quotient
classes was already studied in [5], [10], [15].
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1. Introduction

Let U ⊂ Rn be an open subset and f, f1, . . . , fm : U → R continuous functions. If
I(x) = {i ∈ {1, . . . ,m} | fi(x) = f(x)} is nonempty at every point x ∈ U, then f is called
a continuous selection of the functions f1, . . . , fm. We denote by CS(f1, . . . , fm) the set
of all continuous selections of f1, . . . , fm. The set I(x) is called the active index set of
f at the point x. The functions f1, . . . , fm will be called generating functions. Typical
examples for continuous selections are the functions

fmax = max(f1, . . . , fm), fmin = min(f1, . . . , fm)

or, more generally, any finite superposition of maximum and minimum operations over
subsets of the functions f1, . . . , fm.
In [8] the notion of a nondegenerate critical point for a continuous selections of C2-
functions has been defined and it has been shown that a continuous selection f of C2
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functions is topologically equivalent to a function of the form

y → f(x0) + g(y1, . . . , yk)−
k+µ
∑

i=k+1

y2i +
n

∑

j=k+µ+1

y2j

in a neighbourhood of a nondegenerate critical point x0, where k =| I(x0) | −1, g ∈
CS(y1, . . . , yk,−

∑k
i=1 yi), and µ is the quadratic index of f at x0. For more details see

[7], Chapter 7, and [8].

In [2] it has been shown that every continuous selection of linear functions l1, . . . , lm on
Rn has a representation of the form

l(x) = min
i∈{1,...,r}

max
j∈Mi

lj(x) (1.1)

where Mi ⊂ {1, . . . , n + 1} and that this representation is unique, provided the linear
functions are affinely independent, i.e.

∑m
i=1 λili = 0,

∑m
i=1 λi = 0 implies that λ = 0,

and Mi ⊂ Mj if and only if i = j. Note that in particular the functions li(x) = xi, i =
1, . . . , n, ln+1(x) = −

∑n
i=1 xi are affinely independent. The topological structure of a

continuous selection of C2 functions in the vicinity of a nondegenerate critical point is
thus completely determined by its quadratic index µ and a unique collection of index sets
M1, . . . ,Mr. This fact has been used in [1] to extend the classical smooth Morse theory
to piecewise smooth functions.

Observe that every function l of the form (1.1) can be represented as a difference of two
polyhedral support functions, since

l(x) = min
i∈{1,...,r}

max
j∈Mi

lj(x) = max
i∈{1,...,r}

{
r

∑

k=1
k 6=i

max
j∈Mk

−lj(x)} −
r

∑

k=1

max
j∈Mk

−lj(x) (1.2)

holds. Now, we identify the difference of the support functions pA − pB of two compact
convex sets A and B with the quotient class [A,B] in the R̊adström-Hörmander lattice
[6] of equivalence classes of pairs of nonempty compact convex sets.

In other words: As in [9] let us denote for a real topological vector space X the set of all
nonempty compact convex subsets by K(X) and the set of all pairs of nonempty compact
convex subsets by K2(X), i.e. K2(X) = K(X) × K(X). The equivalence relation between
pairs of compact convex sets is given by: “(A,B) ∼ (C,D) if and only if A+D = B+CÔ
using the Minkowski-sum, and a partial order is given by the relation: “(A,B) ≤ (C,D)
if and only if A ⊆ C and B ⊆ D.Ô By [A,B], we denote the equivalence class of (A,B)
in K2(X)/∼ . For two compact convex sets A,B ∈ K(X) we will use the notation

A ∨B := conv(A ∪B),

where the operation “convÔ denotes the convex hull and Ā denotes the closure of a set A.

Let us recall that for a real topological vector spaceX a pair (A,B) ∈ K2(X) is minimal if
and only if for every equivalent pair (C,D) ∈ K2(X) the relation (C,D) ≤ (A,B) implies
C = A and D = B.
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In the proofs, we will use frequently an easy identity for compact convex sets which was
first observed by A. Pinsker [12], namely: For A,B,C ∈ K(X) we have:

(A + C) ∨ (B + C) = C + (A ∨B).

Finally let us state explicitely the order cancellation law (see [6], [14]).

Let X be a real topological vector space and A,B,C ⊆ X compact convex subsets. Then
the inclusion

A + B ⊆ A + C implies B ⊆ C.

2. The Representation Theorem

Now we are able to prove the following result:

Theorem 2.1. The set

CS(y1, y2, y3,−
3

∑

i=1

yi)

consists of 166 continuous selections which are represented by 16 essentialy different min-
imal pairs. Three out of these 16 cases are minimal pairs that are not unique minimal
representations in their own quotient classes.

