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Abstract

Preserving the “mental map” is a major goal of interactive graph drawing
algorithms. Several models have been proposed for formalizing the notion of
mental map. Additional work needs to be done to formulate and validate
“difference” metrics which can be used in practice. This paper introduces a
framework for defining and validating metrics to measure the difference between
two drawings of the same graph, and gives a preliminary experimental analysis
of several simple metrics.
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1 Introduction

Graph drawing algorithms have traditionally been developed using a batch model,
where the graph is redrawn from scratch every time a drawing is desired. These
algorithms, however, are not well suited for interactive applications, where the user
repeatedly makes modifications to the graph and requests a new drawing. When the
graph is redrawn it is important to preserve the look (the user’s “mental map” [19])
of the original drawing as much as possible, so the user does not need to spend a
lot of time relearning the graph.

The problems of incremental graph drawing, where vertices are added one at a
time, and the more general case of interactive graph drawing, where any combination
of vertex/edge deletion and insertion is allowed at each step, have been starting to
receive more attention. See, for example, the work of Biedl and Kaufmann [3], Bran-
des and Wagner [4], Bridgeman et. al. [6], Cohen et. al. [8], Fößmeier [12], Miriyala,
Hornick, and Tamassia [18], Moen [20], North [21], Papakostas, Six, and Tollis [22],
Papakostas and Tollis [23], and Ryall, Marks, and Shieber [26]. However, while the
algorithms themselves have been motivated by the need to preserve the user’s men-
tal map, much of the evaluation of the algorithms has so far focused on traditional
optimization criteria such as the area and the number of bends and crossings (see,
for example, the analysis in Biedl and Kaufmann [3], Fößmeier [12], Papakostas,
Six, and Tollis [22], and Papakostas and Tollis [23]). Mental map preservation is
often achieved by attempting to minimize the change between drawings — typically
by allowing only very limited modifications (if any) to the position of vertices and
edge bends in the existing drawing — making it important to be able to measure
precisely how much the look of the drawing changes. Animation can be used to pro-
vide a smooth transition between the drawings and can help compensate for greater
changes in the drawing, though it is still important to limit, if not minimize, the
difference between the drawings because if there is a very large change it can become
difficult to generate a clear, useful animation. It is thus still important to have a
measure of how the look of the drawing changes.

Studying “difference” metrics to measure how much a drawing algorithm changes
the user’s mental map has a number of benefits, including

• providing a basis for studying the behavior of constraint-based interactive
drawing algorithms like InteractiveGiotto [6], where meaningful bounds on the
movement of any given part of the drawing are difficult to obtain,

• providing a technique to compare the results of different interactive drawing
algorithms, and

• providing a goal for the design of new drawing algorithms by identifying which
qualities of the drawing are the most important to preserve.

Finding a good difference metric also has an immediate practical benefit, namely
solving the “rotation problem” of InteractiveGiotto. Giotto [27], the core of Interac-
tiveGiotto, does not take into account the coordinates of vertices and bends in the
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(a) (b) (c)

Figure 1: The rotation problem of InteractiveGiotto. (a) is the user-modified graph
(the user’s changes are shown in orange); (b) and (c) show the uncorrected and
corrected outputs, respectively. While (b) and (c) are both clearly drawings of the
graph shown in (a), the resemblance is more readily seen in the properly rotated
and reflected drawing (c).

original drawing when constructing a new drawing — and, as a result, the output
of InteractiveGiotto may be rotated by a multiple of 90 degrees and/or be a mirror-
image reflection of the original drawing (Figure 1). The problem can be solved by
computing the value of the metric for each of the possible rotations and choosing
the rotation with the smallest value.

Eades et. al. [11], Lyons, Meijer, and Rappaport [16], and Misue et. al. [19]
have proposed several models for formalizing the notion of the mental map, though
more work needs to be done to formally define potential difference metrics and then
experimentally validate (or invalidate) them. Validation can be via user studies
similar to those done by Purchase, Cohen, and James [24, 25] to evaluate the impact
of various graph drawing aesthetics on human understanding.

Motivated by applications to InteractiveGiotto, this paper will focus primarily on
difference metrics for orthogonal drawings, though many of the metrics can be used
without modification for arbitrary drawings. Section 3 describes several potential
metrics, Section 4 presents a framework for evaluating the suitability of the metrics
along with a preliminary evaluation, and Section 5 outlines plans for future work.

2 Preliminaries

Paired Sets of Objects Every metric presented in this paper compares two
drawings D and D′ of the same graph G. Each object of G has a representation
in both D and D′. For example, each vertex of G has a representation in both
drawings — if vertices are drawn as rectangles, this representation consists of the
position, size, color, line style, etc. of the rectangle. Similarly, each edge of G
has a representation in both drawings, and if edges are drawn as polylines, this
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representation consists of the positions of the bends and endpoints, plus the color,
line style, and so forth.

