
Journal of Graph Algorithms and Applications
http://www.cs.brown.edu/publications/jgaa/

vol. 4, no. 3, pp. 135–155 (2000)

Using Graph Layout to Visualize Train

Interconnection Data

Ulrik Brandes Dorothea Wagner

Department of Computer & Information Science
University of Konstanz

http://www.inf.uni-konstanz.de/~{brandes,wagner}
{Ulrik.Brandes,Dorothea.Wagner}@uni-konstanz.de

Abstract

We consider the problem of visualizing interconnections in railway sys-
tems. Given time tables from systems with thousands of trains, we are
to visualize basic properties of the connection structure represented in
a so-called train graph. It contains a vertex for each station met by any
train, and one edge between every pair of vertices connected by some train
running from one station to the other without halting in between.

Positions of vertices in a train graph visualization are given by the
geographical location of the corresponding station. If all edges are repre-
sented by straight-lines, the result is visual clutter with many overlaps and
small angles between pairs of lines. We therefore present a non-uniform
approach using different representations for edges of distinct meaning in
the exploration of the data. Some edges are represented by curved lines,
such that the layout problem consists of placing control points for these
curves. We transform it into a graph layout problem and exploit the
generality of the random field layout model formulation for its solution.

Communicated by G. Liotta and S. H. Whitesides: submitted November 1998, revised October 1999.

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 136

1 Introduction

The present layout problem arises from a cooperation with a subsidiary of
the Deutsche Bahn AG (the central German train and railroad company),
TLC/EVA. The aim of this cooperation is to develop data reduction and vi-
sualization techniques for the explorative analysis of large amounts of time
table data from European public transport systems. These comprise mostly
train schedules; however, the data may also contain bus, ferry and even some
pedestrian connections. The analysis of the data with respect to completeness,
consistency, changes between consecutive periods of schedule validity and so on
is relevant, e.g., for quality control, (international) coordination, and pricing.
Our aim is to aid visual inspection of this data, which is carried out at TLC
to identify structural characteristics of (sub)networks and to back-up design
decisions on extensions or modifications of networks. Reported future use will
include evaluation support of schedules and pricing.

Figure 1 shows the kind of data that is provided. Since for even a moderately
sized stop like the German part of the Konstanz main station there are about 100
trains regularly arriving or leaving, realistic input is quite large. To condense
the input, a so-called train graph is built in the following way. For each regular
stop of any train, a vertex is inserted into the graph. Two vertices are connected
by exactly one edge if there is a point-to-point connection, i.e. some train runs
from from one station to the other (or vice versa) without intermediate stops.
Hence, the graphs considered here are simple and undirected.

An important part of the analysis is the classification of edges into two
categories: minimal edges and transitive edges. Minimal edges are those corre-
sponding to a set of continuous connections between two stations not passing
through a third one. Typically, these are induced by regional trains serving
minor stations. On the other hand, transitive edges correspond to connections
passing through other stations without halting. These are induced by through-
trains. The information contained in a train graph is therefore the existence or
absence of a point-to-point connection between pairs of stations, and the classi-
fication of each connection into minimal or transitive. Graphical presentation of
the train graph and an edge classification computed in the analysis is desirable.

An edge classification is easily coded using color. Figure 2(a) shows a small
part of a train graph with edges colored according to a precomputed classifica-
tion. Stations are positioned according to their geographical location, and all
edges are drawn as straight lines. Obvious graphical problems are edge overlaps
and small angles between edges.

In order to maintain geographic familiarity, we are not allowed to move
vertices, and minimal edges are best depicted by straight-lines, because they
usually represent actual railways and should therefore not be the cause of the
problem. It seems therefore reasonable to change the representation of transitive
edges to curves, as depicted in Figure 2(b). They provide the flexibility to
route an edge such that overlaps and small angles are resolved. In general,
representation of non-stop connections by curved lines not only helps to reduce
visual clutter and ambiguity, but also directly resembles the intuition of fast

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 137

*Z 05130 85 01
*G SE 8506131 8001790
*A VE 8506131 8001790 000000
*A G 8506131 8001790
8506131 Kreuzlingen 1112 (...)
8003400 Konstanz 1115 1125 (...)
8003401 Konstanz-Petersh. 1127 1128 (...)
8003416 Konstanz-Wollmat 1130 1130 (...)
8004997 Reichenau(Baden) 1132 1133 (...)
8002683 Hegne 1135 1135 (...)
8000496 Allensbach 1138 1138 (...)
8003872 Markelfingen 1143 1143 (...)
8000880 Radolfzell 1147 1149 (...)
8001059 Böhringen-Rickelsh. 1152 1152 (...)
8000073 Singen(Hohentwiel) 1158 1200 (...)
8004107 Mühlhausen(b Engen) 1206 1206 (...)
8006321 Welschingen-Neuhaus. 1209 1209 (...)
8001790 Engen 1212 (...)

