
Journal of Graph Algorithms and Applications
http://www.cs.brown.edu/publications/jgaa/

vol. 4, no. 3, pp. 157–181 (2000)

Navigating Clustered Graphs using

Force-Directed Methods

Peter Eades

Basser Department of Computer Science
University of Sydney

http://www.cs.usyd.edu.au/
peter@cs.usyd.edu.au

Mao Lin Huang

Department of Computer Systems
University of Technology, Sydney
http://www.socs.uts.edu.au/

maolin@soco.uts.edu.au

Abstract

Graphs which arise in Information Visualization applications are typ-
ically very large: thousands, or perhaps millions of nodes. Current graph
drawing methods successfully deal with (at best) a few hundred nodes.

This paper describes a strategy for the visualization and navigation of
graphs. The strategy has three elements:

1. A layered architecture, called CGA, for handling clustered graphs:
these are graphs with a hierarchical node clustering superimposed.

2. An online force-directed graph drawing method.

3. Animation methods.

Using this strategy, a user may view an abridgment of a graph, that
is, a small part of the graph that is currently of interest. By changing
the abridgment, the user may travel through the graph. The changes use
animation to smoothly transform one view to the next.

The strategy has been implemented in a prototype system called DA-TU.

Communicated by G. Liotta and S. H. Whitesides: submitted September 1998; revised
July 2000.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)158

1 Introduction

Graphs which arise in Information Visualization applications are typically very
large: thousands, or perhaps millions of nodes. Recent graph drawing competi-
tions [5] have shown that visualization systems for classical graphs are limited
to (at best) a few hundred nodes.

Attempts to overcome this problem have proceeded in two main directions:

Clustering. Groups of related nodes are “clustered” into super-nodes. The user
sees a “summary” of the graph: the super-nodes and super-edges between
the super-nodes. Some clusters may be shown in more detail than others.
An example is in Figure 1. Note that “New South Wales” is shown in
more detail than “Victoria”. The clustering approach has been taken by
a number of graph drawing researchers [2, 6, 13, 15], and is related to the
“overview diagrams” used by some web navigation facilities [12].

Navigation. The user sees only a small subset of the nodes and edges at any
one time, and facilities are provided to navigate through the graph. This
approach was taken by the OFDAV system [9].

New South Wales

Pymble

Newcastle
Byron

Wollongong

Hobart

Launceston

Victoria

Tasmania

South Australia

Bay

Sydney

Parramatta

Figure 1: A clustered graph.

This paper introduces a strategy for combining the two approaches. The
strategy has three elements:



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)159

1. A layered architecture for handling clustered graphs: these are graphs
with a hierarchical node clustering superimposed (see [6]). The architec-
ture, called CGA, is illustrated in Figure 2. This architecture supports
abridgments of clustered graphs. These abridgments are logical views of
parts of the clustered graph. Users may change their focus of interest by
changing the abridgment. These changes are reflected in the picture of the
abridgment. CGA is described in Section 2.

2. An online force-directed graph drawing method. This method op-
erates at the picture layer of the architecture. It is a simple extension of
the force-directed method from [9], described in Section 3.1.

3. Animation methods. Multiple animations are used to “preserve the
mental map”[4], that is, to smooth the transition between pictures as the
user changes focus. The animation methods are described in Section 3.2.

Clustering C of G

Huge graph G

Picture of C’

Abridgement C’ of CAbridgement layer

Picture layer

Clustering layer

Graph layer

Users and
other agents

Figure 2: The CGA architecture.

Our strategy has been instantiated in a prototype system called DA-TU. De-
tails of DA-TU as well as a static storyboard are in Section 4. An animated web
storyboard is online at:
http://www-staff.socs.uts.edu.au/˜ maolin/jgaa demo/jgaa demo.html.

The main purpose of this paper is to demonstrate the feasibility of visualizing
huge graphs (with more nodes than can fit on a screen) by a combination of
clustering and navigation methods. We propose that the architecture described
below provides a suitable framework, and that the force-directed drawing and
animation methods are suitable tools. A thorough test of this hypothesis will
take many years; this paper reports on the progress that we have made to date.

2 The Architecture

The architecture CGA (Clustered Graph Architecture) is a design for systems in
which the user manipulates data in four layers, as illustrated in Figure 2. We
describe the data and methods of these four layers below.