A paired set of objects is a set of pairs describing the representation of each object
in the two drawings. The paired set of vertices of G is the set of pairs (rv,r′v), where
rv and r′v are the representations of v in D and D′, respectively, for all vertices v of
G. The paired set of edges is defined similarly. Referring to a paired set is simply a
way of matching up the elements of each drawing according to the underlying object
of G that they represent.

It should be noted that the only features of the representations that are consid-
ered here are the geometric features such as position and size; other features like
vertex color and line style are also very important in preserving the look of the
drawing and may be able to at least partially compensate for geometric changes but
are not considered further at this stage.

Point Set Selection Most of the metrics are based on point sets, working with
paired sets of points derived from the edges and vertices of the graph rather than
the edges and vertices themselves. Once derived, each point is independent from
the others — there is no notion of a group of points being related because they were
derived from the same vertex, for example.

Points can be selected in a number of ways. North [21] suggests that vertex
positions are a significant visual feature of the drawing, and two vertex-centered
methods — centers and corners — are used here to reflect that idea. “Centers”
consists of the center points of each vertex; this captures how vertices move. “Cor-
ners” uses the four corners of each vertex, taking into account both vertex motion
(the movement of the center) and changes in the vertex dimension. It seems impor-
tant to take into account changes in vertex dimension because a vertex with a large
or distinctive shape can act as a landmark to orient the user to the drawing; loss of
that landmark makes orientation more difficult. Other choices of points can include
edge bends and endpoints.

Points can also be derived from groups of graph objects. For example, the
vertices of the graph can be partitioned, and points derived from the centroids or
convex hull of the partitions. Point sets based on partitioning can be used to capture
information about larger units of the graph, such as groups of vertices representing
related objects.

Drawing Alignment The key features of a graph object’s representation are
coordinates, which means metrics may be sensitive to the particular values of those
coordinates — the scaling and translation of one point set relative to the other can
make a large difference in the value of the metric (Figure 2).

To eliminate this effect, the drawings are aligned before coordinate-sensitive
metrics are computed. This is done by extracting a (paired) set of points from the
drawings and applying a point set matching algorithm to obtain the best fit. In
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Figure 2: Two point sets (black and gray) superimposed. (Corresponding points
in the two sets are connected with dotted lines.) As shown, the Euclidean distance
metric (Section 3.1) would report a distance of 4.25. However, translating the gray
points one unit to the left and then scaling by 1/2 in the x direction allows the
point sets to be matched exactly, for a distance of 0. It should be noted that exact
matches are not possible in general.

general the matching algorithm should take into account scaling, translation, and
rotation, though it may be possible to eliminate one or more of the transformations
for certain metrics or if something is known about the relationship between the two
drawings. For example, interactive drawing algorithms often preserve the rotation
of the drawing (see Biedl and Kaufmann [3] and Papakostas and Tollis [23] for
examples), eliminating the need to consider rotation in the alignment stage. Even if
the algorithm does not preserve the rotation, for orthogonal drawings there are only
eight possible rotations for the second drawing relative to the first — four multiples
of π/2, applied to the original drawing and its reflection about the x axis — which
can be handled by computing the metric separately for each rotation and taking the
minimum value instead of incorporating rotation into the alignment process.

A great deal of work has been done on point set matchings; see Alt, Aichholzer,
and Rote [1], Chew et. al. [7], and Goodrich, Mitchell, and Orletsky [14] for several
methods of obtaining both optimal and approximate matchings. Different methods
can be applied when the correspondence between points is known as it is here;
Imai, Sumino, and Imai [15] provide an algorithm that minimizes the maximum
distance between corresponding points under translation, rotation, and scaling. In
the implementation used in Section 4, the alignment is performed by using gradient
search to minimize the distance squared between points.

3 Metrics

The difference metrics being considered fall into six categories:
• distance: metrics based on the distance between points or the distance points

move between drawings
• proximity: metrics based on the nearness of points and the clustering of

points according to the distance between them
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• partitioning: metrics based on partitioning points according to measures
other than proximity

• orthogonal ordering: metrics based on the relative angle between pairs of
points

• shape: metrics based on the sequence of horizontal and vertical segments of
the graph’s edges

• topology: metrics based on the embedding of the graph
Proximity, ordering, and topology are suggested by Eades et. al. [11], Lyons, Meijer,
and Rappaport [16], and Misue et. al. [19] as qualities which should be preserved;
distance (also suggested by Lyons, Meijer, and Rappaport [16]), shape, and parti-
tioning reflect intuition about what causes drawings to look different. Within each
category specific metrics were chosen to capture intuition about what qualities of
the drawing are important to preserve.