(...)
8000880 Radolfzell -58.5 -510.8 (...)
(...)
8003400 Konstanz -43.5 -519.8 (...)
8003401 Konstanz-Petersh. -43.5 -518.2 (...)
8003416 Konstanz-Wollmat -45.1 -517.5 (...)
(...)
8506131 Kreuzlingen -40.2 -524.5 (...)
(...)

Figure 1: Schedule of a single train and excerpts from a station list. The schedule
lists all stations used by the train with arrival and departure times. Every
station has a unique identification number, and coordinates are in kilometers
relative to the city of Hannover (irrelevant data omitted)

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 138

Radolfzell

Allensbach

Konstanz

(a) straight-line segments

Radolfzell

Allensbach

Konstanz

(b) Bézier curves

Figure 2: Different representations of transitive edges in a small train graph

vehicles passing by minor stops.
To render Bézier curves, control points need to be positioned. Using the

framework of random field layout models introduced in [3], the problem is cast
into a graph layout problem. More precisely, we consider control points to be
vertices of a graph, and rules for appropriate positioning are modeled by defining
edges accordingly. This way, common algorithmic approaches can be employed.
Practical applicability of our approach is gained from experimental validation.
In a completely different field of application, the same strategy is currently used
to identify suitable layout models for social and policy networks [4, 3]. These
applications are good examples of how the uniform approach of random field
layout models may be used to obtain initial models for visualization problems
which are not clearly defined beforehand.

The paper is organized as follows. In Section 2, we review briefly the concept
of random field layout models. A specific random field model for train graph

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 139

layout is defined in Section 3. Section 4 features a short discussion on aspects
of parametrization and experiments with real-world examples.

2 Random Field Layout Models

In this section we review briefly the uniform graph layout formalism introduced
in [3]. As can be seen from Section 3, model prototyping within this framework
is straightforward.

Virtually every graph layout problem can be viewed as a constrained opti-
mization problem. A layout of a graph G = (V, E) is computed by assigning val-
ues to certain layout variables, subject to constraints and an objective function.
Straight-line representations, for instance, are completely determined by an as-
signment of coordinates to each vertex. However, straight-line representations
are but one special case of a layout problem. In the most general formulation,
each element of a set L = {l1, . . . , lk} of arbitrary layout elements is assigned
a value from a set of feasible values Xl, l ∈ L. Layout elements may represent
positional variables for vertices, edges, labels, and any other kind of graphical
object. Therefore, L and X = XL = Xl1 × · · · × Xlk are clearly dependent
on the chosen type of graphical representation. In this application, we need
not constrain configurations of layout elements. Hence, all vectors x ∈ X are
considered feasible layouts.

Objective function. In order to measure the quality of a layout, an objective
function U : X → R is defined. Since it is difficult to judge the quality of a layout
as a whole, the objective function evaluates configurations of small subsets of
layout elements which mutually influence their positioning. This interaction
of layout elements is modeled by an interaction graph Gη = (L, Eη) that is
obtained from a neighborhood system η = {ηl | l ∈ L}, where ηl ⊆ L \ {l} is the
set of layout elements for which the position assigned to l is relevant in terms
of layout quality. There is an edge in Eη between two layout elements, if one is
in the neighborhood of the other. The interactions are symmetric by definition,
i.e. we require l2 ∈ ηl1 ⇔ l1 ∈ ηl2 for all l1, l2 ∈ L, so that Gη is undirected. The
set of cliques in Gη is denoted by C = C(η). We define the interaction potential
of a clique C ∈ C to be any function UC : X → R for which

xC = yC ⇒ UC(x) = UC(y)

holds for all x, y ∈ X , where xC = (xl)l∈C . A graph layout objective function
U : X → R is the sum of all interaction potentials, i.e. U(x) =

∑
C∈C UC(x). By

convention, the objective function is to be minimized. U(x) is often called the
energy of x, and can be interpreted as the amount of distortion in the layout.