The main aim of CGA is to separate concerns in such a way that:



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)160

• The host system need not know the whole graph. In this way, the graph
can be huge (for example, it could be the whole World-Wide-Web).

• Outside agents, such as clustering algorithms and graph drawing algo-
rithms, can be employed.

• Expertise in different areas may be confined to different layers.

2.1 The graph layer

A graph in CGA is a classical undirected graph, consisting of nodes and edges. In
applications it may be a very large graph, containing many thousands of nodes.
The graph may be dynamic, that is, the node and edge set may be changing;
these changes may be a result of user interaction through an interface, or they
may be changed by an outside agent. Further, the nodes and edges may have
application-specific attributes, such as labels and semantics.

The changes to a graph use basic operations as follows.

G new node(): adds a new node to the graph, and returns an identifier
for that node to the sender.

G new edge(u, v): adds a new edge (between existing nodes u and v) to
the graph, and returns an identifier for the new edge.

G delete node(u): deletes node u from the graph.

G delete edge(e): deletes edge e from the graph.

Further, an agent can request a neighborhood of a node:

G neighborhood(u): given a node u, this returns a list of neighbors of u.

Some more operations may be available to manage attributes of nodes and
edges. For example, an elementary operation on the attributes of a node u is:

G change attribute(u, attribute id, attribute value): changes the at-
tribute attribute id to attribute value.

The messages that invoke these operations may be sent and executed asyn-
chronously, and thus, one can conceptually regard the graph as a database. If
the whole graph is known, then it may be implemented by storing the graph in
a database. However, in many applications the whole graph is not known (such
as with web graphs), and a “graph server” implementation is appropriate.

2.2 The clustering layer

A clustered graph C = (G, T ) consists of an undirected graph G = (V, E) and a
rooted tree T such that the leaves of T are exactly the vertices of G. Each node
ν of T represents a cluster of vertices of G consisting of the leaves of the subtree



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)161

rooted at ν. The tree T describes an inclusion relation between clusters; it is
the cluster tree of C.

Figure 1 shows a clustered graph C = (G, T ); here the cluster tree T gives
a geographical relation, and the graph G shows communication lines. Figure 3
shows the underlying graph G of C. Figure 4 shows the cluster tree T of C.

Parramatta

Pymble

Newcastle
Byron

Wollongong

Hobart

Launceston

Victoria

South Australia

Bay

Figure 3: Underlying graph of the clustered graph in Figure 1.

Parramatta

South Australia TasmaniaVictoria New South Wales

Byron
Bay

NewcastleSydney Wollongong Hobart Launceston

Pymble

Figure 4: Cluster tree of the clustered graph in Figure 1.

Clustered graphs were introduced by Feng [6] as a model for relational struc-
tures with a node hierarchy. There are many closely related models; for exam-
ple, the compound graphs of Sugiyama and Misue [16, 14] are more general; the
higraphs of Harel [8] are far more general.

We need two elementary operations for clustered graphs.

C create cluster(S: set of nodes): creates a new cluster of the set
S of nodes, and returns an identifier for the new cluster. As a precondition,



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)162

all nodes in S must be siblings in the cluster tree. The parent of the new
cluster is the shared parent of S.

C destroy cluster(u: node): The children of u in the cluster tree be-
come children of their grandparent, and u is deleted. This operation may
not be applied to the root, and applying the operation of a leaf u merely
deletes u.

These operations are illustrated in Figure 5.

g

c db

ge f

Create cluster {b,c,d}. Destroy cluster u

c

fe

u

b d

Figure 5: Some operations at the cluster layer.

Further, operations such as G new node at the graph layer have an effect on
the cluster layer. When a new node is created at the graph layer, a message is
sent to the cluster layer which makes that new node into a child of the root.

A special operation at the cluster layer is to dismiss clusters; this destroys
all non-leaf clusters except the root.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)163

2.3 The abridgment layer

In applications, the whole clustered graph is too large to show on the screen;
further, it is too large for the user to comprehend. This motivates the abridgment
layer. An abridgment of the clustered graph in Figure 1 is shown in Figure 6.

New South Wales

Newcastle

Sydney

Tasmania

Victoria

Figure 6: An abridgment.

We now give a formal definition of “abridgment”. Suppose that U is a set of
nodes of the cluster tree T . The subtree of T consisting of all nodes and edges
on paths between elements of U and the root is called the ancestor tree of U .
The set U is called the basis of the ancestor tree. An example of an ancestor
tree is in Figure 7.