An alternative taxonomy is given by Biedl et. al. [2]. This taxonomy is similar
to the one given above, with the main distinctions being the inclusion of “feature
similarity” based on the appearance of regions of the drawing, and the grouping of
all measures based on the comparison of point sets into a single “metric similarity”
category.

In the following, let P denote the (paired) set of points, and pi and p′i be the
coordinates of point i in drawings D and D′, respectively. Also let d(p, q) be the
Euclidean distance between points p and q.

3.1 Distance

The distance metrics reflect the simple observation that drawings that look very
different cannot be aligned very well, and vice versa. Since the alignment is based
on distance minimization, these metrics essentially measure the quality of the align-
ment.

In order to make the value of the distance metrics comparable between pairs of
drawings, they are scaled by the graph’s unit length u. For orthogonal drawings the
unit length can be computed by taking the greatest common divisor of the Man-
hattan distances between vertex centers and bend points on edges. Non-orthogonal
portions of the drawing, such as modifications of an orthogonal drawing made by
the user, can be ignored during the computation. While the determination of the
unit length will be unreliable if only a small portion of the drawing is orthogonal,
scaling by the unit length is not necessary in some applications (e.g., solving the
rotation problem of InteractiveGiotto) and can often be supplied manually if it is
required (e.g., the drawing algorithm is known to place vertices on a unit grid).

Hausdorff Distance The undirected Hausdorff distance is a standard metric for
determining the distance between two point sets, and measures the largest distance
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between a point in one set and its nearest neighbor in the other.

haus(D,D′) =
1
u

max{max
i

min
j

d(pi, p
′
j),max

i
min

j
d(p′i, pj)}

where 1 ≤ i, j ≤ |P | and j 6= i.

Euclidean Distance Euclidean distance, used by Lyons, Meijer, and Rappa-
port [16], is a simple metric measuring the average distance moved by each point
from the first drawing to the second; it is motivated by the notion that if points
move a long way from their locations in the first drawing, the second drawing will
look very different.

dist(D,D′) =
1

u |P |
∑

1≤i≤|P |
d(pi, p

′
i)

Relative Distance Relative distance measures the average change in the distance
between each pair of points between the first drawing and the second. This measures
how much the points in each drawing move relative to each other; it is similar in
some respects to the orthogonal ordering metrics in Section 3.4.

rdist(D,D′) =
1

|P | (|P | − 1)

∑
1≤i,j≤|P |

∣∣∣d(pi, pj) − d(p′i, p
′
j)

∣∣∣

3.2 Proximity

The proximity metrics reflect the idea that points near each other in the first draw-
ing should remain near each other in the second drawing. This is stronger than
the distance metrics because it captures the idea that if an entire subgraph moves
relative to another (and there are only small changes within each subgraph), the
distance should be less than if each point in one of the subgraphs moves in a different
direction (Figure 3).

Three different metrics are used to try to capture this idea: nearest neighbor
within (nn-within), nearest neighbor between (nn-between), and ε-clustering.

Nearest Neighbor Within Nearest neighbor within is based on the reasoning
that if pj is the closest point to pi in D, then p′j should be closest point to p′i in
D′. Considering only distances within a single drawing means that nn-within is
alignment-independent and thus not subject alignment errors, but means that it is
not suitable for solving the rotation problem of InteractiveGiotto.

This metric has two versions, weighted and unweighted. In the weighted version
the number of points closer to p′i than p′j is considered, whereas in the unweighted
version only whether or not p′j is the closest point matters. The reasoning behind
the weighted version is that if there are more points between p′i and p′j, the visual
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(b) (c)(a)

Figure 3: Proximity: (b) looks more like (a) than (c) does because the relative shape
of both the inner and outer squares are preserved even though the distance (using
the Euclidean distance metric) between (c) and (a) is smaller. An aligned version
of the vertices of (a), used in the computation of the distance metric, is shown with
dotted lines in (b) and (c).

linkage between p′i and p′j has been disrupted to a greater degree and the drawing
looks more different.

In both cases the distance is scaled by the number of points being considered
and W , the maximum weight contributed by a single point, so that the metric’s
value is always in the range [0, 1].

nn-w(D,D′) =
1

W |P |
∑

1≤i≤|P |
closer(p′i, p

′
j)

where pj is the closest point to pi in D and

closer(p′i, p
′
j) =

∣∣∣{k | d(p′i, p
′
k) < d(p′i, p

′
j)}

∣∣∣ , W = |P | − 2 (weighted)

closer(p′i, p′j) =

{
0 if d(p′i, p

′
j) ≤ d(p′i, p

′
k), k 6= i

1 otherwise
, W = 1 (unweighted)

Nearest Neighbor Between Nearest neighbor between is similar to nn-within
but instead measures whether or not p′i is the closest of the points in D′ to pi

when the two drawings are aligned. The idea that a point should remain nearer
to its original position than any other is also the force behind layout adjustment
algorithms based on the Voronoi diagram [16].

nn-b(D,D′) =
1

W |P |
∑

1≤i≤|P |
closer(pi, p

′
i)

where

closer(pi, p
′
i) =

∣∣∣{j | d(pi, p
′
j) < d(pi, p

′
i)}

∣∣∣ , W = |P | − 1 (weighted)

closer(pi, p
′
i) =

{
0 if d(pi, p

′
i) ≤ d(pi, p

′
j), j 6= i

1 otherwise
, W = 1 (unweighted)
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Unlike nn-within, nn-between is not alignment- and rotation-independent and
thus is suitable for solving the rotation problem.

