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Abstract

In a 3-dimensional orthogonal drawing of a graph, vertices are mapped
to grid points on a 3-dimensional rectangular integer lattice and edges are
routed along integer grid lines. In this paper, we present a technique that
produces a 3D orthogonal drawing of any graph with n vertices of degree 6
or less, using at most 6 bends per edge route and in a volume bounded by
O(n2). The advantage of our strategy over previous drawing methods is
that our method is fully dynamic, allowing both insertion and deletion of
vertices and edges, while maintaining the volume and bend bounds. The
drawing can be obtained in O(n) time and insertions/deletions are per-
formed in O(1) time. Multiple edges and self loops are permitted. Three
related constructions are also presented: a more elaborate construction
that uses only 5 bends per edge, a simpler, more balanced drawing that
requires at most 7 bends per edge, and a technique for displaying directed
graphs.
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1 Introduction and Previous Work

In this paper we describe a 3-dimensional orthogonal drawing strategy for graphs
of maximum degree at most 6 (i.e. graphs containing no vertex of degree 7 or
higher). The 3-dimensional orthogonal grid consists of grid points whose
coordinates are defined as (x′, y′, z′), where x′, y′, z′ ∈ Z, together with the
axis-parallel grid lines determined by these grid points. A 3-dimensional or-
thogonal drawing of a graph G is an embedding of G into the 3-dimensional
orthogonal grid with the vertices located at grid points and each edge (u, v)
represented as a sequence of contiguous orthogonal segments of grid lines and
which join the 2 points corresponding to the vertices u and v. No pair of edge
routes are permitted to intersect (except at common vertex endpoints). Thus
as a consequence, each grid point corresponding to a vertex has 6 ports to
which edge routes may be attached, namely along the 3 grid lines incident on
it. It is common practice to use the same terminology for both the graph and
its drawing.

The bounding box of a 3-dimensional orthogonal drawing is the minimum
axis-parallel box which contains all vertices and edges of the drawing. The
dimensions of such a bounding box are measured in terms of the number of grid
points rather than the length. The volume of the bounding box is the product
of the 3 dimensions which is then exactly equal to the number of grid points on
or in the box.

For background information in graph drawing, the reader is referred to the
text by Di Battista, Eades, Tamassia and Tollis [3].

There have been several 3-dimensional drawing strategies proposed in the
graph drawing literature for graphs of maximum degree at most 6 — see for
example [1, 4, 6, 8, 9]. Note that 3-dimensional drawings of graphs of higher
degree have also been investigated in for example, [2, 8, 10]; however in this pa-
per we consider only 3-dimensional orthogonal drawings of graphs of maximum
degree 6.

For the most part, previous results have focussed on the trade-offs among:
overall volume of the resulting drawing, the maximum number of bends on
an edge, the maximum length of an edge, etc. Eades, Stirk and Whitesides [5],
building on earlier work by Kolmogorov and Barzdin [7], presented an algorithm
that produces a 3-d orthogonal drawing in O(n

√
n) time with at most 16 bends

per edge, edge lengths bounded by O(
√

n) and in an asymptotically optimum
volume of O(n1.5). They also showed the following three problems are NP-
Complete. Given a graph, determine a 3-d orthogonal drawing that:

• minimizes the total edge length;

• minimizes the area/volume;

• contains 0 bends.

These results follow from the related 2-dimensional cases (see also [3]). Experi-
mental comparisons of several 3-d orthogonal drawing algorithms can be found
in the paper by Di Battista, Patrignani, and Vargiu [4].
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Although there are some classes of graphs of maximum degree 6 that can be
drawn with few bends (e.g. trees can be drawn with 0 bends), the introduction of
multiple edges or self loops into the graph immediately implies that some edges
will have at least three bends in the drawing. For a self loop, the necessity
of three bends is evident. A simple but tedious case study can be used to
demonstrate that a pair of vertices with 6 edges between them, cannot be drawn
with at most two bends per edge. Whether all simple graphs can be drawn with
2 or fewer bends is still an important open problem; in [11] Wood established
lower bounds on the total number of bends in any drawing of certain classes of
graphs.

Our result is motivated primarily by a dynamic version of the drawing prob-
lem in which edges and vertices of the graph can be inserted or deleted over
time. Papakostas and Tollis [8] introduced a semi-dynamic solution in which
only vertices are permitted to be inserted, and at all stages the resulting drawing
must correspond to a connected graph. No other algorithms in this area have
discussed non-trivial dynamic graph drawing cases. For example, one of the clas-
sic drawing algorithms in this area is due to Eades, Symvonis and Whitesides
[6]. Their algorithm achieves O(n1.5) volume, uses 7 bends per edge, requires a
matching and coloring pre-processing step, and is only suitable in a static con-
text. The same general technique has recently been modified by the authors to
examine volume/bend tradeoffs and in particular they achieve a drawing with
at most 6 bends per edge and O(n2) volume.

Our main drawing strategy is fully dynamic, allowing insertion and deletion
of vertices and edges. The volume of the drawing is bounded by O(n2), each
edge has at most 6 bends, and insertions and deletions are accomplished in O(1)
time. The dynamic nature of our drawing algorithm relies on the fact that at
any time, a free port on any vertex may safely be connected to a free port of
any other vertex without disturbing the drawing, and this connection requires
at most 6 bends. In one variant of our strategy, we show that the same volume
bound can be achieved with at most 5 bends per edge.

Multiple edges and self-loops are also accommodated in our drawings. Mul-
tiple edges may prove to be an important consideration in applications that
require some degree of “fault-tolerance”. Some previous 3-dimensional orthog-
onal constructions such as [8] have been restricted to simple graphs.

One feature of our drawing technique that may be useful in some applications
such as 3-dimensional VLSI design, is that the width of the drawing is constant;
the entire drawing lies on 7 planes between the planes Y = −3 and Y = +3.

Finally, note that all four of our drawing techniques are practical and eas-
ily implemented. We supply a software package (OrthoPak) for constructing
3-dimensional orthogonal drawings. Detailed descriptions of the drawing tech-
niques, two brief animations and several VRML worlds are also available via
the web page associated with this paper.
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Figure 1: The 6 ports on a vertex

2 Drawing Graphs in O(n2) Volume with 6 Bends

2.1 Introduction and Definitions

Initially, we describe our drawing strategy in a static context, in which the entire
graph (of maximum degree 6) is available. As will be seen, a dynamic version of
the problem follows easily. We refer to this drawing strategy as the staircase
model.

Let the vertices of the given graph be v1, v2, v3, ..., vn (labeled in an arbi-
trary order). The vertices will be located at grid points in a staircase fashion,
separated by an appropriate amount to permit the crossing-free embedding of
the edges. More formally, vertex vi is located at (7i, 0, 5i). For convenience,
we denote these coordinates as (X(vi), Y (vi), Z(vi)). Each vertex may have at
most 6 incident edges attached at ports which will be denoted as N, S, E, W,
T, B — refer to Figure 1. When viewed from above (i.e. from +∞ along the Z
axis), the compass designations effectively describe the ports.