Figure 7: The light shaded area is the ancestor tree of the dark shaded nodes.

A clustered graph C′ = (G′, T ′) is an abridgment of the clustered graph
C = (G, T ) if T ′ is an ancestor tree of T with respect to a set U of nodes of
T , and there is an edge between two distinct nodes u and v of G′ if and only



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)164

if there is an edge in G between a descendent of u and a descendent of v. The
vertex set of G′ is the basis of the ancestor tree T ′.

Figure 6 shows the abridgment of Figure 1 with basis {Sydney, Newcastle,
Tasmania, Victoria}.

CGA has three elementary operations on abridgments; these change the basis
of the abridgment.

open cluster(u): This is defined whenever u is in the basis U of the
current abridgment. It replaces u by the children of U . The effect of this
operation on the cluster tree is illustrated in Figure 8.

close cluster(u): All children of u in the basis of the current abridg-
ment are deleted (from the basis), and u is added to the basis. The effect
of this operation on the cluster tree is illustrated in Figure 9.

hide(u): If u is in the basis, then it is deleted from the basis. The effect
of this operation on the cluster tree is illustrated in Figure 10.

Note that the hide operation is needed so that the children of a node can be
selectively hidden (otherwise, if u is in the basis then all siblings of u would
need to be in the basis).

As an example, the abridgment in Figure 6 may be obtained from Figure 1
by closing “Sydney” and “Tasmania”, then hiding “Byron Bay”, Wollongong”
and “South Australia”.

The operations at the lower layers have effects at the abridgment layer.

Open cluster uu u

Figure 8: The effect of the open cluster operation on the cluster tree.

2.4 The picture layer

The main purpose of CGA system is visualization; it shows animated pictures
of abridgments of large clustered graphs. Note that the abridgment itself is



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)165

u u

Close cluster u

Figure 9: The effect of the close cluster operation on the cluster tree.

hide v

vv

Figure 10: The effect of the hide operation on the cluster tree.

a clustered graph. Here we describe how CGA operates on static and dynamic
pictures of clustered graphs.

Examples of static pictures of clustered graphs are shown in Figures 1 and
6; pictures of clustered graphs from the implementation DA-TU are in Section 4.
The algorithms used by DA-TU to obtain these pictures are described in Section 3.

In CGA, a static picture of a clustered graph C = (G, T ) contains a location
p(v) for each vertex v of G and a route c(u, v) for each edge (u, v) of G, in
the same way as drawings for classical graphs. Further, a static picture has a
region b(ν) of the plane for each cluster ν of T , such that if ν is a leaf of T then
b(ν) is located at p(ν), and if µ is a child of ν in T then b(µ) is contained in
b(ν). This definition differs slightly from Feng’s definition [6] of a drawing of
a clustered graph: CGA allows overlaps between regions, Feng does not. In the
implementation DA-TU, methods are used to avoid overlaps, but the architecture



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)166

must allow for the existence of overlaps. The regions used by the implementation
DA-TU are rectangles, and the edges are straight lines.

A dynamic picture of a clustered graph C consists of a sequence D1, D2, . . . , Dk

of static pictures of C. Each Di should differ from Di−1 by very little, so the
sequence appears as a smooth animation. Examples of this animation are in
Section 4.

Changes at the graph layer, the cluster layer, and the abridgment layer
all effect the dynamic picture in CGA. Whenever such a change occurs, CGA
produces a new abridgment Cnew , which differs from the previous abridgment
Cold by a small amount (a few nodes change). The picture layer of CGA reacts by
producing a new static picture, called a key frame, of the new clustered graph
Cnew. Then, without user (or agent) interaction, CGA displays a dynamic picture
D1, D2, . . . , Dk of Cnew. This dynamic picture plays the role of “in-betweening”
in animation; it continues until another change comes from a lower layer.

The picture layer has the following operations:

• Move(u: node): this is the usual operation of manually moving a node
in the picture.

• Gathering. This operation moves sibling nodes closer together. In prac-
tice, this tends to make the cluster boundaries disjoint. Examples of the
gathering operation are in Section 4.

• Scaling. This operation can be used to increase the size of the picture
to allow more detail to be seen, or reduce the size of the picture, to fit the
screen.