ε-Clustering The definition for an ε-cluster is from Eades et. al [11]: An ε-cluster
for a point pi is the set of points pj such that d(pi, pj) ≤ ε, where a reasonable value
to use for ε is

ε = max
i

min
j 6=i

d(pi, pj)

The ε-cluster metric measures how the ε-cluster for pi compares to that for p′i. Let
CD = {(i, j) | d(pi, pj) ≤ εD} and CD′ = {(i, j) | d(p′i, p′j) ≤ εD′}. Then

clust(D,D′) = 1 − |CD ∩ CD′ |
|CD ∪ CD′ |

The idea is that points should be in the same ε-cluster in both drawings.

3.3 Partitioning

The partitioning metrics are based on dividing the point set into subsets according
to some criteria, and measuring qualities of these partitions. The motivation for
this is to capture “visual units” that the user may use for orientation when learning
the new drawing.

Fixed Relative Position Partitioning A variety of partitioning methods are
possible. A simple one is to divide the point set so that the points in each group
have the same relative position in both drawings. This identifies blocks of the graph
that are the same in both drawings — the larger the partitions, the more unchanged
parts and the more similar the drawings.

Two metrics are computed, the average partition size and the number of parti-
tions. Both are scaled to have values between 0 and 1:

alsz(D,D′) = 1 −


1

k

∑
1≤i≤k

|Si|

 − 1

|P | − 1
[average size]

alct(D,D′) =
k − 1
|P | − 1

[number of partitions]

where the set of partitions is {S1, . . . , Sk}. The idea is that as the drawings become
more different, the partition size will decrease and the number of partitions will
increase.

The partitioning method and the metrics computed are obviously quite simple,
and can be made much more sophisticated. For example, the partitions can be
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adjusted to only include points that are also close physically; while it tends not
to be the case that points from widely separated regions of the drawing are in the
same partition, it can occur. A large distance between points interferes with their
grouping as a single visual unit.

Additional sophistications can address things such as how visually separate two
adjacent partitions are, since if they are very near or entertwined in one drawing,
it is more difficult for the observer to distinguish them and use them as landmarks
for the other drawing. Partitions can also be weighted to take into account how
well the partition reflects a distinct unit of the graph, so that partitions containing
only points derived from a connected subgraph are better than those containing
points from several unconnected portions of the graph, even if those subgraphs are
physically close together.

3.4 Orthogonal Ordering

The orthogonal ordering metric reflects the desire to preserve the relative ordering of
every pair of points — if pi is northeast of pj in D, p′i should remain to the northeast
of p′j in D′ (Eades et. al. [11] and Misue et. al. [19]). The simplest measurement of
difference in the orthogonal ordering is to take the angle between the vectors pj −pi

and p′j − p′i (constant-weighted orthogonal ordering). This has the desirable feature
that if pj is far from pi, d(pj , p

′
j) must be larger to result in the same angular move,

which reflects the intuition that the relative position of points near each other is
more important that the relative position of points that are far apart.

However, simply using the angular change fails to take into account situations
such as that shown in Figure 4. This problem can be addressed by introducing a
weight that depends on the particular angles involved in the move in addition to
size of the move (linear-weighted orthogonal ordering).

order(D,D′) =
1

W |P |
∑

1≤i,j≤|P |
n min(order(θij , θ

′
ij), order(θ′ij, θij))

where θij is the angle from the positive x axis to the vector pj − pi, θ′ij is the angle
from the positive x axis to the vector p′j − p′i, and

order(θij, θ
′
ij) =

∫ θ′ij

θij

weight(θ) dθ, W = min
{∫ π

0
weight(θ) dθ,

∫ 2π

π
weight(θ) dθ

}

The weight functions are

weight(θ) =




π
2
−(θ mod π

2
)

π
4

if (θ mod π
2 ) > π

4
θ mod π

2
π
4

if (θ mod π
2 ) ≤ π

4

(linear-weighted)

weight(θ) = 1 (constant-weighted)
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(a) (b) (c)

Figure 4: Orthogonal ordering: Even though the angle the vertex moves relative to
the center of the large vertex is the same from (a) to (b) and from (a) to (c), the
perceptual difference between (a) and (c) is much greater. The original location of
the vertex is shown with a dotted box in (b) and (c) for comparison purposes.