Fundamental potentials. One advantage of separating the energy function
into interaction potentials of small subsets of layout elements is that recurrent
design principles can be isolated to form a toolbox of fundamental criteria. Not

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 140

surprisingly, two central potentials are those corresponding to the forces used
in the spring embedder [7]:1

• Repulsion Potential: The criterion that two layout elements k and l should
not lie close to each other can be expressed by a potential

U
(rep)

{k,l} (x) = Rep(xk, xl) =
%

d(xk, xl)2

where % is a fixed constant and d(xk, xl) is the Euclidean distance between
the positions of k and l. Rep(xk, xl | %) is used to indicate a specific choice
of %.

• Attraction Potential: If, in contrast, k and l should lie close to each other,
a potential

U
(attr)
{k,l} (x) = Attr(xk, xl) = α · d(xk, xl)2,

with α a fixed constant, is appropriate. Like above we use Attr(xk, xl |α)
to denote a specific choice of α.

• Distance Potential: Since Rep(xk, xl |λ4) + Attr(xk, xl | 1) is minimized
when d(xk, xl) = λ, one can specify a desired distance between two layout
elements (e.g. edge length) by

U
(dist)
{k,l} (x) = Dist(xk, xl) = Rep(xk, xl |λ4) + Attr(xk, xl | 1)

where Dist(xk, xl |λ4) is used like above.

Note that many other design rules (sufficiently large angles, vertex-edge dis-
tance, edge crossings, etc.) are easily formulated in terms of interaction poten-
tials [3].

If layouts x ∈ X are assigned probabilities

P (X = x) =
1
Z

e−U(x),

where Z =
∑

y∈X e−U(y) is a normalizing constant, random variable X is a
(Gibbs) random field. Both X and its distribution are called a (random field)
layout model for G. Clearly, the above probabilities depend on the energy only,
with a layout of low energy being more likely than a layout of high energy.
By using a random variable, the entire layout model is described in a single
object. Due to the familiar form of its distribution, a wealth of theory becomes
applicable (a primer in the context of dynamic graph layout is [5]). See [13]
for an overview on the theory of random fields, and some of its applications in
image processing. Since random fields are used so widely, there also is a great
deal of literature on algorithms for energy minimization (see e.g. [12]).

1The original spring embedder does not specify an objective function, but its gradients.
The above potentials appear in [6].

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 141

Figure 3: Bézier cubic curve [2]. Two endpoints and two control points define
a smooth curve that is entirely enclosed by the convex hull of these four points

3 A Layout Model for Curved Edges

We now define a layout model for undirected train graphs G = (V, E). The
layout elements that need to be positioned to render Bézier curves are their
control points. In fact, we may consider stations and control points to be vertices
of an auxiliary graph, so that rules for favorable positioning can be modeled by
auxiliary edges of appropriate desired length.

Their geographical location gives the position of all vertices corresponding
to stations, and we identify these vertices with their position. Minimal edges
as well as very long transitive edges are represented straight-line. For the other
edges we use Bézier cubic curves (cf. Figure 3).2 Let Ĕτ1 ⊆ E be the set of
transitive edges of length less than a threshold parameter τ1, such that the set
of layout elements consists of two control points for each edge in Ĕτ1 , L ={
bu(e), bv(e) | e = {u, v} ∈ Ĕτ1

}
. If two Bézier points belong to the same edge,

they are called partners. The anchor, abv(e), of any bv(e) ∈ L is v. The default
position of all Bézier points is on the straight line through the endpoints of their
edges at equal distance from their anchor and from their partner.

The position assigned to a Bézier point is influenced by its partner, its an-
chor, all Bézier points with the same anchor or close default positions, and all
stations near the default position. Let {u, v} ∈ Ĕτ1 be a transitive edge, and
let b ∈ L be a Bézier point of {u, v}. Given two parameters ε1 and ε2, consider
an ellipse with major axis going through u and v. Let its radii be ε1 · d(u,v)

2

and ε2 · d(u,v)
2 , respectively. We denote the set of all stations and Bézier points

(at their default position) within this ellipse, except for b and its anchor, by
Eb. Recall that the neighborhood of some layout element consists of all those
layout elements that have an influence on its positioning. Therefore, ηb equals
the union of Eb ∩ L, the set of Bézier points with the same anchor as b, and
(since interactions are symmetric) the set of Bézier points b′ for which b ∈ Eb′ .
We used ε1 = 1.1 and ε2 = 0.5 for the examples presented in Section 4.