• Layout operations. These are classical layout functions, which produce
a picture P ′ of a clustered graph C′ from a picture P of a clustered graph
C. The layout operation is used in two circumstances:

1. When a change from C to C′ occurs at the abridgment layer, the
layout operation responds at the picture layer by producing a picture
P ′ of C′, computed from C′ and P .

2. The layout operation is used to produce the dynamic pictures de-
scribed above. That is, it produces picture Di+1 from Di.

Details of the implementation of the layout operation in DA-TU are in the
next section.

3 Layout and animation

There are two requirements for algorithms to produce pictures for CGA.

• We need to produce diagrams that are easy to read and understand. A
great deal of research in graph drawing algorithms (see, for example, [1])



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)167

has resulted in a variety of such algorithms; these take a combinatorial de-
scription of a graph and attempt to produce a drawing that is as readable
as possible.

• CGA aims to navigate through graphs. The logical operations at the lower
layers must be reflected in changes to the drawing at the picture layer.
These changes must be “smooth” at the picture layer; that is, each static
picture Di should be very similar to Di−1, and successive key frames
should be similar.

For DA-TU we have used a force-directed method to achieve both require-
ments. Our methods are similar to those described in [9]. In Section 3.1, we
describe the force model that drives this technique. Section 3.2 describes how
animation is used to smooth the changes at the picture layer.

Note that other layout operations to satisfy the requirements above are pos-
sible; for an example, see [11].

3.1 The Force Model

In this section, we briefly outline the force model. It has been developed from
several previous force models used in graph drawing [1, 3, 7, 10].

We use three types of spring forces. These operate between the vertices of
the graph G in the abridgment C = (G, T ).

• Internal-spring: A spring force between a pair of nodes in G which are
siblings in T .

• External-spring: A spring force between a pair of nodes in G which are
not siblings in T .

• Virtual-spring: Each cluster (non-leaf node of T ) ν has a virtual node
ν′ associated with it. In the picture, ν′ is a point within the rectangle
representing ν. Further, for each node u in G, if the parent of u in T is ν,
then there is a virtual edge between u and ν′. A virtual-spring is a spring
force between u ν′ along this virtual edge.

It is best to describe these spring forces with an example; see Figure 11.
The internal-spring forces on vertex c are along the edges (c, a) and (c, b); the
external-spring forces on c are along the edges (c, f) and (c, g).

Virtual-springs can be described using a virtual node in each cluster. In the
clusters X , Y , and Z, virtual nodes x′, y′, and z′ are shown; each virtual node
is connected to each node in its cluster by a virtual edge. Virtual-springs exert
forces along these edges. Note that virtual nodes and edges are not shown in
the actual picture of the clustered graph (unless the user wants to see them).

The internal-spring forces are stronger than the external-spring forces. This
tends to make siblings come close together. This effect is increased by the
virtual-spring forces. The gathering operation strengthens the virtual-spring



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)168

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

b

d

e
gf

h

a

c
X

Y

Z

x’

z’

y’

Internal-spring

External-spring

Virtual-spring

Figure 11: Spring forces.

forces and the internal-spring forces; this makes sibling nodes move closer to-
gether.

As well as spring forces, there are gravitational repulsion forces between all
nodes.

The forces are applied additively to give an aesthetically pleasing layout of
the graph. The sum of forces on each node is continually computed, and the
nodes move according to the strength and direction of these forces. If the force
on each node is zero, then the system has reached a locally minimal energy
state, and the movement stops.

3.2 Animations

In DA-TU, the whole visualization is fully animated. Every change at one of the
lower layers, whether triggered by the user or by another agent, is animated at
the picture layer.

This animation may reduce the cognitive effort of the user in recognizing
change; we aim to preserve the user’s “mental map” [4].

There are several types of animation that are implemented in our system.
These are detailed below.

• Force animation. The force model above is used in the animation of all
changes to picture. The forces move the nodes toward a minimum energy
state, and this movement gives the sequence D1, D2, . . . , Dk of drawings
to smoothly change the layout from abridgment to the next. Overall, the
animation driven by the forces is the most important mechanism for the



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)169

smooth transition between changes at the layers lower than the picture
layer.

• Animated addition and deletion of nodes and edges. When a node is
deleted or added to the abridgment, we use animated shrinking or grow-
ing to help the user identify nodes that are disappearing or appearing.
Disappearing nodes lose their connecting edges, then shrink until they
disappear. Appearing nodes are displayed in a reduced size with their
edges, then grow to be full-sized nodes. This avoids the sudden disap-
pearing/appearing of node images on the screen, which can disturb the
user’s mental map.

