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Tomáš Roub́ıček
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In the scalar n-dimensional situation, the extreme points in the set of certain gradient Lp-Young measures
are studied. For n = 1, such Young measures must be composed from Diracs, while for n ≥ 2 there are
non-Dirac extreme points among them, for n ≥ 3, some are even weakly* continuous. This is used to
construct nontrivial examples of nonexistence of solutions of the minimization-type variational problem
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Ω W (x,∇u) dx with a Carathéodory (if n ≥ 2) or even continuous (if n ≥ 3) integrand W .
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1. Introduction

In this paper we want to study nonattainment due to material nonhomogeneity which
may occur even in scalar variational problems. For this goal, we avoid the influence of
any boundary conditions and consider the following scalar multidimensional variational
problem

Minimize

∫

Ω

W (x,∇u) dx for u ∈ W 1,p(Ω), (1.1)

where Ω ⊂ Rn is a bounded simply connected Lipschitz domain, W 1,p(Ω) is the Sobolev
space {u ∈ Lp(Ω); ∇u ∈ Lp(Ω;Rn)}, and W : Ω × Rn → R is a Carathéodory function
satisfying

∃ c0, c1 > 0, c2 ∀(x, s) ∈ Ω×Rn : c0 + c1|s|p ≤ W (x, s) ≤ c2(1 + |s|p). (1.2)

This condition ensures that the functional u 7→
∫

Ω
W (x,∇u) dx is well defined on W 1,p(Ω)

and coercive on the subspace

W̃ 1,p(Ω) :=
{

u ∈ W 1,p(Ω);

∫

Ω

u(x) dx = 0
}

. (1.3)
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We are especially interested in the case when W (x, ·) is nonconvex. Such problems often
do not have any solution; we then speak about nonattainment while in the converse case
we speak about attainment. For n = 1 the attainment is quite typical; in fact, it holds even
for Dirichlet boundary conditions and u vector-valued. For this sorts of results we refer
to Aubert and Tahraoui [1, 2], Cellina and Colombo [7], Mariconda [14], Ornelas [16] and
Raymond [18, 21]. This effect has also been known for a long time in context of optimal
control theory, see Cesari [8]. However, contrary to the one-dimensional case, for n ≥ 2 the
Dirichlet boundary conditions may create very easily the nonattainment effect even ifW is
independent of x, though in special situations the attainment effect can occur even there.
This spatially homogeneous case has been studied by Bauman and Phillips [5], Chipot
[9], Cellina [6], Flores [10], Friesecke [11], Marcellini [13], Mascolo and Schianchi [15], and
Raymond [19, 20]. To avoid rather trivial situations for nonattainment, we thus did not
involve Dirichlet boundary conditions into (1.1) but allowed nonhomogeneous situations,
i.e. W depends on x. For the relations with Dirichlet conditions in the homogeneous case
we refer to [11, Theorem 1].

It seems that in our scalar case the attainment is closely related through the Bauer
extremal principle [4] with the structure of extreme points of the set of admissible pairs
(u, ν) for the so-called relaxed problem, as pointed out by Balder [3] in a more general
context; here ν stands for a Young measure related with u by (2.3) below. We will
address this question in Section 2, showing that attainment appears if all extreme points
are trivial while existence of nontrivial “uniformly properÔ (in the sense of (2.9) below)
extreme points allows us to construct examples of (1.1) with non-attainment relying on
the x-dependence of W . Thus, our aim is to construct the nontrivial extreme points in
case n ≥ 2. More precisely, in Section 3 we will do this for n ≥ 2 by highly oscillatory
manner, using Cantor sets, which result to W a mere Carathéodory function, while in
Section 4 we will show it for n ≥ 3 by vector fields with no nontrivial integration factors,
which leads to W jointly continuous.

2. Extreme gradient Young measures

Since W does not depend on u but only on ∇u, we can replace W 1,p(Ω) in (1.1) by
W̃ 1,p(Ω). Then every solution of such modified problem solves (1.1) and conversely every
solution to (1.1) can be shifted by a suitable constant to satisfy

∫

Ω
udx = 0, obtaining

thus a solution of the modified problem.