2It will be obvious from the examples presented in Section refsec:examples why it is not
useful to represent all transitive edges by Bézier curves.

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 142

An interaction potential is defined for each design goal that a good layout
of Bézier points should achieve:

• Distance to stations. For each Bézier point b ∈ L of some edge {u, v} ∈
Ĕτ1 , there are repulsion potentials∑

s∈Eb∩V

Rep(xb, s | (%1 · λb)4),

with λb = d(u,v)
3 and %1 a constant. These ensure reasonable distance from

stations in the vicinity of b and can be controlled via %1. A combined
repulsion and attraction potential

Dist(xb, ab | (λ1 · λb)4)

where λ is another constant, keeps b sufficiently close to its anchor ab.

• Distance to near Bézier points. As is the case with near stations, a Bézier
point b1 ∈ L should not lie too close to another Bézier point b2 ∈ ηb1 . If
b1 is neither the partner of nor bound to b2 (binding is defined below), we
add

Rep(xb1 , xb2 | %4
2 · min{λ4

b1 , λ
4
b2})

The desired distance between partners b1 and b2 is equal to the desired
distance from their respective anchors,

Dist(xb1 , xb2 | (λ1 · λb1)
4)

• Binding. In general, it is not desirable to have Bézier points b1, b2 ∈ L with
a common anchor lie on different sides of a minimal edge path through
the anchor. Therefore, we bind them together, if λb1 does not differ much
from λb2 , i.e. if 1

τ2
<

λb1
λb2

< τ2 for a threshold τ2 ≥ 1, we add potentials

β · Dist(xb1 , xb2 |λ4
2 · (λ4

b1 + λ4
b2)/2)

where λ2 is a stretch factor for the length of binding edges, and β controls
the importance of binding relative to the other potentials.

In summary, the objective function is made of nothing but attraction and repul-
sion potentials that define an auxiliary graph layout problem in the following
way: Stations correspond to vertices with fixed positions, while Bézier points
correspond to vertices to be positioned. Edges of different desired lengths exist
between Bézier points and their anchors, between partners, and between Bézier
points bound together. Just like edge lengths, the magnitude of repulsion dif-
fers across the elements. See Figure 4 and recall that repulsion potentials are
defined on local neighborhoods only. The respective influence of the different
parameters is discussed in the following section.

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 143

Figure 4: Auxiliary graph induced by Bézier point layout interactions for the
train graph of Figure 2(b). Note that there is no binding between the two layout
elements indicated by black rectangles, because their default distances from the
anchor differ too much (threshold parameter τ2)

4 Experiments

The objective function described in the previous section was obtained only after
experimentation with a number of different potentials and parameters. We
started with a simple combination of repulsion from stations and attraction
and repulsion from partners and anchors. In fact, we then used splines to
represent transitive edges. It seemed that they offered better control, since they
actually pass through their control points. However, spline segments between
partners tended to extend far into the layout area. After replacing splines
by Bézier curves, the promising results encouraged us to try more elaborate
objective functions. In particular it showed that it is useful to represent long
transitive edges straight-line, which led to the introduction of threshold τ1. A
new requirement we found while discussing earlier examples with users was
that incident (consecutive or nested) transitive edges should lie on one side of
a path of minimal edges. Binding proved to achieve this goal, but needed to
be constrained to control segments of similar desired length, because otherwise
short transitive edges are deformed when bound to long ones. Threshold τ2

therefore controls the length ratio of segments bound.
Identification of a suitable vector θ = (%1, %2, λ1, λ2, β, τ1, τ2) of parameters

is a serious problem. Two nested simulated annealing computations are used
in [11] to identify parameters of a spring embedder variant. In [9], a genetic
algorithm is used to breed a suitable objective function. However, both meth-

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 144

ods are heuristic in defining their objective as well as in optimizing it. Given
one or more examples which are considered to be well done (e.g. by manual re-
arrangement), a theoretically sound approach would be to carry out parameter
estimation for random variable X(θ) describing the layout model as a function
of parameter vector θ. Given a layout x, the likelihood of θ is

P (X = x | θ) =
1

Z(θ)
exp {−U(x | θ)}

where Z(θ) =
∑

y∈X exp{−U(y | θ)} is the normalizing constant. A maximum
likelihood estimate θ∗ is obtained by maximizing the above expression with
respect to θ. Unfortunately, computation of Z(θ) is practically intractable,
since it sums over all possible layouts. One might hope to reduce computational
demand by exploiting the locality of random fields (see e.g. [13]). Even though
neighboring layout elements are clearly not independent, reasonable estimates
are obtained from the pseudo-likelihood function [1]