The λ-matrix model for measuring the difference of two point sets, used by
Lyons, Meijer, and Rappaport [16], is based on the concept of order type of a point
set, from Goodman and Pollack [13]. This model tries to capture the notion of
the relative position of vertices in a straight-line drawing and is thus related to the
orthogonal ordering metric.

3.5 Shape

The shape metric is motivated by the reasoning that edge routing may have an
effect on the overall look of the graph (Figure 5). The shape of an edge is the
sequence of directions (north, south, east, and west) traveled when traversing the
edge; writing the shape as a string of N, S, E, and W characters yields the shape
string of the edge. For non-orthogonal edges the direction is taken to be the most
prominent direction; for example, if the edge goes from (1,1) to (4,2) the most
prominent direction is east. For each pair of edges (ei, e

′
i), the edit distance between

the corresponding shape strings is computed. Two methods are used for determining
the edit distance. One uses dynamic programming to compute the minimum number
of insertions, deletions, or replacements of characters needed to transform one string
into the other. The other is similar, but normalizes the measure according to the
length of the strings; the algorithm is given by Marzal and Vidal [17]. The value of
the shape metric is the average edit distance over the graph’s edges.

shape(D,D′) =
1
|E|

∑
1≤i≤|E|

edits(ei, e
′
i)

Shape is scale- and translation-independent.
The shape metric is similar in spirit to the cost function used by Brandes and

Wagner [5] in their dynamic extension of Giotto [27]. Their cost function counts the
number of changes in angles at vertices and edge bends; the shape metric takes this
in account to some degree by noting changes in the direction of an edge segment.
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(b)(a)

Figure 5: Shape: (a) and (b) look different even though the graphs are the same
and the vertices have the same coordinates.

3.6 Topology

The topology metric reflects the idea that preserving the order of edges around
a vertex is important in preserving the mental map (Eades et. al. [11] and
Misue et. al. [19]) — comparing the drawing produced by Giotto in Figures 6 and 7
to the user’s input illustrates this. However, since most interactive orthogonal draw-
ing algorithms always preserve topology, it is not useful as a means of comparing
these algorithms. (See, for example, the algorithms of Bridgeman et. al. [6], Biedl
and Kaufmann [3], Fößmeier [12], Papakostas, Six, and Tollis [22], and Papakostas
and Tollis [23].) Topology is also alignment-independent and so can not be used to
solve the rotation problem of InteractiveGiotto. As a result, it is not discussed in any
more detail here.

4 Analyzing the Metrics

Once defined, the suitability of the metrics must be evaluated. A good metric
for measuring the difference between drawings should satisfy the following three
requirements:

• it should qualitatively reflect the visual difference between two drawings, i.e.
the value increases as the drawings diverge;

• it should quantitatively reflect the visual difference so that the magnitude of
the difference in the metric is proportional to the perceived difference; and

• in the rotation problem of InteractiveGiotto, the metric should have the smallest
value for the correct rotation, though this requirement can be relaxed when
the difference between drawings is high since in that case there is no clear
“correct” rotation.

The third point is the easiest to satisfy — in fact, most of the metrics defined in the
previous section can be used to solve the rotation problem — but is still important
worth considering since the problem was one of the factors that first inspired this
work.

The running time of the metrics is not considered at this point. While efficiency
is clearly a concern, the goal at this stage is to identify the type of measure that
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best captures visual similarity. Once this has been done, efficient implementations
and/or approximations can be considered.

Some preliminary work has been done on evaluating the proposed metrics with
respect to the first and third criteria. Evaluating the qualitative behavior of poten-
tial metrics requires a human-generated master ordering of pairs of drawings based
on the visual difference between the existing drawing and the new drawing in each
pair. This is very difficult to do when each pair of drawings is of a different graph,
and most interactive drawing algorithms only produce a single drawing of a partic-
ular user-modified graph. InteractiveGiotto, however, makes it possible to obtain a
series of drawings of the same input by relaxing the constraints preserving the lay-
out. By default InteractiveGiotto preserves edge crossings, the direction (left or right)
and number of bends on an edge, and the angles between consecutive edges leaving
a vertex. Recent modifications allow the user to turn off the last two constraints
on an edge-by-edge or vertex-by-vertex basis, making it possible to produce a series
of drawings of the same graph by relaxing different sets of constraints. A smooth
way of relaxing the constraints is to use a breadth-first ordering, expanding outward
from the user’s modifications. In the first step all of the constraints are applied, in
the second step the bend and angle constraints are relaxed for all of the modified
objects, in the third step the angle constraints are relaxed for all vertices adjacent
to edges whose bends constraints have been relaxed, in the fourth step the bend
constraints are relaxed for all edges adjacent to vertices whose angle constraints
have been relaxed, and so on, alternating between angle and bend constraints until
all of the constraints have been relaxed. This relaxation method is based on the
idea that the user is most willing to allow restructuring of the graph near where her
changes were made and so the drawings produced resemble drawings that an actual
user might encounter. The result is a series of drawings of the same graph — a
relaxation sequence — bearing varying degrees of similarity to the original.