• Animated cluster regions. Nodes move according to the force model, and
the rectangular regions representing clusters follow the nodes. At all times,
each cluster is the minimum enclosing rectangle of its children. These
rectangles move smoothly as the positions of the children change. This
is especially important for the gathering operation; the clusters separate
smoothly.

• Animated scaling. Animated shrinking scales down a picture if it gets too
large for the screen. Further, animated enlarging is used to increase the
size of the picture; this enables the user to see details and makes direct
manipulation operations of the picture easier. In fact, animated scaling is
implemented by simply changing the forces in the springs; for example, to
shrink the whole picture, every spring is increased in strength.

• Animated cluster closing/opening: When closing a cluster, we firstly use
animation to reduce the size of closed region of this cluster. As soon as the
size reaches a certain threshold layer we smoothly replace the representa-
tion of the cluster from its opened form (a red line bounded rectangle) to
its closed form (a small black line bounded rectangle).

When opening a cluster, we firstly smoothly replace the representation
of the cluster from its closed form to its opened form. The children and
relevant links of the cluster are smoothly added into the layout. Then we
smoothly enlarge the size of this cluster to its normal size.

• Camera animation. Camera animation moves the whole drawing. It is
optional. It can be used, for example, to move specific nodes of interest
to the center of the screen.

All these animations operate in parallel.

4 Implementation

The strategy described in Sections 2 and 3 has been implemented in a prototype
system called DA-TU1. A screenshot from DA-TU is in Figure 12; from DA-TU, the

1“Big map” in Mandarin.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)170

user can call many of the operations described in Section 2. Note that operations
at the graph layer are not implemented.

Figure 12: A screen from DA-TU.

This section records interactive sessions with DA-TU. They illustrate the basic
operations of the system and how it works to achieve a better quality of the
layout of clustered graphs.

4.1 Session one

The first session is a storyboard applet at:
http://www-staff.socs.uts.edu.au/˜ maolin/jgaa demo/jgaa demo.html.
using this applet, the reader may step through several types of operation. This
session has nine steps:

1. A graph in DA-TU. The animated layout is computed by a spring algo-
rithm. Note node a1 is fixed in the middle of the screen; it is the current
focus.

2. The user creates five clusters. However, there are some overlaps among
the clusters.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)171

3. The user applies multiple forces in the ‘gathering’ operation to eliminate
the overlaps. This may improve the readability of the layout. Note the
‘virtual edges’ and ‘virtual node’ in the cluster to the far left. This holds
the nodes within the cluster together.

4. The same layout as shown in last one; however, the virtual edges and node
are invisible. However, the ‘virtual spring’ applied between non-adjacent
vertices c8 and c19 still operates.

5. Two clusters, Cluster 1 and Cluster 4 are ‘closed’ by clicking on regions
occupied by these two clusters, in the ‘close’ mode. The user also applies
a little ‘gathering’ to keep the clusters disjoint.

6. Open the cluster Cluster 4 by clicking on the cluster in the ‘open’ mode.
Some more ’gathering’ is applied to make the rectangles disjoint.

7. Close the cluster < b2, c5, c6, c7, c16, 17 > by clicking on its region, in the
‘close’ mode.

8. Open the clusters Cluster 1 and then Cluster 3. This is done by clicking
on each of the clusters, one by one, in the ‘open’ mode. Again, some
’gathering’ is applied.

9. Dismissing the whole cluster tree from the graph. This is done by clicking
on the ‘dismiss’ button in control panel.

4.2 Session two

The second session consists of Figures 13 to 20. This session shows operations
on the graph in Figure 12.

The first few figures show the results of operations create cluster and gath-
ering, followed by an illustration of the virtual springs, and the close cluster
operation.

4.3 Session three

The next session begins with Figure 16. The gathering operation, some close cluster
operations, and an open cluster operation are shown. Finally, a special opera-
tion dismiss clusters is shown.

5 Conclusions

CGA provides an architecture for handling graphs visually. The architecture is
aimed at handling huge graphs, which may be too large to fit onto the screen.
The user begins with a picture of an abridgment of the graph. This abridgment
may be changed by user interaction or by an outside agent. Navigation through
the graph is basically moving between abridgments.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)172

The architecture has been implemented in a prototype system DA-TU. This
provides a simple interface to the functions of CGA. It also uses a force-directed
animated layout algorithm to ensure that the picture is aesthetically pleasing,
and that transitions between pictures do not destroy the “mental map” [4].