Containing each vertex v is a small box of dimensions 6 × 7 × 5, called its
neighborhood and denoted by N(v). The two diagonal corners of N(v) have
coordinates: (X(v) − 3, Y (v) + 3, Z(v) + 3) and (X(v) + 2, Y (v) − 3, Z(v) −
1). Contained entirely inside N(v) are 6 pedestals — one for each port of v.
Each pedestal consists of a line segment parallel to the Z axis. The Bottom
pedestal is directly attached to v beneath it, and is of length 1. Similarly, the
Top pedestal attaches to the top port of v and is of length 3. The North
pedestal is of length 2 and extends from (X(v), +1, Z(v)) to (X(v), +1, Z(v)+
2). The South pedestal is of length 1 and extends from (X(v),−1, Z(v)) to
(X(v),−1, Z(v) + 1). The West and East pedestals are degenerate points
at (X(v) − 1, 0, Z(v)) and (X(v) + 1, 0, Z(v)) respectively; they are introduced
for consistency in the description and will be modified in a subsequent section
describing a related drawing strategy.

The Neighborhood N(v) consists of 5 layers in the Z-dimension, the:

• Top layer located on the plane Z = Z(v) + 3,

• North layer located on the plane Z = Z(v) + 2,

• South layer located on the plane Z = Z(v) + 1,
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Figure 2: Two Neighborhoods

• East, West, v layer located on the plane Z = Z(v),

• Bottom layer located on the plane Z = Z(v) − 1.

Edges are always considered as directed from the lower indexed vertex to
the higher indexed vertex. Each pedestal is used only by outgoing edges from
a vertex. Incoming edges are routed along pillars. The 6 pillars of a vertex v
extend below the neighborhood of v to the plane Z = −1. More precisely, the

• North pillar extends from (X(v), 2,−1) to (X(v), 2, Z(v) + 2),

• South pillar extends from (X(v),−2,−1) to (X(v),−2, Z(v) + 2),

• East pillar extends from (X(v) + 2, 0,−1) to (X(v) + 2, 0, Z(v) + 2),

• West pillar extends from (X(v) − 2, 0,−1) to (X(v) − 2, 0, Z(v) + 2),

• Bottom pillar extends from (X(v), 0,−1) to (X(v), 0, Z(v)),

• Top pillar extends from (X(v) − 3, 0,−1) to (X(v) − 3, 0, Z(v) + 3).

Note that the four side pillars (N, S, E, W) extend to Z(v) + 2 to accom-
modate self loops as will be described in a later section. Figure 2 displays two
(perpendicular) views of the construction.
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We refer to the orthogonal box directly below a vertex v (and containing
the pillars of v), as the airspace of v. An edge from v to w passes safely
from the neighborhood of v to the airspace of w through intervening airspaces
by traversing lanes, which are guaranteed to avoid pillars. In particular, note
that any line segment lying in the planes Y = 1, Y = 3, Y = −1, or Y = −3
intersects no pillar of any vertex. Each layer contains one or two lanes on one of
these four planes, extending from N(v), as far in the +X direction as necessary.
Let M be X(vn) + 2, where vn is the last vertex in the staircase. The lanes are
then defined as:

• North lane from (X(v), +1, Z(v) + 2) to (M, +1, Z(v) + 2),

• South lane from (X(v),−1, Z(v) + 1) to (M,−1, Z(v) + 1),

• East lane from (X(v) + 1, +1, Z(v)) to (M, +1, Z(v)),

• West lanes

– to N: from (X(v) − 1, 3, Z(v)) to (M, 3, Z(v)),

– to all other destinations: from (X(v)−1,−3, Z(v)) to (M,−3, Z(v)),

• Bottom lanes

– to N, E, T: from (X(v), +1, Z(v) − 1) to (M, +1, Z(v) − 1),

– to S, W, B: from (X(v),−1, Z(v) − 1) to (M,−1, Z(v) − 1),

• Top lanes

– to N, E, T: from (X(v), +1, Z(v) + 3) to (M, +1, Z(v) + 3),

– to S, W, B: from (X(v),−1, Z(v) + 3) to (M,−1, Z(v) + 3).

Figure 3 displays the pedestals, pillars and layers for three vertices on the
staircase and an edge routing from the north port of the first vertex to the east
port of the third.

Description of edge-routes. Typically, an edge from a vertex v to a vertex
w leaves v from an arbitrary free port, travels to the associated pedestal, climbs
the pedestal to the appropriate layer, is routed on that layer from the pedestal
to a lane, along the lane to the airspace under w, and (still on that layer) joins
to the pillar associated with the destination port of w, climbs this pillar and
finally enters w. The source and destination ports are chosen arbitrarily by the
algorithm — any unused port can be specified. Although the routings differ
slightly for each port to port pair, this general technique applies, the critical
observation being that the routing from the neighborhood of v to the airspace of
w is done at some layer of v (i.e. the lower vertex). By using one of the lanes,
this section of the edge passes safely through the airspace of any intervening
vertices without intersecting any of its pillars (which may have edges routed
from below). Since the E and W ports of v share the same layer as v, special
care is required to ensure routings from these ports do not intersect each other,
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Figure 3: Pedestals, pillars, and layers

(X(v), 0, Z(v)) - vertex v
(X(v), +1, Z(v))

N pedestal of v
(X(v), +1, Z(v) + 2)

N lane
(X(w) + 2, +1, Z(v) + 2)

connect to E pillar of w
(X(w) + 2, 0, Z(v) + 2)

climb E pillar
(X(w) + 2, 0, Z(w))
(X(w), 0, Z(w)) - vertex w

Table 1: Route from North to East
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Figure 4: Drawing of K7 using the Staircase method

or possible incoming edges to the N or S ports. A connection to the Top port of
vertex w comes up the Top pillar, along w’s Top layer, and then directly down
to w, thus safely passing above w’s West pillar.

For example, consider an edge routing from the N port of v to the E port of
w. Table 1 shows the routing which consists of 6 segments and thus contains 5
bends.

Figure 4 displays a drawing of the graph K7 using the staircase drawing
method. For completeness, the 36 port-to-port routings are specified in Ap-
pendix A. Note that of these routings, 9 require six bends, 22 require five bends,
and 5 require four bends.

Lemma 1 No pair of edges in the construction intersect.

Proof: Appendix A defines the paths for all port-to-port connections between
a vertex v (at the lower level) to a vertex w (6= v). To prove that edge (v, w)
intersects no other edge in the drawing, note that the routing of each edge
consists of three portions:

1. inside v’s neighborhood

2. along a lane through intervening airspaces

3. in w’s airspace.

Since the four lanes intersect no pillars, the second portion of edge (v, w)
intersects no other edge.

Consider the portion of the edge (v, w) inside v’s neighborhood. Each of the
6 possible routings out of v intersect no pillar of v and so cannot intersect any
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incoming edge to v. And similarly, the portion in w’s airspace can intersect no
outgoing edge from w.

It remains to consider the intersection of (v, w) with some outgoing edge from
v (inside v’s neighborhood) or with some other incoming edge to w (inside w’s
airspace). Without loss of generality, we consider the case of (v, w) intersecting
another edge between v and w but with different port assignments. Since the
N,S,T, and B ports each have their own layers inside the neighborhood of v, it
is simple to verify that no intersections are possible if either of the two edges
involve these ports at v. However, the E and W ports share a plane with v itself,
and it is therefore critical to check that none of the 30 possible pairs involving
these two ports from v intersect. In Figure 5, the 6 routings from the West port
are shown as solid lines and the 6 routings from the East port are displayed as
dotted lines; note that only the routings to the pillars of w are shown. That no
pair of solid and dotted paths intersect either in the neighborhood of v nor in
the airspace of w is easily determined. 2

2.2 Self-loops

The general drawing strategy for self loops is similar: from a port to a pedestal,
up to the appropriate level, across to the specified pillar, down the pillar and
into the vertex. A complete listing of the routes is presented in Appendix B,
and on the web page.