∏
l∈L

1
Zl(θ)

exp

{
−

∑
C∈C : l∈C

UC(x | θ)
}

with Zl(θ) =
∑

xl∈Xl
exp{−∑

C∈C : l∈C UC(x | θ)}. However, Zl(θ) is a sum
over all possible positions of layout element l, such that maximization is still
intractable in this setting. So we exploit locality in a very different way, namely
by experimenting with small examples in a feedback cycle. The parameters θ
thus identified prove appropriate even for huge graphs, indicating that the local
neighborhood definition lets the model scale well.

The rationale behind each component of θ = (%1, %2, λ1, λ2, β, τ1, τ2) is listed
in Figure 5, as well as a choice of values that proved satisfactory. The effects of
some parameters are demonstrated in Figure 6. It is clearly seen how increased
repulsion potentials spread Bézier points (Figs. 6(a) and 6(b)). Without binding,
curves tend to lie on different sides of minimal edges (Fig. 6(c)), which can even
be enforced (Fig. 6(d)). This indicates why binding is a valuable refinement.

To carry out the above experiments and to generate large examples, we
initially used an implementation of a fairly general random field layout module,
written in C++ using LEDA [10]. It provides a set of fundamental neighborhood
types and interaction potentials, to which others can be added. Since our main
goals with this module are flexibility and model design, a simple simulated
annealing approach is used for energy minimization. Since it turned out that
the final model needed only attraction and repulsion potentials, we later replaced
the module with a customized implementation of the approach of [8], which sped
up energy minimization by a factor of ten. All running times given are with
respect to this latter implementation executed on one 336 MHz Ultra-SPARC-
II processor of a SUN Enterprise 4000/5000 running under Solaris 2.5.1 with
1024 MBytes of RAM. Note that neighborhoods are computed in a preprocessing
step, and we have made no effort whatsoever to reduce its running time.

The original datasets provided by TLC/EVA are quite large: For a train
graph of the size shown in Figure 10 (roughly 2,000 vertices and 4,000 edges),

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 145

(a) Small part of a train graph with parameters θ =

(0.3, 0.7, 0.7, 0.5, 0.4, 100, 2.2)

θ controls
%1 distance of Bézier points from stations
%2 mutual distance of Bézier points
λ1 length of control segments
λ2 length of bands
β importance of binding
τ1 threshold for straight transitive edges
τ2 threshold for binding segments of different length
ε1 major axis radius of neighborhood defining ellipse
ε2 minor axis radius of neighborhood defining ellipse

(b) Parameters of the train graph layout model

Figure 5: User specifiable parameters in the train graph layout model and a
recommended choice applied to a small train graph. Control segments shown
instead of Bézier curves (cf. Figure 6)

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 146

(b) Station repulsion (c) Segment stretching
θ = (5 , 0.7, 0.7, 0.5, 0.4, 100, 3) θ = (0.3, 4 , 1 , 0.5, 0.4, 100, 3)

(d) No binding (e) Inverse binding
θ = (0.3, 0.7, 0.7, 0 , 0 , 100, 0) θ = (0.3, 0.7, 0.7, 2 , 1 , 100, 3)

Figure 6: Effects of some parameters demonstrated. For ease of comparison,
control segments are shown instead of the corresponding Bézier curves. All
examples have ε1 = 1.1 and ε2 = 0.5 and should be compared to Figure 5

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 147

about 11 MBytes of time table data are evaluated. Connections are classified
into minimal and transitive edges using existing code.

The first example is shown in Figure 7. The graph represents regional trains
in southwest Germany. Edge classification, transformation into a layout graph,
neighborhood generation, and layout computation took less than 10 seconds.
The example also demonstrates how visual inspection can immediately yield
some candidates for misclassified edges. Parts of the drawing are magnified in
Figures 8 and 9. A few labels have been added to support geographical location
of the area shown, but otherwise the drawings have not been modified. Note
that connections can be told apart quite well, and that binding successfully
causes incident (consecutive or nested) transitive edges to lie on the same side
of minimal edges.