Proof. Throughout the proof we will use the following notations. Let a, b, c, d ∈ R3 be
affinely independent vectors such that a+ b+ c+d = 0. For convenience we identify these
vectors with linear functions, i.e. a : R3 → R, a(x) =< a, x >, where < ·, · > denotes
the scalar product.

If a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, 1), d = (−1,−1,−1) then

CS(y1, y2, y3, − y1,−y2 − y3) = CS(a, b, c, d).

In ([2]) it has been shown that CS(y1, y2, y3, − y1,−y2 − y3) consists of 166 continuous
selections. Our purpose is to find minimal pairs of polytops that represent these 166
continuous selections.

Therefore, we identify the difference of the support functions pA − pB of two compact
convex sets with the quotient class [A,B]. Then, the function a is identified with [{a}, {0}].
For convenience we will write [a, 0].

According to all possible max-min combinations of the functions l1, ..., l4 we have to con-
sider the following 16 cases:

(1) The trivial selections a, b, c and d can be represented by the minimal pairs (a, 0),
(b, 0), (c, 0), and (d, 0).

(2) Denote max(a, b) by ab and min(a, b) by ab. Applying (1.2) we obtain ab = [a∨ b, 0]
and ab = [a+ b, a ∨ b] = [0,−(a ∨ b)]. The pairs (a ∨ b, 0), (0,−(a ∨ b)) are minimal
because one of two sets in each pair is a one-point set. In a similar way we find
representations of 12 selections in total: ab, ac, ad, . . . , ab, ac, . . . .
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(3) Notice that abc = ab c and abc = [a ∨ b ∨ c, 0]. Also abc = [0,−(a ∨ b ∨ c)] and both
pairs (a ∨ b ∨ c, 0) and (0,−(a ∨ b ∨ c)) are minimal and a ∨ b ∨ c is a triangle. In
this way we find representations of 8 selections in total.

(4) Take ab c that is min(max(a, b), c). Then ab c = [a ∨ b+ c, a ∨ b ∨ c]. Also

ac bc = [a∨c+b∨c, a∨b∨c] = [(a+b)∨(a+c)∨(b+c), a∨b] = [−(a∨b∨c),−(a∨b)−c]

The reader can compute these equalities for himself.
The pairs (a ∨ b+ c, a ∨ b ∨ c) and (−(a ∨ b ∨ c),−(a ∨ b)− c) consist of a triangle
and an interval. It follows from the criteria proved in [10] that they are minimal.
Similar pairs represent 24 selections in total.

(5) Notice that

ab ac bc =

[a ∨ b+ b ∨ c+ a ∨ c, (a ∨ b+ a ∨ c) ∨ (a ∨ b+ b ∨ c) ∨ (a ∨ c+ b ∨ c)] =

[a ∨ b ∨ c+ (a+ b) ∨ (a+ c) ∨ (b+ c), a ∨ b ∨ c+ a ∨ b ∨ c] =

[(a+ b) ∨ (a+ c) ∨ (b+ c), a ∨ b ∨ c].

Again, the pair of triangles ((a+ b)∨ (a+ c)∨ (b+ c), a∨ b∨ c) is minimal (see [11]).
Similar pairs represent 4 selections in total.

(6) Take abcd = [a∨b∨c∨d, 0] and abcd = [0,−(a∨b∨c∨d)]. The pairs (a∨b∨c∨d, 0)
and (0,−(a ∨ b ∨ c ∨ d)) are minimal and a ∨ b ∨ c ∨ d is a tetrahedron.

(7) Now,

ab cd = [a ∨ b+ c+ d, (a ∨ b+ c) ∨ (a ∨ b+ d) ∨ (c+ d)] =

[a ∨ b+ c+ d, (a ∨ b+ c ∨ d) ∨ (c+ d)].

Then a∨b+c+d is an interval parallel to two edges of the pyramid (a∨b+c∨d)∨(c+d).
The pair (a ∨ b + c, (a ∨ b + c ∨ d) ∨ (c + d)) is minimal, cf. [10]. Also acd bcd =
[−((a ∨ b+ c ∨ d) ∨ (c+ d)),−(a ∨ b)− c− d]. Similar pairs represent 12 selections
in total.

(8) Observe that

ab ac bc d = ab ac bc d =

[(a+ b) ∨ (a+ c) ∨ (b+ c) + d, (a+ b) ∨ (a+ c) ∨ (b+ c) ∨ (d+ a ∨ b ∨ c)] =

[−c ∨ b ∨ a, (a+ b) ∨ (a+ c) ∨ (b+ c) ∨ (d+ a) ∨ (d+ b) ∨ (d+ c)].