2.3 Dynamic Case

The drawing strategy described in the previous section easily adapts to use in a
dynamic context, in which both edges and vertices may be deleted or inserted.
Insertion of a new vertex vt is performed by placing it at (7t, 0, 5t). It is clear
that a new edge (u, v) can be added to the drawing in O(1) time — any free port
on u can be connected to a free port on v, and furthermore, the overall volume of
the drawing remains the same. Deletion of a vertex is accomplished by replacing
it by the top-most vertex and re-routing the (at most 6) incident edges. Let
v1, v2, ...vt be the vertices in the drawing at time t. To delete vertex vi, the
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edges on vi are first deleted. Denote by w1, w2, ...w6 the vertices adjacent to
vertex vt. These edges are all deleted in the drawing and vertex vi is connected
to w1, w2, ...w6, using arbitrary ports on vertex vi. Vertex vt is then removed
from the drawing. The resulting drawing has a bounding box of dimensions
6(t− 1) × 7 × 5(t − 1). Note that we measure the number of grid points rather
than the length in each dimension.

Theorem 1 For every graph G of maximum degree at most 6 the staircase
algorithm produces a 3D orthogonal drawing contained in a bounding box with
volume 210t2, where t is the number of vertices in the drawing. Insertion or
deletion of vertices or edges can be accomplished in O(1) update time.

3 Variants

In this section, we consider three related constructions - a spiral drawing tech-
nique that produces a more balanced drawing, a drawing strategy for directed
graphs, and a more elaborate version of the staircase model that requires at
most 5 bends per edge.

3.1 Ortho-Spiral Layout

One possible criticism of the drawings produced by the staircase model is that
the dimensions of the resulting drawing are unbalanced - the construction is very
narrow, with a Y dimension consisting of exactly 7 planes. Although there may
be practical applications of this feature of our strategy (for example in future
VLSI design), from an aesthetic standpoint a more balanced drawing may be
preferable. In this section, we outline a strategy that produces a drawing of
dimensions O(

√
n) × O(

√
n) × O(n), but with a slight penalty on the number

of bends: 7 bends are required for some port-to-port connections. The dynamic
nature of the previous strategy is preserved; an implementation and a short
video describing the routing is available on the web page associated with the
paper.

Instead of placing the vertices in a linear staircase fashion, the vertices are
embedded in an orthogonal spiral manner. When viewed from above, the ver-
tices appear in a O(

√
n) × O(

√
n) grid as displayed in Figure 6.

As in the previous method, each vertex v, is assigned to a unique Z-plane,
thus forming a spiral of linear height. Associated with each vertex are 7 planes
(one for each port, and one for the vertex itself). The degenerate E and W
pedestals described in Section 2.1 are extended from the v layer to the appro-
priate plane.

Figure 7 shows a cross section (from the Top) of the modified neighborhood
through a vertex. The four side pedestals (for N, S, E, W) have their bases on
this plane and extend to their respective layers. The pedestals for the Bottom
and Top layers originate at the vertex itself.
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Figure 6: Spiral drawing: a) from above; b) from the side
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(X(v), Y (v), Z(v)) - vertex v
(X(v), Y (v) + 1, Z(v))

N pedestal of v
(X(v), Y (v) + 1, Z(v) + 4)

p-lane (correct in X)
(X(w) + 2, Y (v) + 1, Z(v) + 4)

f-lane (correct in Y)
(X(w) + 2, Y (w), Z(v) + 4)

connect to E pillar of w
(X(w) + 3, Y (w), Z(v) + 4)

climb E pillar
(X(w) + 3, Y (w), Z(w))
(X(w), Y (w), Z(w)) - vertex w

Table 2: Route from North to East — Ortho Spiral

Side pillars and the Bottom pillar (for incoming routings) are spaced 1 unit
further from v, but otherwise remain the same. A total of four pillars for
connection to the Top port are provided.

On each particular layer, there are 4 pairs of lanes used for routing:

• f-lanes - two pairs (horizontal and vertical) that intersect no pillar or
pedestal on any level (i.e. free of any intersections), and

• p-lanes - two pairs (horizontal and vertical) that intersect only a single
pedestal on (or passing through) this level.

More precisely, each lane is defined as the intersection of 2 planes: one of
the layer planes and one of the 8 lane planes. The 6 layers lie on the planes:
Z = Z(v)−1 (Bottom), Z = Z(v)+1 (West), Z = Z(v)+2 (East) , Z = Z(v)+3
(South), Z = Z(v) + 4 (North) and Z = Z(v) + 5 (Top). The 4 p-lanes lie in
the planes Y = Y (v) + 1, Y = Y (v)− 1, X = X(v) + 1 and X = X(v)− 1, and
the 4 f-lanes lie in the planes Y = Y (v) + 2, Y = Y (v) − 2, X = X(v) + 2 and
X = X(v) − 2.

The general edge routing technique remains the same as in the staircase
model, however note that unlike the staircase model, neighborhoods may differ
in both their X and Y coordinates. An edge from a vertex v at a lower level, to
a vertex w, exits a specific port on v, joins its pedestal, climbs the pedestal to
the appropriate layer, traverses the p-lane to correct in the X-coordinate (N, S
layers) or the Y-coordinate (E, W layers), then traverses a f-lane to correct in
the Y-coordinate or X-coordinate (respectively) in order to enter w’s airspace.
Connection to the specified pillar of w then allows the edge to climb the appro-
priate pillar, and finally to enter w at the specified port. Edges from the Top
or Bottom port climb/descend their pedestal and then safely join an f-lane, a
second (perpendicular) f-lane and then connect to the specified pillar. As in the
staircase model, connection into the Bottom port of w is directly from below
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destination
side Bottom Top

side 6 5 7
source Bottom 6 5 7

Top 6 5 7

Table 3: Bends per edge

and connection to the Top port of w requires two bends and is performed via
w’s Top layer. In each case, the connection from the pillar of w to a particular
port of w itself intersects only the pedestal associated with that port which of
course cannot be in use.

In Table 2 for example, the routing from the North port on vertex v to the
East port of vertex w is described. Appendix C lists all 36 possible routings
between an arbitrary pair of vertices. Table 3 summarizes the number of bends
per edge for each routing in this spiral model.

The coordinate specification for the elements of this drawing is more elabo-
rate than in the staircase model. For notational convenience assume the vertices
are v0, v1, ..., vn−1 and that vertex vi is to be located at (xi, yi, zi). Then zi:=7i
since 7 layers are required for each vertex. Let c = d√ie and f = b√ic. Then
the X and Y coordinates for vertex vi can be determined depending on whether
f is even or odd:

• f is even:
If i ≤ f2 + f then xi := − 9

2f and yi := 9(f2 − i + f
2 ).

If i ≥ f2 + f then xi := 9(i − c2 + c+1
2 ) and yi := − 9

2f .

• f is odd:
If i ≤ f2 + f then xi := 9 f+1

2 and yi := 9(i − f2 − f−1
2 ).

If i ≥ f2 + f then xi := 9(c2 − i − c
2 ) and yi := 9 f+1

2 .