Then a natural relaxation of the variational problem (1.1) takes the form






















Minimize

∫

Ω

∫

Rn

W (x, s)νx(ds)dx

subject to ∇u(x) =

∫

Rn

s νx(ds) for a.a. x ∈ Ω,

u∈W̃ 1,p(Ω), ν∈Yp(Ω;Rn),

(2.1)

where Yp(Ω;Rn) is the set of the so-called Lp-Young measures defined by

Yp(Ω;Rn) :=
{

ν : x 7→ νx : Ω → rca(Rn) weakly measurable;

νx is a probability measure for a.a. x∈Ω,
∫

Ω

∫

Rn

|s|pνx(ds)dx < +∞
}

(2.2)
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where rca(Rm) ∼= C0(Rm)∗ stands for the set of the Radon measures on Rm.

Proposition 2.1 (Kinderlehrer-Pedregal [12]). Let (1.2) be valid for p > 1. Then
inf (1.1) = inf (2.1) and (2.1) always has a solution.

In fact, [12] deals with even a much more complicated vectorial situation. We refer also
to monographs [17, Theorems 4.4 and 8.7] and [22, Proposition 5.2.6].

If (u, ν) is a solution to (2.1) and ν is a Dirac mass a.e. on Ω, then obviously νx = δ∇u(x)

for a.a. x ∈ Ω with δs ∈ rca(Rn) denoting the Dirac mass supported at s ∈ Rn. Then
Proposition 2.1 implies that u solves the original problem (1.1).

The problem of nonattainment in (1.1) will be shown to have an intimate relation with
the structure of extreme points of the convex set of the admissible pairs for (2.1), i.e. the
set

Dad :=

{

(u, ν) ∈ W̃ 1,p(Ω)×Yp(Ω;Rn); ∇u(x) =

∫

Rn

s νx(ds) for a.a. x∈Ω

}

. (2.3)

Note that, for any (u, ν) ∈ Dad, the Lp-Young measure ν satisfies

curl
(

∫

Rn

s νx(ds)
)

= 0. (2.4)

Let us remind that (u, ν) ∈ Dad is called an extreme point if

∀(u1, ν1), (u2, ν2)∈Dad :
1

2
(u1, ν1) +

1

2
(u2, ν2) = (u, ν) ⇒ (u1, ν1) = (u2, ν2). (2.5)

Note that, as u ∈ W̃ 1,p(Ω) is determined uniquely by ν, the pair (u, ν) is an extreme point
in Dad if and only if ν is an extreme point in Gp(Ω;Rn) := {ν; ∃u : (u, ν) ∈ Dad}, i.e.
in the set of the so-called gradient Lp-Young measures whose underlying displacement u
has the average

∫

Ω
udx zero. The interesting question is whether all extreme points of

Gp(Ω;Rn) are composed from Dirac masses a.e. on Ω, i.e.

(

ν1, ν2∈Gp(Ω;Rn) &
ν1 + ν2

2
= ν ⇒ ν1 = ν2

)

⇒ νx is a Dirac mass for a.a. x∈Ω.

(2.6)

Proposition 2.2. Let (1.2) be valid for p > 1 and let (2.6) hold. Then (1.1) has a
solution.

Sketch of the proof. By the coercivity (1.2), all minimizing sequences {uk} for (1.1)
must eventually satisfy ‖∇uk‖Lp(Ω;Rn) ≤ R for R large enough, e.g. for R > (meas(Ω)(c2−
c0)/c1)

1/p with c0, c1 and c2 from (1.2). Then the problem (2.1) has the same solution
as the minimization problem of the affine continuous functional (u, ν) 7→

∫

Ω

∫

Rn W (x, s)
νx(ds)dx over the convex weakly* compact set

D%
ad :=

{

(u, ν) ∈ Dad;