Larger examples are given in Figures 10 and 12. Computation times were
about 5 minutes and 9 minutes, respectively, most of which was spent on de-
termining the neighborhoods. Energy minimization took about 30 seconds and
47 seconds, respectively. One readily observes that the algorithm scales very
well, i.e. increased size of the graph does not reduce layout quality on more
detailed levels (Figs. 11 and 13). This is largely due to the fact that neighbor-
hoods remain fairly local. The benefits of a length threshold for curved transitive
edges is another straightforward observation, notably in Figures 12 and 13(a).
Together with the ability to zoom into different regions, data exploration is well
supported.

Acknowledgments

Besides our contacts at TLC, we would like to thank Annegret Liebers, Karsten
Weihe, and Thomas Willhalm for making the train graph generation and edge
classification code available. We are grateful to Frank Müller, Vaneesa Kääb,
and Marco Gaertler, who carried out most of the other implementation work.
We also wish to thank the referees for some helpful suggestions.

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 148

⇐

⇐

Figure 7: Regional trains in southwest Germany. 619 vertices, 876 edges (229
transitive), θ = (0.7, 0.3, 0.7, 0.5, 0.4, 100, 3). Arrows indicate two out of several
edges that appear to be misclassified

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 149

Ludwigshafen Mannheim

Figure 8: Magnification from Figure 7

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 150

F
re

ib
u
rg

B
a
se

l

K
o
n
st

a
n
z

F
ig

ur
e

9:
M

ag
ni

fic
at

io
n

fr
om

F
ig

ur
e

7

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 151

Figure 10: Italian train and ferry connections. 2,386 vertices, 4,370 edges (1,849
transitive), θ = (0.7, 0.3, 0.7, 0.5, 0.4, 100, 3)

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 152

V
en

ez
ia

S
.
L
u
ci

a

F
ig

ur
e

11
:

M
ag

ni
fic

at
io

n
fr

om
F
ig

ur
e

10

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 153

Figure 12: French connections. 4,551 vertices, 7,793 edges (2,408 transitive),
θ = (0.7, 0.3, 0.7, 0.5, 0.4, 100, 3)

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 154

(a) Paris has six long-distance
stations

Strasbourg

(b) Strasbourg, gateway to France

Figure 13: Magnifications from Figure 12

Brandes and Wagner, Layout of Train Graphs, JGAA, 4(3) 135–155 (2000) 155

References

[1] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society, Series B, 48(3):259–302, 1986.

[2] P. Bézier. Numerical Control. Wiley, 1972.

[3] U. Brandes. Layout of Graph Visualizations. PhD thesis, University of Kon-
stanz, 1999. See http://www.ub.uni-konstanz/kops/volltexte/1999/
255/.

[4] U. Brandes, P. Kenis, J. Raab, V. Schneider, and D. Wagner. Explorations
into the visualization of policy networks. Journal of Theoretical Politics,
11(1):75–106, 1999.

[5] U. Brandes and D. Wagner. A Bayesian paradigm for dynamic graph layout.
In G. Di Battista, editor, Proceedings of the 5th International Symposium
on Graph Drawing (GD ’97), volume 1353 of Lecture Notes in Computer
Science, pages 236–247. Springer, 1997.

[6] R. Davidson and D. Harel. Drawing graphs nicely using simulated anneal-
ing. ACM Transactions on Graphics, 15(4):301–331, 1996.

[7] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–
160, 1984.

[8] T. M. Fruchterman and E. M. Reingold. Graph-drawing by force-directed
placement. Software—Practice and Experience, 21(11):1129–1164, 1991.

[9] T. Masui. Evolutionary learning of graph layout constraints from exam-
ples. In Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST ’94), pages 103–108. ACM, The Association for
Computing Machinery, 1994.

[10] K. Mehlhorn and S. Näher. The Leda Platform of Combinatorial and
Geometric Computing. Cambridge University Press, 1999. Project home
page at http://www.mpi-sb.mpg.de/LEDA/.

[11] X. Mendonça and P. Eades. Learning aesthetics for visualization. In Anais
do XX Seminário Integrado de Software e Hardware, pages 76–88, Flo-
rianópolis, Brazil, 1993.

[12] M. Pelillo, editor. Energy Minimization Methods in Computer Vision and
Pattern Recognition (EMMCVPR ’97), volume 1223 of Lecture Notes in
Computer Science. Springer, 1997.

[13] G. Winkler. Image Analysis, Random Fields and Dynamic Monte Carlo
Methods, volume 27 of Applications of Mathematics. Springer, 1995.