The proof that no pair of edges intersect in the drawing is simpler than that
of the staircase model since associated with each port is a distinct layer. There
are no intersections possible within v’s neighborhood, within w’s airspace, and
p-lanes and f-lanes pass safely through any intervening pillars.

Note that for each vertex, 7 layers are required and that the X and Y extents
of each neighborhood are 9 × 9 (see Figure 7).

Theorem 2 Any graph of maximum degree 6 can be drawn orthogonally in 3-
dimensions with at most 7 bends per edge in a bounding box with dimensions
9d√n e × 9d√n e × 7n.

Again insertions and deletions of vertices and edges are accomplished in
O(1) time, and self-loops and multiple edges are easily accommodated. A brief
animation and the implementation details are provided on the web page.
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3.2 Drawings of Directed Graphs

Typically, 3-dimensional orthogonal drawings of graphs are visually difficult for
humans to work with, even with the addition of colored edges, and both the
staircase and orthogonal spiral techniques suffer from this drawback. In this
subsection, we outline a modified staircase drawing for directed graphs which
allows immediate recognition of the direction of each edge.

We refer to the orthogonal box directly below the neighborhood of vertex v,
as the lower-airspace of v. The orthogonal box directly above v’s neighbor-
hood is referred to as its upper-airspace.

In this variant, by repositioning the pillars and pedestals slightly (as illus-
trated in Figure 8), the number of layers required can be reduced to three and
the overall volume is slightly smaller (70% of a staircase drawing), however all
port to port routings require exactly six bends per edge. If v is lower than w on
the staircase, then an edge directed from vertex v to vertex w is routed below
the staircase, whereas an edge from vertex w to vertex v is routed above the
staircase. Such a drawing allows for quick visual identification of the direction
of an edge.

The staircase is formed with vertex vi positioned at (7i, 0, 3i). The neighbor-
hood N(v) has a size of 7×7×3 and consists of three layers in the Z-dimension.
The:

• Top, South layer located on the plane Z = Z(v) + 1,

• West, East layer located on the plane Z = Z(v),

• North, Bottom layer located on the plane Z = Z(v) − 1,
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Outgoing edges are routed to the pedestal associated with the outgoing port,
up or down the pedestal to the appropriate layer and then out to the lane. Let
(v, w) be a directed edge to be drawn. If the vertex v is below the vertex w (on
the staircase), the edge travels in the positive X direction along the lane. If the
vertex v is above the vertex w, the edge is routed in the negative X direction.
The North, South, Bottom and Top pedestals are each of length one; their
extents are respectively: from (X(v), +2, Z(v)) to (X(v), +2, Z(v) − 1), from
(X(v),−2, Z(v)) to (X(v),−2, Z(v)+1), from (X(v), 0, Z(v)) to (X(v), 0, Z(v)−
1), from (X(v), 0, Z(v)) to (X(v), 0, Z(v)+1). The East and West pedestals are
degenerate points at (X(v) + 2, 0, Z(v)) and (X(v) − 2, 0, Z(v))

An incoming edge ascends or descends a pillar. The six pillars of vertex v
extend from the plane of Z = −1 through the neighborhood of v to the top of
the drawing at plane Z = Z(vn) + 1, where n is the index of the highest vertex
in the drawing. The pillar extents are as follows:

• North: from (X(v) + 1, 1,−1) to (X(v) + 1, 1, Z(vn) + 1)

• South from (X(v) − 1,−1,−1) to (X(v) − 1,−1, Z(vn) + 1)

• East from (X(v) + 2,−1,−1) to (X(v) + 2,−1, Z(vn) + 1)

• West from (X(v) − 2, 1,−1) to (X(v) − 2, 1, Z(vn) + 1)

• Bottom from (X(v) + 3, 0,−1) to (X(v) + 3, 0, Z(vn) + 1)

• Top from (X(v) − 3, 0,−1) to (X(v) − 3, 0, Z(vn) + 1)

The routing of an edge from vertex v to w follows the standard pattern:
from the specified port of v to the associated pedestal, up or down the pedestal
to the associated layer, out to the assigned lane, along the lane to w’s airspace,
into the specified pillar, up (if v is before w) or down (if v is after w) that pillar
a correction to align with the port, and finally into the specified port of w. A
detailed listing of all port-to-port connections is contained in Appendix D.

Theorem 3 The algorithm produces a 3D orthogonal drawing of any directed
graph with n vertices of maximum degree at most 6, in a bounding box of 7n ×
7 × 3n and with 6 bends per edge.

Proof: Refer to vertex v in Figure 8 and imagine an arbitrary incoming edge
to v. The edge runs along one of the four lanes (note that the North and Top
lanes and the South and Bottom lanes are actually on different layers). The
edge turns and joins the appropriate pillar, climbs the pillar and enters v. Note
that a route using the Top pillar safely passes over the West pedestal and a
route using the Bottom pillar safely passes under the East pedestal. No pair of
incoming edges can intersect and no incoming edge intersects an outgoing edge.

Outgoing edges from v intersect no pillars (except West and East which
safely intersect their own pillars) on their way to their assigned lanes. Note
that three pairs share levels but each pair has separate lanes, and thus do not
intersect. Since no lane intersects a pillar, there can be no intersections caused
by intervening vertices.

2
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Figure 9: The 5 bend case

3.3 Achieving 5 Bends per Edge

The same basic format of the staircase models can be modified to produce a
drawing with at most 5 bends per edge. In addition to using the region above
the staircase, a new set of 2n planes called under-planes are introduced under
the staircase. As a consequence of the under-plane construction, some of the
dynamic nature of the drawing strategy is sacrificed. Although insertion and
deletion of edges still takes O(1) time, vertex insertions and deletions require
O(n) time. Note that in a relative-change scenario [8], such changes can be
measured as O(1); in this paper we assume the stronger no-change scenario.

In addition to the new construct of underplanes, we introduce climbs which
extend only in the upper-airspace of v. Refer to Figure 9. These climbs are
similar to the upper-airspace pillars of the digraph drawing; they are used in
some routings instead of pedestals to climb to the level of w for routing at that
level .

All routings are from a vertex v lower on the staircase to a vertex w that is
higher. For the 36 possible cases there are three general types of routes in this
model:

• using a pillar down to v’s underplane, across to w’s airspace and up its
pillar (the 4 cases of: B to S, B to T, E to N, S to N),

• using a climb to a layer of w, and then across to w (the 10 cases of routes
into T or S of w),
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• using a pedestal to a layer of v, across to w’s airspace, up a pillar and into
w (the remaining 22 cases).

The staircase is formed with vertex vi placed at (4i, 0, 4i). The size of each
neighborhood N(v) is 4×8×4. As in the previous constructions, each vertex has
a set of layers on which some local routing takes place. The four layers associated
with a vertex v are: the Top layer located on the plane Z = Z(v) + 2, the
North, South layer located on the plane Z = Z(v)+1, the East, West layer
located on the plane Z = Z(v), and the Bottom layer located on the plane
Z = Z(v) − 1.

The pedestals of vertex v are used by all routings into the W, E, B, and
N ports of w except the 2 special cases of E to N and S to N. The North
pedestal is of length 1 and extends from (X(v), 1, Z(v)) to (X(v), 1, Z(v) +
1). The South pedestal is of length 1 and extends from (X(v),−1, Z(v)) to
(X(v),−1, Z(v) + 1). The East and West pedestals are degenerate points at
(X(v)+1, 0, Z(v)) and (X(v)−1, 0, Z(v)) respectively. The Bottom pedestal
is of length 1 and extends from (X(v), 0, Z(v)) to (X(v), 0, Z(v)− 1). The Top
pedestal is of length 2 and extends from (X(v), 0, Z(v)) to (X(v), 0, Z(v)+ 2).