(∫

Ω

∫

Rn

|s|pνx(ds)dx
)1/p

≤ %

}

(2.7)
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provided % ≥ R. Using this fact for % = 21/pR, we can see that there is at least one solution
(u, ν) of this problem (and thus also of (2.1)) which is an extreme point in D21/pR

ad ; this
follows from Bauer’s extremal principle [4] which says that a concave continuous functional
on a convex compact set attains its minimum in an extreme point of this set. Yet, every
solution to (2.1) must lie in DR

ad, so it is also true that (u, ν) ∈ DR
ad. Then (u, ν) is an

extreme point even in Dad because 1
2
(u1, ν1) +

1
2
(u2, ν2) = (u, ν) for (u1, ν1) ∈ Dad and

(u2, ν2) ∈ Dad implies automatically (u1, ν1) ∈ D21/pR
ad due to the estimate

∫

Ω

∫

Rn

|s|pν1,x(ds)dx =

∫

Ω

∫

Rn

|s|p(2νx − ν2,x)(ds)dx ≤ 2

∫

Ω

∫

Rn

|s|pνx(ds)dx ≤ 2Rp,

and by symmetry also (u2, ν2) ∈ D21/pR
ad . Then (2.6) implies that ν is a Dirac mass for

a.a. x ∈ Ω, so that necessarily νx = δ∇u(x) and u solves (1.1).

Proposition 2.3. Let n = 1. Then the condition (2.6) actually holds.

Sketch of the proof. In case n = 1, the equality constraints in (2.3), i.e. ∇u(x) =
∫

Rn s νx(ds) and
∫

Ω
u(x)dx = 0, do not represent any actual restriction in the sense that

Yp(Ω;R) = Gp(Ω;R). Yet the extreme points in Yp(Ω;R) have just the structure ν =
{δy(x)}x∈Ω with y ∈ Lp(Ω), see [22, Proposition 3.2.11].

Therefore, Propositions 2.2 and 2.3 immediately implies the attainment in (1.1) for n = 1.

The converse implication, which may come into considerations for n ≥ 2, i.e. whether
failure of (2.6) implies nonattainment in (1.1), is not completely clear. Nevertheless, some
“non-DiracÔ extreme points of Gp(Ω;Rn) can give an immediate hint for a counter-example
of attainment in (1.1) relying on a uniqueness (at least “locallyÔ, cf. (2.14) below) of the
solution to (2.1) being just this extreme point. Let us first realize that any extreme point
ν of Gp(Ω;Rn) can be decomposed as a pointwise convex combination of at most n + 1
terms:

for a.a. x∈Ω ∃ m(x) ∈ N, m(x)≤n+ 1, ∃ ai(x)∈ [0, 1], ∃ yi(x)∈Rn :

{yi(x)}m(x)
i=1 is an m(x)-dimensional simplex & νx =

m(x)
∑

i=1

ai(x)δyi(x), (2.8)

otherwise one can easily construct mutually different ν1, ν2 ∈ Yp(Ω;Rn) with the same
barycenter as ν, and therefore ν1, ν2 ∈ Gp(Ω;Rn).

In view of (2.2), m can be considered measurable and, for all i = 1, ...,m(x), also (ai, yi)
can be considered defined on a measurable set and itself to be measurable.

Proposition 2.4. Let (u, ν) ∈ Dad be an extreme point of Dad such that (2.8) holds with

∃ε > 0 ∀x∈Ω (a.a.) ∀i = 1, ...,m(x) : ai(x) ≥ ε . (2.9)

If m(x) ≥ 2 for x from a non-zero measure set, then the problem (1.1) does not have any
solution if the “energy densityÔ W is taken to be

W (x, s) := min
i=1,...,m(x)

|s− yi(x)|p. (2.10)
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Proof. First, (u, ν) in question solves the relaxed problem (2.1) with W from (2.10) be-

cause obviously
∫

Ω

∫

Rn W (x, s)νx(ds)dx =
∫

Ω

∑m(x)
i=1 ai(x)W (x, yi(x))dx = 0 ≤ min (2.1)

as 0 ≤ W and W (x, yi(x)) ≡ 0. In particular, min (2.1) = 0.