4.1 An Example

Figures 6 and 7 show portions of two relaxation sequences produced by Interactive-
Giotto; the base graphs and user modifications are those used in the first two steps
of Figure 2 in Bridgeman et. al. [6]. Giotto’s redraw-from-scratch drawing of the
graph is also included for comparison. Figures 8 and 9 show the results of sev-
eral metric-and-pointset combinations for each sequence of drawings. Since Giotto
and InteractiveGiotto do not preserve the orientation of the original drawing, each
metric is computed for the eight possible rotations (four multiples of π/2, with or
without a reflection around the x-axis) and the lowest value chosen. The color of
each column indicates the confidence, a measure of how much lower the metric’s
value is for the best rotation as compared to the second best; red is the most con-
fident and purple is the least confident, with white indicating that the metric is
rotation-independent (and so confidence is meaningless) and black indicating that
two rotations had the same lowest value. The shading of the column indicates
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(a) (b) (c)

(d) (e) (f)

Figure 6: Relaxations for stage 1. (a) shows the user’s modifications; (b)–(e) show
the output from InteractiveGiotto for relaxation steps 0, 4, 6, and 7; (f) is the output
from Giotto. (Intermediate relaxation steps produced drawings identical to those
shown and have been left out.) Rounded vertices and bends without markers indi-
cate vertices and bends for which the constraints have been relaxed.

whether or not the metric chose the right rotation — hashing means that the wrong
rotation had the lowest value. The correct rotation is defined to be the rotation
chosen by the metric/pointset combination with the highest confidence; in practive
this is nearly always the rotation a human would pick as the correct answer.

The point sets shown in Figures 8 and 9 show use the following abbreviations:
• centers: vertex centers
• corners: vertex corners
• hulls (cen): the vertex centers point set is partitioned using fixed relative

partitioning; the points used are the points on the convex hull of each partition
• hulls (cor): the vertex corners point set is partitioned using fixed relative

partitioning; the points used are the points on the convex hull of each partition
• centroids (cen): the vertex centers point set is partitioned using fixed relative

partitioning; the points used are the centroids of each partition
• centroids (cor): the vertex corners point set is partitioned using fixed relative

partitioning; the points used are the centroids of each partition
The t or f in brackets following the point set name indicates whether or not points
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 7: Relaxations for stage 2. (a) shows the starting graph, (b) shows the
user’s modifications (two vertices and their adjacent edges deleted), (c) is the fully-
constrained output from InteractiveGiotto (step 0), (d)–(j) show the output from
InteractiveGiotto for relaxation steps 2–8 (step 1 produced the same drawing as
step 0), and (k) is the output from Giotto. Rounded vertices and bends without
markers indicate vertices and bends for which the constraints have been relaxed.
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derived from parts of the graph modified by the user are included in the point set.
The first position indicates the value for the point set used for the computation of
the metric, the second the point set used for drawing alignment.

The relaxed drawings are labelled as follows:
• ni: InteractiveGiotto’s drawing of the nth relaxation step
• xg: Giotto’s output

4.2 Experimental Setup

For the experimental study, a set of 14 graphs with 30 vertices each were ex-
tracted from the 11,582-graph test suite used in the experimental studies of Di Bat-
tista et. al. [9, 10]. 30-vertex graphs were chosen as being small enough to work with
easily, but large enough so that one modification does not affect the entire graph.
Future experiments will consider graphs of different sizes.

A random modification was applied to each graph to simulate a user’s modifica-
tion. A modification is one of:

• edge insert: insertion of a single edge between two randomly chosen vertices
• edge delete: deletion of a single edge
• edge split: insertion of a single vertex at the midpoint of an existing edge,

splitting the edge into two new edges
• vertex insert: insertion of a vertex along with a number of adjacent edges;

both the number of edges and their endpoints is chosen randomly
• vertex delete: deletion of a vertex and its incident edges

Operations were not allowed to disconnect the graph. Since InteractiveGiotto pre-
serves the embedding of the graph and the edge crossings and bends, new edges
were routed so as to mimic how an actual user might draw the edge, instead of
simply connecting the endpoints with a straight line (and potentially introducing
many edge crossings). Only a single modification was made in each graph because
as the user’s changes affect a larger portion of the graph, the difference between the
new drawings and the original rapidly becomes high and it is difficult to determine
an ordering of the relaxation sequence.