The underplanes of the graph start at plane Z = −2 and extend downwards.
There are two planes per vertex in the graph and are consecutive. The under-
planes are arranged so that vertex vn’s (highest on the staircase) under-planes
are at Z = −2 and Z = −3. The underplanes for vertex vi lie at Z = −2(n−i)−2
and Z = −2(n−i)−3. Only a portion of each underplane is actually used and is
termed the under-layer; it extends from X(vn) to X(v). The under-layers also
form a staircase shape with the longest under-layers being the bottom planes
of the graph. The underplane (and thus under-layer) positions are dependent
on the number of vertices in the graph and thus must change when a vertex is
inserted or deleted. Since there are 2n underplanes, this vertical shifting of the
planes and the resultant lengthening or shortening of the routings that use these
underplanes results in the O(n) time penalty for vertex insertion or deletion.

The North climb extends from (X(v)+1, 2, Z(v)) to (X(v)+1, 2, Z(vn)+2).
The South climb extends from (X(v)−1,−2, Z(v)) to (X(v)−1,−2, Z(vn)+2).
The East climb extends from (X(v)+1,−2, Z(v)) to (X(v)+1,−2, Z(vn)+2).
The West climb extends from (X(v)−1, 2, Z(v)) to (X(v)−1, 2, Z(vn)+2). The
Bottom climb extends from (X(v),−3,−2n) to (X(v),−3, Z(vn) + 2); this is
a special case that runs from the lowest underplane of vertex v to the top of the
drawing. The Top climb extends from (X(v), 3, Z(v)+ 2) to (X(v), 3, Z(vn)+
2).

The climbs of vertex v are used for all routes into the T and S ports of w
except the 2 special cases of B to T and B to S. For a route to the South port
of w, the edge leaves v and with one bend joins to the climb associated with
v’s port, ascends the climb to the level of w, joins the S lane, traverses this
lane to the base of w’s pedestal and finally enters w at the South port. The
routings from v to the Top port of w are similar except the lane used is on the
plane Y = 0, which can be safely used since at w’s level this lane intersects no
intervening pillars.
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The pillars of v have two purposes, namely for some routes into v and also for
the 4 special case routes that use the underplanes. This causes no conflict since
a port can only be used in one direction at a time (either to, or from another
port). Some pillars need to extend to the bottommost underplane (located at
Z = −2n − 1), and others extend only to the lowest plane of the staircase
Z = −1. The North pillar extends from (X(v), 2,−1) to (X(v), 2, Z(v)) The
East pillar extends from (X(v) + 2, 0,−2n − 1) to (X(v) + 2, 0, Z(v)) and is
used to reach the bottom underplane of v. The West pillar extends from
(X(v) − 1, 0,−1) to (X(v) − 1, 0, Z(v)). The Bottom pillar extends from
(X(v), 0,−2n−1) to (X(v), 0, Z(v)) and is used to reach the bottom underplane
of v. The South pillar extends from (X(v),−2,−2n) to (X(v),−2, Z(v)), and
is only used to reach the topmost underplane associated with v. Note that the
West pillar and West pedestal safely overlap. However, it is not possible to align
the East pillar and pedestal in a similar fashion.

The edge routings are relatively elaborate and are listed in Appendix E. We
also refer the interested reader to a series of web pages associated with this
paper that describe the routings in more detail. The proof that no pair of edges
intersects involves a lengthy case study since there are 3 general types of routes.
Here we simply note that each edge has exactly 5 bends, but that self loops are
not possible. A bounding box of dimensions 4n × 8 × 8n contains the drawing.

4 Implementation and Experimental Results

One important feature of the drawing strategy described in this paper is its
simplicity. An implementation of the drawing is available in a package of 3-
dimensional drawing tools, called OrthoPak, from:
www.cs.uleth.ca/~wismath/packages. This package was written in C++ and
uses the LEDA library extensively. It runs under Solaris 2.6 or Linux, and pro-
duces either a VRML world that can be examined with an appropriate browser,
or a PovRay file that can subsequently produce a static ray traced image of the
drawing. OrthoPak is free for research and teaching purposes and is part of a
larger suite of research tools developed at the University of Lethbridge.

A test suite of graphs for 3-D orthogonal drawing was described in [4]. Our
time trials indicate that our staircase drawing strategy is very efficient: 7.013
seconds for the entire test suite of 1820 graphs containing from 5 to 95 vertices,
running on a SPARC 5. On average, our staircase drawing had between 4.71 and
4.83 bends per edge over the entire distribution of graphs. Since our algorithm
does not pre-preprocess the graph, most of the time is spent on simple I/O
operations.

5 Conclusion and Open Problems

A 3-dimensional orthogonal drawing of graphs with n vertices of degree at most
6 was presented in which each edge is routed with at most 6 bends in a volume
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bounded by O(n2). The technique is fully dynamic, allowing insertion and
deletion of edges and vertices in O(1) time. Multiple edges and self-loops are
permitted. Variants of the drawing strategy were also presented which may be
more suitable in other contexts; for example the number of bends per edge can
be reduced to 5 with the same volume bounds. It is an open problem to establish
whether a volume of O(n2) is achievable with at most 4 bends per edge.

An implementation of the drawing strategy is available from the authors’
web site. Demonstration VRML worlds, 2 short videos and several supporting
web pages describing the techniques are supplied on the web page associated
with this paper and maintained by the journal.

If the drawing strategy is not used in a dynamic setting then some pre-
processing of the graph is possible and the number of bends can be reduced
in the average case. Alternately, special properties of the graph may also be
exploitable to reduce the number of bends. For example, trees of maximum
degree 6 can be embedded with our staircase construction with no more than
5 bends. An interesting open problem is to determine if there are other classes
of graphs that can be drawn using this strategy with a minimal amount of
pre-processing.

Acknowledgment Detailed comments and suggestions by the anonymous
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acknowledged.
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A Appendix: Routings - Staircase model

All 36 port-to-port routings from a vertex v to vertex w will now be enumerated.
In each case, the initial and terminating points of the route are (X(v), Y (v) =
0, Z(v)) and (X(w), Y (w) = 0, Z(w)) respectively.