We will prove that this solution is unique. Suppose that (u1, ν1) ∈ Dad is another solution

to (2.1). As min (2.1) = 0, ν1,x must be supported on the finite set {yi(x)}m(x)
i=1 , i.e.

∃ a1,i(x)∈ [0, 1] : ν1,x =

m(x)
∑

i=1

a1,i(x)δyi(x) (2.11)

for a.a. x ∈ Ω. As ν1 is weakly measurable, a1,i can be assumed measurable, too. For a
parameter α ∈ R, take (uα, να) given by

uα := αu1 + (1− α)u , να,x :=

m(x)
∑

i=1

aα,i(x)δyi(x) ,

aα,i(x) := αa1,i(x) + (1− α)ai(x) .

(2.12)

Obviously, L := {(uα, να); α ∈ R} is just the line going through (u, ν) and (u1, ν1). We
then have

∫

Ω

uαdx = α

∫

Ω

u1dx+ (1− α)

∫

Ω

udx = 0 (2.13)

and also, for a.a. x ∈ Ω,

∫

Rn

s να,x(ds) =

m(x)
∑

i=1

aα,i(x)yi(x) = α

m(x)
∑

i=1

a1,i(x)yi(x) + (1− α)

m(x)
∑

i=1

ai(x)yi(x)

= α

∫

Rn

s ν1,x(ds) + (1− α)

∫

Rn

s ν1(ds) = α∇u1(x) + (1− α)∇u(x) = ∇uα(x).

Hence we can see that (uα, να) will belong to Dad provided να ∈ Yp(Ω;Rn). As always

m(x)
∑

i=1

aα,i(x) = α

m(x)
∑

i=1

a1,i(x) + (1− α)

m(x)
∑

i=1

ai(x) = α+ (1− α) = 1,

it suffices aα,i(x) ∈ [0, 1]. This is valid for any α ∈ [−ε/(1 − ε), 1] because of (2.12)
and of the assumptions ai(x) ∈ [ε, 1] and a1,i(x) ∈ [0, 1]. However, this shows that
(u1, ν1) = (u, ν) otherwise (u, ν) = (u0, ν0) would lie in the interior of the segment Dad∩L
and could not thus be an extreme point in Dad.

Suppose for a moment that (1.1) has a solution, say w ∈ W 1,p(Ω). Without loss of
generality we may suppose that w ∈ W̃ 1,p(Ω). Then (w, δ∇w) solves (2.1). As we supposed

{yi(x)}m(x)
i=1 not identically a singleton (recall thatm(x) ≥ 2 for x from a non-zero measure

set, {yi(x)}m(x)
i=1 is an m(x)-dimensional simplex, and ai are nonvanishing), ν from (2.8)

must differ from δ∇w. Thus we can see that (2.1) would have two solutions, a contradiction.
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Hence, to construct examples of nonattainment in (1.1), we will seek extreme points in
Dad of the form (2.8) which are not identically Diracs and whose coefficients ai are away
from zero, as assumed in (2.9). Let us still remark that one can construct other examples
than (2.10), not relying on uniqueness of the solution to (2.1); assuming |yi| bounded by r,
it suffices to take a simply connected subdomain Ω0 of Ω such that meas({x ∈ Ω0; m(x) ≥
2}) > 0, and then modify (2.10) as follows:

W (x, s) :=

{

mini=1,...,m(x) |s− yi(x)|p for x ∈ Ω0,

max(|s|p, r) for x ∈ Ω \ Ω0.
(2.14)

The modification of the proof of Proposition 2.4 is simple, and the solution (u, ν) to
(2.1) is not unique because νx can be supported arbitrarily in the ball of the radius r if
x ∈ Ω \ Ω0.

3. The case n ≥ 2

We will construct explicitly an extreme pair (u, ν) with ν satisfying the assumptions of
Proposition 2.4. For this, we take n Cantor sets K1, K2, ..., Kn ⊂ R having a positive
Lebesgue measure and positioned in such a way that K := K1 ×K2 × ...×Kn ⊂ Ω ⊂ Rn.