Although DA-TU provides a proof of the main concepts of CGA, it is far from
complete. Our future plans include the implementation of a graph drawing
system within an application domain (such as web graphs) in which huge graphs
commonly occur.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)173

Figure 13: The user creates five clusters on the graph in Figure 12. However,
this layout has five overlaps among the clusters.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)174

Figure 14: The user applies the spring forces in the “gathering” operation to
eliminate the overlaps in Figure 13. This greatly improves the readability of the
layout for the user.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)175

Figure 15: The same layout as shown in Figure 14; however, the virtual nodes
and edges are shown. Note the “virtual springs”, that is, an attractive force
applied between non-adjacent vertices c8 and c19.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)176

Figure 16: A clustered graph C with 4 layers, after the application of spring
forces in the “gathering” mode.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)177

Figure 17: Closing one cluster, ν = {b1, c3, c13, c14}, in Figure 16 by clicking
on ν in the “close” mode. The representation of the closed cluster ν is a small
rectangle.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)178

Figure 18: Continuing, closing the cluster {c1, c2, c4, c15, Cluster 1} in Fig-
ure 17.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)179

Figure 19: Opening the cluster Cluster 5 in Figure 18, and then opening the
cluster Cluster 1. This is done by clicking on both visual rectangles of two
clusters one by one under in the “open” mode.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)180

Figure 20: Dismissing the whole cluster tree from the layout as shown in Fig-
ure 19, and returning to the graph with no clusters. This could be done by
destroying the clusters one by one; however, a “dismiss” button is provide to
destroy all clusters at once.



Eades and Huang, Navigating Clustered Graphs, JGAA, 4(3) 157–181 (2000)181

References

[1] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph drawing -
algorithms for the visualization of graphs. Prentice-Hall, Englewood cliffs,
NJ, 1999.

[2] F. Bertault and M. Miller. Graph drawing 99. In An algorithm for drawing
compound graphs, 1999. (to appear).

[3] P. Eades. A heuristic for graph drawing. Congr. Numer., 42:149–160, 1984.

[4] P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map
of a diagram. In Proceedings of Compugraphics 91, pages 24–33, 1991.

[5] P. Eades and J. Marks. Graph drawing contest report. In R. Tamassia and
I. G. Tollis, editors, Graph Drawing (Proc. GD ’94), volume 894 of Lecture
Notes Comput. Sci., pages 143–146. Springer-Verlag, 1995.

[6] Q. Feng. Algorithms for drawing clustered graphs. In PhD thesis, Depart-
ment of Computer Science and Software Engineering, The University of
Newcastle, Australia., 1997.

[7] T. Fruchterman and E. Reingold. Graph drawing by force-directed place-
ment. Softw. – Pract. Exp., 21(11):1129–1164, 1991.

[8] D. Harel. On visual formalisms. Commun. ACM, 31(5):514–530, 1988.

[9] M. L. Huang, P. Eades, and J. Wang. On-line animated visualization of
huge graphs using a modified spring algorithm. Journal of Visual Languages
and Computing, 9(4), No. vl980094:623–645, 1998.

[10] T. Kamada. Symmetric graph drawing by a spring algorithm and its ap-
plications to radial drawing, 1989.

[11] S. Moen. Drawing dynamic trees. IEEE Software, 7:21–8, 1990.

[12] S. Mukherjea and J. Foley. Navigational view builder: A tool for building
navigational views of information spaces. In ACM SIGCHI ’94 Conference
Companion, pages 289-290, 1994.

[13] S. C. North. Drawing ranked digraphs with recursive clusters. preprint,
Software Systems and Research Center, AT&T Laboratories., 1993.

[14] G. Sander. Layout of compound directed graphs. In Technical Report
A/03/96, University of the Saarlands, 1996.

[15] K. Sugiyama. A cognitive approach for graph drawing. Cybernetics and
Systems: An International Journal, 18:447–488, 1987.

[16] K. Sugiyama and K. Misue. Visualization of structural information: Au-
tomatic drawing of compound digraphs. IEEE Transactions on Systems,
Man and Cybernetics, 21(4):876–896, 1991.