• N → S (6 bends):
(X(v), 1, Z(v)) → (X(v), 1, Z(v) + 2) → (X(w) − 1, 1, Z(v) + 2) →
(X(w) − 1,−2, Z(v) + 2) → (X(w),−2, Z(v) + 2) → (X(w),−2, Z(w))

• N → N (5 bends):
(X(v), 1, Z(v)) → (X(v), 1, Z(v) + 2) → (X(w), 1, Z(v) + 2) →
(X(w), +2, Z(v) + 2) → (X(w), +2, Z(w))

• N → E (5 bends):
(X(v), 1, Z(v)) → (X(v), 1, Z(v) + 2) → (X(w) + 2, 1, Z(v) + 2) →
(X(w) + 2, 0, Z(v) + 2) → (X(w) + 2, 0, Z(w))

• N → W (5 bends):
(X(v), 1, Z(v)) → (X(v), 1, Z(v) + 2) → (X(w) − 2, 1, Z(v) + 2) →
(X(w) − 2, 0, Z(v) + 2) → (X(w) − 2, 0, Z(w))

• N → T (6 bends):
(X(v), 1, Z(v)) → (X(v), 1, Z(v) + 2) → (X(w) − 3, 1, Z(v) + 2) →
(X(w) − 3, 0, Z(v) + 2) → (X(w) − 3, 0, Z(w) + 3) → (X(w), 0, Z(w) + 3)

• N → B (4 bends):
(X(v), 1, Z(v)) → (X(v), 1, Z(v) + 2) → (X(w), 1, Z(v) + 2) →
(X(w), 0, Z(v) + 2)
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• S → N (6 bends):
(X(v),−1, Z(v)) → (X(v),−1, Z(v) + 1) → (X(w) − 1,−1, Z(v) + 1) →
(X(w) − 1, 2, Z(v) + 1) → (X(w), 2, Z(v) + 1) → (X(w), 2, Z(w))

• S → S (5 bends):
(X(v),−1, Z(v)) → (X(v),−1, Z(v) + 1) → (X(w),−1, Z(v) + 1) →
(X(w),−2, Z(v) + 1) → (X(w),−2, Z(w))

• S → E (5 bends):
(X(v),−1, Z(v)) → (X(v),−1, Z(v) + 1) → (X(w) + 2,−1, Z(v) + 1) →
(X(w) + 2, 0, Z(v) + 1) → (X(w) + 2, 0, Z(w))

• S → W (5 bends):
(X(v),−1, Z(v)) → (X(v),−1, Z(v) + 1) → (X(w) − 2,−1, Z(v) + 1) →
(X(w) − 2, 0, Z(v) + 1) → (X(w) − 2, 0, Z(w))

• S → T (6 bends):
(X(v),−1, Z(v)) → (X(v),−1, Z(v) + 1) → (X(w) − 3,−1, Z(v) + 1) →
(X(w) − 3, 0, Z(v) + 1) → (X(w) − 3, 0, Z(w) + 3) → (X(w), 0, Z(w) + 3)

• S → B (4 bends):
(X(v),−1, Z(v)) → (X(v),−1, Z(v) + 1) → (X(w),−1, Z(v) + 1) →
(X(w), 0, Z(v) + 1)

• E → N (5 bends):
(X(v) + 1, 0, Z(v)) → (X(v) + 1, 1, Z(v)) → (X(w), 1, Z(v)) →
(X(w), 2, Z(v)) → (X(w), 2, Z(w))

• E → S (6 bends):
(X(v) + 1, 0, Z(v)) → (X(v) + 1, 1, Z(v)) → (X(w) − 1, 1, Z(v)) →
(X(w) − 1,−2, Z(v)) → (X(w),−2, Z(v)) → (X(w),−2, Z(w))

• E → E (5 bends):
(X(v) + 1, 0, Z(v)) → (X(v) + 1, 1, Z(v)) → (X(w) + 2, 1, Z(v)) →
(X(w) + 2, 0, Z(v)) → (X(w) + 2, 0, Z(w))

• E → W (5 bends):
(X(v) + 1, 0, Z(v)) → (X(v) + 1, 1, Z(v)) → (X(w) − 2, 1, Z(v)) →
(X(w) − 2, 0, Z(v)) → (X(w) − 2, 0, Z(w))

• E → T (6 bends):
(X(v) + 1, 0, Z(v)) → (X(v) + 1, 1, Z(v)) → (X(w) − 3, 1, Z(v)) →
(X(w) − 3, 0, Z(v)) → (X(w) − 3, 0, Z(w) + 3) → (X(w), 0, Z(w) + 3)

• E → B (4 bends):
(X(v) + 1, 0, Z(v)) → (X(v) + 1, 1, Z(v)) → (X(w), 1, Z(v)) →
(X(w), 0, Z(v))

• W → N (5 bends):
(X(v) − 1, 0, Z(v)) → (X(v) − 1, 3, Z(v)) → (X(w), 3, Z(v)) →
(X(w), 2, Z(v)) → (X(w), 2, Z(w))
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• W → S (5 bends):
(X(v) − 1, 0, Z(v)) → (X(v) − 1,−3, Z(v)) → (X(w),−3, Z(v)) →
(X(w),−2, Z(v)) → (X(w),−2, Z(w))

• W → W (5 bends):
(X(v) − 1, 0, Z(v)) → (X(v) − 1,−3, Z(v)) → (X(w) − 2,−3, Z(v)) →
(X(w) − 2, 0, Z(v)) → (X(w) − 2, 0, Z(w))

• W → E (5 bends):
(X(v) − 1, 0, Z(v)) → (X(v) − 1,−3, Z(v)) → (X(w) + 2,−3, Z(v)) →
(X(w) + 2, 0, Z(v)) → (X(w) + 2, 0, Z(w))

• W → T (6 bends):
(X(v) − 1, 0, Z(v)) → (X(v) − 1,−3, Z(v)) → (X(w) − 3,−3, Z(v)) →
(X(w) − 3, 0, Z(v)) → (X(w) − 3, 0, Z(w) + 3) → (X(w), 0, Z(w) + 3)

• W → B (5 bends):
(X(v) − 1, 0, Z(v)) → (X(v) − 1,−3, Z(v)) → (X(w) + 1,−3, Z(v)) →
(X(w) + 1, 0, Z(v)) → (X(w), 0, Z(v))

• T → N (5 bends):
(X(v), 0, Z(v) + 3) → (X(v), +1, Z(v) + 3) → (X(w), 1, Z(v) + 3) →
(X(w), 2, Z(v) + 3) → (X(w), 2, Z(w))

• T → S (5 bends):
(X(v), 0, Z(v) + 3) → (X(v),−1, Z(v) + 3) → (X(w),−1, Z(v) + 3) →
(X(w),−2, Z(v) + 3) → (X(w),−2, Z(w))

• T → E (5 bends):
(X(v), 0, Z(v) + 3) → (X(v), +1, Z(v) + 3) → (X(w) + 2, 1, Z(v) + 3) →
(X(w) + 2, 0, Z(v) + 3) → (X(w) + 2, 0, Z(w))

• T → W (5 bends):
(X(v), 0, Z(v)+3) → (X(v),−1, Z(v)+3) → (X(w)−2,−1, Z(v)+3) →
(X(w) − 2, 0, Z(v) + 3) → (X(w) − 2, 0, Z(w))

• T → B (4 bends):
(X(v), 0, Z(v) + 3) → (X(v),−1, Z(v) + 3) → (X(w),−1, Z(v) + 3) →
(X(w), 0, Z(v) + 3)

• T → T (6 bends):
(X(v), 0, Z(v) + 3) → (X(v), +1, Z(v) + 3) → (X(w) − 3, 1, Z(v) + 3) →
(X(w) − 3, 0, Z(v) + 3) → (X(w) − 3, 0, Z(w) + 3) → (X(w), 0, Z(w) + 3)

• B → N (5 bends):
(X(v), 0, Z(v) − 1) → (X(v), +1, Z(v) − 1) → (X(w), 1, Z(v) − 1) →
(X(w), 2, Z(v) − 1) → (X(w), 2, Z(w))

• B → S (5 bends):
(X(v), 0, Z(v) − 1) → (X(v),−1, Z(v) − 1) → (X(w),−1, Z(v) − 1) →
(X(w),−2, Z(v) − 1) → (X(w),−2, Z(w))