Proposition 3.1. Let y ∈ L∞(Ω;Rn) be arbitrary, n ≥ 2. Then the pair (u, ν) with

u(x) = 0 , νx :=

{

1
2
δy(x) +

1
2
δ−y(x) if x ∈ K := K1 ×K2 × ...×Kn,

δ0 if x ∈ Ω \K,
(3.1)

forms an extreme point in Dad.

Proof. Take (u1, ν1) ∈ Dad and (u2, ν2) ∈ Dad, and assume that

1

2
u1 +

1

2
u2 = u and

1

2
ν1 +

1

2
ν2 = ν. (3.2)

The latter equality implies, in particular, that ν1,x = ν2,x = δ0 for x ∈ Ω \ K, which is
an open, connected (if n ≥ 2 as supposed), and dense subset of Rn. For x ∈ K, both
ν1,x and ν2,x must be supported on the set {y(x),−y(x)} which is supposed bounded in
Rn uniformly with respect to x because y ∈ L∞(Ω;Rn). Therefore, both u1 and u2 have
a bounded gradient almost everywhere, and thus they are (even Lipschitz) continuous.
As ∇u1(x) = ∇u2(x) = 0 for x ranging a dense, open, connected subset of Ω, both u1

and u2 must be constant everywhere on Ω. Since u1, u2 ∈ W̃ 1,p(Ω) so that obviously
∫

Ω
(u1 − u2)dx = 0 we have u1 = 0 = u2.

Then ∇u1 = 0 = ∇u2 a.e. on Ω, which fixes the barycenter of ν1,x and ν2,x. As both
these measures are at most two-atomic, we got inevitably ν1,x = νx = ν2,x for a.a. x ∈ Ω.

Altogether, we proved that (u1, ν1) = (u2, ν2), which just means by the definition (2.3)
that (u, ν) is indeed an extreme point in Dad.

As mentioned, we will consider each K1, K2, ... Kn having a positive one-dimensional
Lebesgue measure and the vector field y not vanishing on their product K. Then Propo-
sition 3.1 gives an example of an extreme point (u, ν) ∈ Dad with ν not a Dirac mass a.e.



T. Roub́ıček, V. Šverák / Nonexistence of solutions in nonconvex problems 433

on Ω. More precisely, this ν satisfies the assumptions in Proposition 2.4 with ε = 1/2, so
that there is the nonattainment in (1.1) provided the energy density W is defined as

W (x, s) :=

{

min(|s− y(x)|p, |s+ y(x)|p) if x ∈ K := K1 ×K2 × ...×Kn,

|s|p if x ∈ Ω \K.
(3.3)

As y is measurable, W is a Carathéodory function. Moreover, as y is essentially bounded,
(1.2) is satisfied, too.

4. The case n ≥ 3

The construction from Section 3 yields an example of an extreme gradient Young measure
ν ∈ Gp(Ω;Rn) which is not a Dirac mass a.e. but x 7→ νx oscillates widely. Now we will
use a more sophisticated construction to show explicitly an extreme ν ∈ Gp(Ω;Rn) such
that νx is not a Dirac mass a.e. and even x 7→ νx : Ω → rca(Rn) is weakly* continuous.
We will consider only n = 3, the case n ≥ 4 being then similar.

For this, we will use a vector field y ∈ C∞(Ω̄;R3) which does not have an integration
factor, which means that there is no λ ∈ L∞(Ω) nontrivial (i.e. not identically zero) such
that curl(λy) = 0 in the sense of distributions.

Lemma 4.1. If y ∈ C∞(Ω̄;R3) satisfies y · curl(y) 6= 0 a.e. on Ω, then this field has no
measurable nontrivial integration factor.