Modifications of each type were applied to each of the 14 original graphs, though
due to some difficulties with Giotto, the total number of modified graphs generated
was only 63.

For each modified graph, a series of progressively relaxed drawings was obtained
by incrementally relaxing the constraints given to InteractiveGiotto. The number of
relaxed drawings for each modified graph ranged from 8 to 17, but was generally
around 11. Each sequence of drawings was then ordered by a human according to
increasing visual distance from the original drawing and this ordering was compared
to the orderings produced by sorting the drawings in each relaxation sequence ac-
cording to the computed values of the metric. The orderings were compared using
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Figure 8: Selected metric values for each drawing in stage 1.
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Figure 8: Selected metric values for each drawing in stage 1. (continued)
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Figure 9: Selected metric values for each drawing in stage 2.
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Figure 9: Selected metric values for each drawing in stage 2. (continued)
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the number of inversions: Two drawings Di and Dj were judged to be out of order
if Di came after Dj in the metric ordering but before Dj in the human ordering, Di

and Dj were ranked equally in the metric ordering but not the human ordering, or
Di and Dj were ranked equally in the human ordering but not the metric ordering.
The number of inversions was normalized by the maximum number of inversions for
the sequence to adjust for different sequence lengths.

4.3 Experimental Results

Some of the metric names used in Figures 10 and 11 have modifiers:
• nn-b and nn-w: unw and w denote the unweighted and weighted versions,

respectively
• order: const and linear denote the constant-weighted and linear-weighted

versions, respectively
• shape: norm indicates that the normalized edit distance was used

4.3.1 Ordering Ability

Figure 10 shows the frequency with which different metric-and-pointset combina-
tions did a particularly good or bad job of ordering the drawings for each graph.
(Not all combinations of metrics and point sets shown in the figure were evaluted —
the gray regions around the borders in Figure 10 mark combinations which were not
computed.) A metric/pointset combination was flagged as doing a good job on a
particular relaxation sequence if the number of inversions was noticeably lower than
that for other metric/pointset combinations on the same sequence; similarly, a met-
ric/pointset combination was flagged as doing a bad job if the number of inversions
was noticeably higher than others. In a few cases no metric/pointset combination
stood out as being noticeably better or worse than the others and so nothing was
flagged for that sequence.

The orthogonal ordering metrics were strikingly better than most other metrics
for all point sets except for those based on partition centroids. The point sets
based on vertex corners fared particularly well, yielding the best ordering for over
one-quarter of the sequences tested.

Shape, Euclidean distance, and the weighted nn-between metrics also stand out
as being better than most of the other metrics, though they are not quite as good
as orthogonal ordering.

Looking at the worst metrics, nn-within stands out as most often doing the worst
job of ordering the drawings, particularly for point sets that are centroids of parti-
tions of vertex corners. ε-clustering and partition size/count also do a consistently
worse job of ordering.

In general, the partition centroid point sets were worse than the others, indi-
cating that too much information is lost in these point sets to be of much use for
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Figure 10: Purple is the lowest frequency; red is the highest. Peaks in the top picture
indicate metric/pointset combinations which tend to produce orderings closest to
the human-specified ordering; peaks in the bottom picture indicate combinations
which tend to produce orderings most unlike the human-specified ordering.
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similarity comparisons.
It is also important to consider the variation in the relative success of a given

metric/pointset combination when applied to different graphs. Many did the worst
job of ordering the drawings for at least one graph, and all did the best job at least
once — even the most consistently best metric (orthogonal ordering) was the best
only about 30% of the time. The variation is particularly large for the partition size
and count metrics, as shown by a middle-of-the-road ranking in both the best and
worst plots in Figure 10. These metrics are very sensitive to the slightest movement
of vertices with respect to each other, and very quickly reach their maximum values
if there is much change in the drawing.

The variation in performance of the metrics for different graphs can also be seen
when breaking down the results by the type of modification. Shape, average relative
distance, orthogonal ordering, nn-between, and the partition size and count metrics
perform better on vertex deletions. Nearly all of the metrics, except nn-within and
shape, perform noticeably worse on edge insertions. The partition size and count
and the Hausdorff distance metrics also perform worse on vertex insertions. This
behavior is explained by noting that in InteractiveGiotto, inserting an object into the
graph tends to disrupt the drawing more than a deletion.

4.3.2 Rotation Ability

The other criterion evaluated at this stage is how suitable the metrics are for solving
the rotation problem. The measurement for each metric/pointset combination is
the percentage of drawings in the relaxation sequence for which the correct rotation
was chosen. The percentage correct for each combination, averaged over all of
the experimental graphs, is shown in Figure 11. (Note that nn-within is rotation-
independent and is thus not included in the chart.)