M. Closson et al., Fully Dynamic 3-D Graph Drawing, JGAA, 5(2) 1–34 (2000)23

• B → E (5 bends):
(X(v), 0, Z(v) − 1) → (X(v), +1, Z(v) − 1) → (X(w) + 2, 1, Z(v) − 1) →
(X(w) + 2, 0, Z(v)− 1) → (X(w) + 2, 0, Z(w))

• B → W (5 bends):
(X(v), 0, Z(v)−1) → (X(v),−1, Z(v)−1) → (X(w)−2,−1, Z(v)−1) →
(X(w) − 2, 0, Z(v)− 1) → (X(w) − 2, 0, Z(w))

• B → T (6 bends):
(X(v), 0, Z(v) − 1) → (X(v), +1, Z(v) − 1) → (X(w) − 3, 1, Z(v) − 1) →
(X(w) − 3, 0, Z(v)− 1) → (X(w) − 3, 0, Z(w) + 3) → (X(w), 0, Z(w) + 3)

• B → B (4 bends):
(X(v), 0, Z(v) − 1) → (X(v),−1, Z(v) − 1) → (X(w),−1, Z(v) − 1) →
(X(w), 0, Z(v) − 1)

B Appendix: Self-Loop Routings - Staircase Model

• T → W (3 bends):
(X(v), 0, Z(v) + 3) → (X(v) − 2, 0, Z(v) + 3) → (X(v) − 2, 0, Z(v))

• Similarly, T → N, S, E.

• W → E (4 bends):
(X(v) − 1, 0, Z(v)) → (X(v) − 1,−3, Z(v)) → (X(v) + 2,−3, Z(v)) →
(X(v) + 2, 0, Z(v))

• W → S (3 bends):
(X(v) − 1, 0, Z(v)) → (X(v) − 1,−3, Z(v)) → (X(v),−3, Z(v))

• B → W (3 bends):
(X(v), 0, Z(v) − 1) → (X(v) − 2, 0, Z(v)− 1) → (X(v) − 2, 0, Z(v))

• Similarly, B → N, S, E.

• B → T (6 bends):
(X(v), 0, Z(v)− 1) → (X(v),−1, Z(v)− 1) → (X(v)− 3,−1, Z(v)− 1) →
(X(v) − 3, 0, Z(v) − 1) → (X(v) − 3, 0, Z(v) + 3) → (X(v), 0, Z(v) + 3)

• N → E (5 bends):
(X(v), +1, Z(v)) → (X(v), +1, Z(v) + 2) → (X(v) + 2, 1, Z(v) + 2) →
(X(v) + 2, 0, Z(v) + 2) → (X(v) + 2, 0, Z(v))

• Similarly, N → W .

• N → S (6 bends):
(X(v), +1, Z(v)) → (X(v), +1, Z(v) + 2) → (X(v) + 1, 1, Z(v) + 2) →
(X(v) + 1,−2, Z(v) + 2) → (X(v),−2, Z(v) + 2) → (X(v),−2, Z(v))



M. Closson et al., Fully Dynamic 3-D Graph Drawing, JGAA, 5(2) 1–34 (2000)24

• S → E (5 bends):
(X(v),−1, Z(v)) → (X(v),−1, Z(v) + 1) → (X(v) + 2,−1, Z(v) + 1) →
(X(v) + 2, 0, Z(v) + 1) → (X(v) + 2, 0, Z(v))

C Appendix: Routings - Orthogonal Spiral model

The 36 port-to-port routings from a vertex v to vertex w will now be enumer-
ated. The offsets for each of the 6 layers are denoted as: T ′, N ′, S′, E′, W ′, B′

and have the values 5, 4, 3, 2, 1,−1 respectively. In each case, the initial and
terminating points of the route are (X(v), Y (v), Z(v)) and (X(w), Y (w), Z(w));
the computation of these coordinates is presented in Section 3.1.

• N → S (6 bends):
(X(v), Y (v) + 1, Z(v)) → (X(v), Y (v) + 1, Z(v) + N ′) →
(X(w) + 2, Y (v) + 1, Z(v) + N ′) → (X(w) + 2, Y (w) − 3, Z(v) + N ′) →
(X(w), Y (w) − 3, Z(v) + N ′) → (X(w), Y (w) − 3, Z(w))

• N → N (6 bends):
(X(v), Y (v) + 1, Z(v)) → (X(v), Y (v) + 1, Z(v) + N ′) →
(X(w) + 2, Y (v) + 1, Z(v) + N ′) → (X(w) + 2, Y (w) + 3, Z(v) + N ′) →
(X(w), Y (w) + 3, Z(v) + N ′) → (X(w), Y (w) + 3, Z(w))

• N → E (6 bends):
(X(v), Y (v) + 1, Z(v)) → (X(v), Y (v) + 1, Z(v) + N ′) →
(X(w) + 2, Y (v) + 1, Z(v) + N ′) → (X(w) + 2, Y (w), Z(v) + N ′) →
(X(w) + 3, Y (w), Z(v) + N ′) → (X(w) + 3, Y (w), Z(w))

• N → W (6 bends):
(X(v), Y (v) + 1, Z(v)) → (X(v), Y (v) + 1, Z(v) + N ′) →
(X(w) − 2, Y (v) + 1, Z(v) + N ′) → (X(w) − 2, Y (w), Z(v) + N ′) →
(X(w) − 3, Y (w), Z(v) + N ′) → (X(w) − 3, Y (w), Z(w))

• N → T (7 bends):
(X(v), Y (v) + 1, Z(v)) → (X(v), Y (v) + 1, Z(v) + N ′) →
(X(w) + 2, Y (v) + 1, Z(v) + N ′) → (X(w) + 2, Y (w) + 4, Z(v) + N ′) →
(X(w), Y (w) + 4, Z(v) + N ′) → (X(w), Y (w) + 4, Z(w) + T ′) →
(X(w), Y (w), Z(w) + T ′)

• N → B (5 bends):
(X(v), Y (v) + 1, Z(v)) → (X(v), Y (v) + 1, Z(v) + N ′) →
(X(w) + 2, Y (v) + 1, Z(v) + N ′) → (X(w) + 2, Y (w), Z(v) + N ′) →
(X(w), Y (w), Z(v) + N ′)

• S → N (6 bends):
(X(v), Y (v) − 1, Z(v)) → (X(v), Y (v) − 1, Z(v) + S′) →
(X(w) − 2, Y (v) − 1, Z(v) + S′) → (X(w) − 2, Y (w) + 3, Z(v) + S′) →
(X(w), Y (w) + 3, Z(v) + S′) → (X(w), Y (w) + 3, Z(w))
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• S → S (6 bends):
(X(v), Y (v) − 1, Z(v)) → (X(v), Y (v) − 1, Z(v) + S′) →
(X(w) − 2, Y (v) − 1, Z(v) + S′) → (X(w) − 2, Y (w) − 3, Z(v) + S′) →
(X(w), Y (w) − 3, Z(v) + S′) → (X(w), Y (w) − 3, Z(w))

• S → E (6 bends):
(X(v), Y (v) − 1, Z(v)) → (X(v), Y (v) − 1, Z(v) + S′) →
(X(w) + 2, Y (v) − 1, Z(v) + S′) → (X(w) + 2, Y (w), Z(v) + S′) →
(X(w) + 3, Y (w), Z(v) + S′) → (X(w) + 3, Y (w), Z(w))