Proof. Since curl(λy) = λ curl(y) +∇λ× y, it holds in the classical sense that

y · curl(λy) = y · (λ curl(y)) + y · (∇λ× y) = λ(y · curl(y)) (4.1)

at least for smooth λ’s. This implies y·curl(λy) = λ(y·curl(y)) in the sense of distributions
even for any λ ∈ L∞(Ω) because one can make a limit passage with smooth λ’s in the
integral identity

∫

Ω

λy · curl(yv)dx =

∫

Ω

λ(y · curl(y))vdx (4.2)

for any fixed v ∈ C∞(Ω) compactly supported. Thus, if curl(λy) = 0 in the sense of
distributions, we get λ(y ·curl(y)) = 0 in the sense of distributions. Assuming y ·curl(y) 6=
0, one gets λ = 0 in the sense of distributions, hence in L∞(Ω), too.

Proposition 4.2. Let y ∈ C∞(Ω̄;R3) and y · curl(y) 6= 0 hold a.e. on Ω. Then the pair
(u, ν) with

u(x) = 0 , νx :=
1

2
δy(x) +

1

2
δ−y(x) (4.3)

forms an extreme point in Dad.

Proof. Take (u1, ν1) ∈ Dad and (u2, ν2) ∈ Dad, and assume (3.2). This, together with
the fact that both ν1,x and ν2,x are probability measures, implies that necessarily

ν1,x =

(

1

2
+ ε(x)

)

δy(x) +

(

1

2
− ε(x)

)

δ−y(x) , (4.4a)

ν2,x =

(

1

2
− ε(x)

)

δy(x) +

(

1

2
+ ε(x)

)

δ−y(x) (4.4b)
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for some ε ∈ L∞(Ω) such that ε(x) ∈ [−1
2
, 1
2
]. Moreover (u1, ν1) ∈ Dad implies ∇u1(x) =

∫

R3 s ν1,x(ds) =: y1(x) so that the vector field y1 is rotation free, i.e. curl(y1) = 0. However,
from (4.4) it follows that y1 = 2εy, so that 2ε is a measurable integration factor for the
vector field y. Yet, by Lemma 4.1, ε = 0 so that ν1 = ν and also ∇u1 = y1 = 2εy = 0. As
u1 ∈ W̃ 1,p(Ω) so that

∫

Ω
u1dx = 0, we eventually obtain u1 = 0. Altogether, we obtained

(u1, ν1) = (u, ν), and analogously (u2, ν2) = (u, ν). Thus (u, ν) is an extreme point in
Dad, as claimed.

Let us remark that the field y(x1, x2, x3) = (0, x1, 1) is an elementary example for a smooth
y satisfying y · curl(y) 6= 0 as assumed in Proposition 4.2. We thus get an example for
nonattainment in (1.1) provided W is defined as

W (x, s) := min(|s− y(x)|p, |s+ y(x)|p). (4.5)

As y is now continuous on Ω̄, W is even jointly continuous and obviously (1.2) is again
satisfied.
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du type Inf
∫ L
0 f(x, u′(x)dx et Inf

∫ L
0 f(x, u(x)u′(x))dx, J. Diff. Equations 33 (1979) 1–15.

[2] G. Aubert, R. Tahraoui: Young measures and relaxation of functionals for integrands
f(x, u(x), u′(x)), Diff. Int. Equations 9 (1996) 27–43.

[3] E. J. Balder: New existence results for optimal controls in the absence of convexity: the
importance of extremality, SIAM J. Control Anal. 32 (1994) 890–916.

[4] H. Bauer: Minimalstellen von Funktionen und Extremalpunkte, Archiv d. Math. 9 (1958)
389–393, Archiv d. Math. 11 (1960) 200–205.

[5] P. Bauman, D. Phillips: A nonconvex variational problem related to change of phase, Appl.
Math. Optim. 21 (1990) 113–138.

[6] A. Cellina: On minima of a functional of the gradient, Nonlinear Analysis, Th. Meth. Appl.
20 (1993) 337–341, 343–347.

[7] A. Cellina, G. Colombo: On a classical problem of the calculus of variations without con-
vexity assumptions, Annales Inst. H. Poincaré, Anal. Nonlin. 7 (1990) 97–106.
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