This is a pair of triangle and octahedron. Also abd acd bcd = [(a + b) ∨ (a + c) ∨
(b+ c) ∨ (a+ d) ∨ (b+ d) ∨ (c+ d), a ∨ b ∨ c). These pairs are minimal, cf. [10] and
similar pairs represent 8 selections in total.
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(9) Notice that

ab ac ad bc bd cd =

[a ∨ b+ . . .+ c ∨ d, (a ∨ b+ . . .+ b ∨ d) ∨ . . . ∨ (a ∨ c+ . . .+ c ∨ d)] =

[
∨

{3x+ 2y + z | x, y, z ∈ {a, b, c, d}, x 6= y 6= z 6= x},
∨

{3x+ 2y | x, y ∈ {a, b, c, d}, x 6= y}] =

[a ∨ b ∨ c ∨ d+ (a+ b) ∨ (a+ c) (a+ d) ∨ (b+ c) ∨ (b+ d) ∨ (c+ d)+

(a+ b+ c) ∨ (a+ b+ d) ∨ (a+ c+ d) ∨ (b+ c+ d),

a ∨ b ∨ c ∨ d+ 2((a+ b) ∨ (a+ c) ∨ (a+ d) ∨ (b+ c) ∨ (b+ d) ∨ (c+ d))] =

[−(a ∨ b ∨ c ∨ d), (a+ b) ∨ (a+ c) ∨ (a+ d) ∨ (b+ c) ∨ (b+ d) ∨ (c+ d)].

The polytop a∨ b+ . . .+ c∨ d is a “tetrakaidekahedronÔ represented in [13] chapter
VII. The pair (−(a∨ b∨ c∨ d), (a+ b)∨ (a+ c)∨ (a+ d)∨ (b+ c)∨ (b+ d)∨ (c+ d))
consisting of a tetrahedron and an octahedron is minimal.
Similarly, abc abd acd bcd = [(a+ b) ∨ . . . ∨ (c+ d), a ∨ b ∨ c ∨ d].

(10) Take ab ac d = ab ac d = [a ∨ b + a ∨ c + d, (a ∨ b + a ∨ c) ∨ (d + a ∨ b ∨ c)]. Since
(a∨b+a∨c+d, (a+b)∨(a+c)∨(b+c)+d) ∼ (a∨b+a∨c, (a+b)∨(a+c)∨(b+c)) ∼
(d+ a ∨ b ∨ c, d+ b ∨ c).
Then ab ac d = [(a+ b)∨ (a+ c)∨ (b+ c)+d, (a+ b)∨ (a+ c)∨ (b+ c)∨ (d+ b∨ c)] =
[−(a ∨ b ∨ c), (b ∨ c+ d ∨ a) ∨ (b+ c)].
Similarly ad bcd = [−((b ∨ c+ d ∨ a) ∨ (b+ c)), a ∨ b ∨ c]. These pairs consisting of
a triangle and a pyramid are minimal. Similar pairs represent 24 selections.

(11) ab ac ad bc bd = [a∨b+a∨c+a∨d+b∨c+b∨d, (a∨b+a∨c+a∨d+b∨c)∨(a∨b+a∨c+a∨
d+b∨d)∨(a∨b+a∨c+b∨c+b∨d)∨(a∨b+a∨d+b∨c+b∨d)∨(a∨c+a∨d+b∨c+b∨d)] =
[(a∨ b+a∨ c+ b∨ c+a+ b)∨ (d+a∨ b+a∨ b+a∨ c+ b∨ c)∨ (2d+a∨ b+a∨ c+ b∨
c), (a∨b+a∨b+a∨c+b+c)∨(d+(a∨b+a∨c+b∨c)∨3a∨3b)∨(2d+2a∨2b∨2c)] =
[−(a ∨ b ∨ c ∨ d), (a ∨ b+ c ∨ d) ∨ (c+ d)].
The reader can verify the last equality by computation.
Also, ab acd bcd = [−((a ∨ b+ c ∨ d) ∨ (c+ d), a ∨ b ∨ c ∨ d]. These pairs consist of
a tetrahedron and a pyramid. Similar pairs represent 12 selections.

(12) Take abc d = [a∨b∨c+d, a∨b∨c∨d] and ad bd cd = [−(a∨b∨c∨d),−(a∨b∨c)−d].
These minimal pairs consist of a triangle and a tetrahedron. Similar pairs represent
8 selections.

(13) ac bd = [a∨ c+ b∨ d, a∨ b∨ c∨ d] also ab bc cd da = [−(a∨ b∨ c∨ d), a∨ c+ b∨ d].
These minimal pair consist of a square and a tetrahedron. Similar pairs represent 6
selections.