The partition size and count metrics fared the worst, getting the correct rotation
only 50-54% of the time. The low results for partition size and count are largely
due to many cases where the metric could not distinguish between two or more
rotations. This happened most often with the “more relaxed” drawings and reflects
the fact that in these drawings the partitions tend to be very small.

The ε-clustering metric did somewhat better, getting 60-83% of the rotations
correct; the large variation is due to whether the point set was based on vertex
corners (worse) or vertex centers (better). The results here are due primarily to ε-
clustering choosing the wrong rotation, rather than being unable to choose between
multiple rotations. Point sets based on vertex corners are worse than those based on
vertex centers because InteractiveGiotto places vertices so that the minimum spacing
between vertices is the same as the minimum vertex dimension. As a result, the
ε-cluster for each point typically does not contain more than four points — up to two
other corners of the same vertex and up to two corners of neighboring vertices. This
makes ε-clustering using vertex corners particularly sensitive to modifications which
change vertex dimensions or separate vertices which are horizontally or vertically
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near each other; however, if the vertices are spaced relatively far apart compared to
the vertex size in both drawings, ε-clustering will report a small distance.

The unweighted nn-between metric also exhibited unsatisfactory behavior for
some choices of point sets, getting 83-93% of the rotations correct. This is again the
result of the metric being unable to distinguish between multiple rotations for the
more relaxed drawings.

The average relative distance metric stands out as the best, averaging at least
93% of the rotations correct. This average is goes up to over 97% for the center and
corner point sets.

Breaking down the results by the type of modification shows that there are again
some variations between groups. The correct rotation was chosen most often when
edge deletions were performed, followed by vertex insertions, edge splits, vertex
deletions, and edge insertions (where the best metrics achieved only about 85%
correctness). In most cases the relative performance of different metric/pointset
combinations is the same as in the average of all the graphs, with a few notable
exceptions:

• For graphs where an edge has been inserted, average relative distance with
vertex corners and vertex centers is noticeably better and unweighted nn-
between is noticeably worse than the other metrics.
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Figure 11: Purple is the lowest percentage correct (around 50%); red is the highest
(94%).
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• For graphs where an edge has been split, unweighted nn-between is noticeably
worse for point sets consisting of vertex corners.

4.3.3 Conclusions

If the goal is simply to solve the rotation problem, average relative distance using
either corner or center point sets performs quite well. Given the success of this
metric, it seems unnecessary to consider anything more complicated to solve the
rotation problem.

If it is important to compare different drawings of the same graph, the orthogonal
ordering metrics are the best of the metrics tested in terms of qualitative behavior.
The linear-weighted version has a slight edge over the constant-weighted one. Or-
thogonal ordering is also nearly as good as average relative distance in solving the
rotation problem. However, there is still a good deal of room for improvement — or-
thogonal ordering only achieved the best ordering 30% of the time, and, considering
all of the metrics, the correct ordering was found for only 9 of the 63 graphs.

5 Future Work

The next step is to study in more detail those cases for which certain metric/pointset
combinations perform significantly worse (or better) than the average, since there
are variations in performance between individual graphs. This may also indicate
combinations of the existing metrics that may work better than any single one
alone.

It will also be useful to test the metrics on drawings generated by other drawing
algorithms. SMILE [2], for example, provides a way of obtaining many drawings
of the same graph. Since the performance of some of the metrics can be traced to
characteristics of InteractiveGiotto, this may prove illuminating.

Another important task is to analyze the quantitative behavior of the metrics.
This requires that each drawing be assigned (by a human) a numerical value mea-
suring how well the user’s mental map is preserved. Obtaining these values is a
non-trivial task, since it is difficult for a person to judge quantitatively the differ-
ence in visual distance between two pairs of drawings, even of the same graph —
Is one pair twice as different as another? Only one-and-a-half times? Five percent
less? Furthermore, asking if one drawing looks more like the original than another
drawing may not be exactly the same question as asking which drawing does a bet-
ter job of preserving the user’s mental map. The chances are that a drawing which
looks more like the original will do a better job of preserving the mental map, but
assuming this presupposes something about how a user’s mental map is structured.
A solution to this may be to design an experiment in which the user gains familiarity
with the original drawing, and is then timed on her response to a question involving
a new drawing of the same graph. The idea is that a faster response time means
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that the new drawing did a better job of preserving the mental map.
Other metrics can also be developed and evaluated. Metrics based on clustering

and partitioning seem particularly related to how a user navigates around the draw-
ing, and further work is needed to extend and improve these metrics. Surveying
users about what they think makes two drawings more or less similar may also lead
to additional metrics. Also, combinations of the current metrics may yield better
results. Both current and new metrics should also be evaluated using a larger pool
of graphs, including graphs of different sizes.

Finally, once suitable metrics have been identified and validated through user
studies, they can be used to compare the behavior of interactive graph drawing
algorithms as well as potentially providing inspiration for new drawing algorithms.
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