(14) ab bc ca ad = ab bc ca ad = [(a+b)∨(a+c)∨(b+c)+a∨d, (a+b)∨(a+c)∨(b+c)∨(a∨
b∨c+a∨d)] = [a∨d−d−(a∨b∨c), 2a∨(a+b)∨(a+c)∨(b+c)∨(a+d)∨(b+d)∨(c+d)].
(See the pair (A,B) of Figure 2.1)
Moreover ab bc ca ad = ab ac ad bc = [b ∨ c − (a ∨ b ∨ c ∨ d), (b ∨ c − (b ∨ c ∨ d) −
a) ∨ (−(a ∨ b ∨ c ∨ d)] = [b ∨ c− (a ∨ b ∨ c ∨ d), (b− c− a) ∨ (b− d− a) ∨ (c− b−
a) ∨ (c− d− a) ∨ (−b) ∨ (−c) ∨ (−d)]. (See the pair (C,D) of Figure 2.2)
The minimal pairs represented in Figures 2.1 and 2.2 are equivalent and not trans-
lations of each other.
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Similarly ab ac bcd = [(a+b)∨(a+c)∨(b+c)∨(a+d)∨(b+d)∨(c+d)∨(−2a), a∨b∨c+
d−(a∨d)] = [(c+a−b)∨(d+a−b)∨(b+a−c)∨(d+a−c)∨b∨c∨d, a∨b∨c∨d−(b∨c)].
Similar pairs represent 24 selections.

AA

B

B

Front Back

Figure 2.1

D D

CC

Front Back

Figure 2.2

(15) Take ab bc cd = ab bc cd = [(a+ b)∨ (b+ c)∨ (a+ c) + c∨ d, (a+ b)∨ (b+ c)∨ (c+
a)∨ 2c∨ (d+ c)∨ (d+ a)] = [(d∨ c)− d− (a∨ b∨ c), a∨ c+ b∨ c∨ d]. (See the pair
(A,B) of Figure 2.3)
On the other hand ab bc cd = dc cb ba = [a ∨ b − a − (b ∨ c ∨ d), d ∨ b + a ∨ b ∨ c].
(See the pair (C,D) of Figure 2.4)
The two pairs represented in the Figures 2.3 and 2.4 are equivalent and minimal
and they are not translations of each other.
Similar pairs represent 12 selections.

AB

BA

Front Back

Figure 2.3
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D

C C

D

Front Back

Figure 2.4

(16) abc ad bd cd = [a ∨ b ∨ c+ a ∨ d+ b ∨ d+ c ∨ d, (a ∨ b ∨ c+ (a+ b) ∨ (a+ c) ∨ (b+
c))∨ (d+ a∨ b∨ c+ a∨ b∨ c)∨ (2d+ a∨ b∨ c)∨ 3d] = [(a∨ b∨ c+ a+ b+ c)∨ (d+
a∨ b∨ c+(a+ b)∨ (a+ c)∨ (b+ c))∨ (2d+a∨ b∨ c+a∨ b∨ c)∨ (3d+a∨ b∨ c), (a∨
b∨ c+ (a+ b)∨ (a+ c)∨ (b+ c))∨ (d+ a∨ b∨ c+ a∨ b∨ c)∨ (2d+ a∨ b∨ c)∨ 3d] =
[(a∨b∨c+a+b+c)∨(d+a∨b∨c+(a+b)∨(a+c)∨(b+c))∨(2d+a∨b∨c+a∨b∨c), (a∨
b∨c+(a+b)∨(a+c)∨(b+c))∨(d+a∨b∨c+a∨b∨c)∨(2d+a∨b∨c)] = [(a+b+c)∨
((a+b)∨(a+c)∨(b+c)+d)∨(2d+a∨b∨c), (a+b)∨(a+c)∨(b+c)∨(d+a∨b∨c)∨2d].
A similar pair as in Figure 2.5 was studied in [5] and [11]. The minimal pair (C,D)
of Figure 2.6 is an example of a minimal pair which is equivalent to the pair (A,B)
of Figure 2.5 and which is not a translation of (A,B). Similar pairs as in Figure 2.6
represent 4 selections.

B

A

B

A

Front Back

Figure 2.5

D

C

D

C

Front Back

Figure 2.6

Remark 2.2. (1) In the cases (1)–(10) and in case (12) of the proof the minimal pairs
are uniquely determined except for translations

(2) In the cases (14)–(16) of the proof the minimal pairs are not uniquely determined
except for translations
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(3) In the remaining cases (11) and (13) of the proof we do not know whether the
minimal pairs are unique determined except for translations.
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