• S → W (6 bends):
(X(v), Y (v) − 1, Z(v)) → (X(v), Y (v) − 1, Z(v) + S′) →
(X(w) − 2, Y (v) − 1, Z(v) + S′) → (X(w) − 2, Y (w), Z(v) + S′) →
(X(w) − 3, Y (w), Z(v) + S′) → (X(w) − 3, Y (w), Z(w))

• S → T (7 bends):
(X(v), Y (v) − 1, Z(v)) → (X(v), Y (v) − 1, Z(v) + S′) →
(X(w) − 2, Y (v) − 1, Z(v) + S′) → (X(w) − 2, Y (w) + 4, Z(v) + S′) →
(X(w), Y (w) + 4, Z(v) + S′) → (X(w), Y (w) + 4, Z(w) + T ′) →
(X(w), Y (w), Z(w) + T ′)

• S → B (5 bends):
(X(v), Y (v) − 1, Z(v)) → (X(v), Y (v) − 1, Z(v) + S′) →
(X(w) − 2, Y (v) − 1, Z(v) + S′) → (X(w) − 2, Y (w), Z(v) + S′) →
(X(w), Y (w), Z(v) + S′)

• E → N (6 bends):
(X(v) + 1, Y (v), Z(v)) → (X(v) + 1, Y (v), Z(v) + E′) →
(X(v) + 1, Y (w) + 2, Z(v) + E′) → (X(w), Y (w) + 2, Z(v) + E′) →
(X(w), Y (w) + 3, Z(v) + E′) → (X(w), Y (w) + 3, Z(w))

• E → S (6 bends):
(X(v) + 1, Y (v), Z(v)) → (X(v) + 1, Y (v), Z(v) + E′) →
(X(v) + 1, Y (w) − 2, Z(v) + E′) → (X(w), Y (w) − 2, Z(v) + E′) →
(X(w), Y (w) − 3, Z(v) + E′) → (X(w), Y (w) − 3, Z(w))

• E → E (6 bends):
(X(v) + 1, Y (v), Z(v)) → (X(v) + 1, Y (v), Z(v) + E′) →
(X(v) + 1, Y (w) + 2, Z(v) + E′) → (X(w) + 3, Y (w) + 2, Z(v) + E′) →
(X(w) + 3, Y (w), Z(v) + E′) → (X(w) + 3, Y (w), Z(w))

• E → W (6 bends):
(X(v) + 1, Y (v), Z(v)) → (X(v) + 1, Y (v), Z(v) + E′) →
(X(v) + 1, Y (w) + 2, Z(v) + E′) → (X(w) − 3, Y (w) + 2, Z(v) + E′) →
(X(w) − 3, Y (w), Z(v) + E′) → (X(w) − 3, Y (w), Z(w))

• E → T (7 bends):
(X(v) + 1, Y (v), Z(v)) → (X(v) + 1, Y (v), Z(v) + E′) →
(X(v) + 1, Y (w) + 2, Z(v) + E′) → (X(w) − 4, Y (w) + 2, Z(v) + E′) →
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(X(w) − 4, Y (w), Z(v) + E′) → (X(w) − 4, Y (w), Z(w) + T ′) →
(X(w), Y (w), Z(w) + T ′)

• E → B (5 bends):
(X(v) + 1, Y (v), Z(v)) → (X(v) + 1, Y (v), Z(v) + E′) →
(X(v) + 1, Y (w) + 2, Z(v) + E′) → (X(w), Y (w) + 2, Z(v) + E′) →
(X(w), Y (w), Z(v) + E′)

• W → N (6 bends):
(X(v) − 1, Y (v), Z(v)) → (X(v) − 1, Y (v), Z(v) + W ′) →
(X(v) − 1, Y (w) + 2, Z(v) + W ′) → (X(w), Y (w) + 2, Z(v) + W ′) →
(X(w), Y (w) + 3, Z(v) + W ′) → (X(w), Y (w) + 3, Z(w))

• W → S (6 bends):
(X(v) − 1, Y (v), Z(v)) → (X(v) − 1, Y (v), Z(v) + W ′) →
(X(v) − 1, Y (w) − 2, Z(v) + W ′) → (X(w), Y (w) − 2, Z(v) + W ′) →
(X(w), Y (w) − 3, Z(v) + W ′) → (X(w), Y (w) − 3, Z(w))

• W → W (6 bends):
(X(v) − 1, Y (v), Z(v)) → (X(v) − 1, Y (v), Z(v) + W ′) →
(X(v) − 1, Y (w) − 2, Z(v) + W ′) → (X(w) − 3, Y (w) − 2, Z(v) + W ′) →
(X(w) − 3, Y (w), Z(v) + W ′) → (X(w) − 3, Y (w), Z(w))

• W → E (6 bends):
(X(v) − 1, Y (v), Z(v)) → (X(v) − 1, Y (v), Z(v) + W ′) →
(X(v) − 1, Y (w) − 2, Z(v) + W ′) → (X(w) + 3, Y (w) − 2, Z(v) + W ′) →
(X(w) + 3, Y (w), Z(v) + W ′) → (X(w) + 3, Y (w), Z(w))

• W → T (7 bends):
(X(v) − 1, Y (v), Z(v)) → (X(v) − 1, Y (v), Z(v) + W ′) →
(X(v) − 1, Y (w) − 2, Z(v) + W ′) → (X(w) + 4, Y (w) − 2, Z(v) + W ′) →
(X(w) + 4, Y (w), Z(v) + W ′) → (X(w) + 4, Y (w), Z(w) + T ′) →
(X(w), Y (w), Z(w) + T ′)

• W → B (5 bends):
(X(v) − 1, Y (v), Z(v)) → (X(v) − 1, Y (v), Z(v) + W ′) →
(X(v) − 1, Y (w) − 2, Z(v) + W ′) → (X(w), Y (w) − 2, Z(v) + W ′) →
(X(w), Y (w), Z(v) + W ′)

• T → N (6 bends):
(X(v), Y (v), Z(v) + T ′) → (X(v) + 2, Y (v), Z(v) + T ′) →
(X(v) + 2, Y (w) + 2, Z(v) + T ′) → (X(w), Y (w) + 2, Z(v) + T ′) →
(X(w), Y (w) + 3, Z(v) + T ′) → (X(w), Y (w) + 3, Z(w))

• T → S (6 bends):
(X(v), Y (v), Z(v) + T ′) → (X(v) + 2, Y (v), Z(v) + T ′) →
(X(v) + 2, Y (w) − 2, Z(v) + T ′) → (X(w), Y (w) − 2, Z(v) + T ′) →
(X(w), Y (w) − 3, Z(v) + T ′) → (X(w), Y (w) − 3, Z(w))
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• T → E (6 bends):
(X(v), Y (v), Z(v) + T ′) → (X(v), Y (v) + 2, Z(v) + T ′) →
(X(w) + 2, Y (v) + 2, Z(v) + T ′) → (X(w) + 2, Y (w), Z(v) + T ′) →
(X(w) + 3, Y (w), Z(v) + T ′) → (X(w) + 3, Y (w), Z(w))

• T → W (6 bends):
(X(v), Y (v), Z(v) + T ′) → (X(v), Y (v) + 2, Z(v) + T ′) →
(X(w) − 2, Y (v) + 2, Z(v) + T ′) → (X(w) − 2, Y (w), Z(v) + T ′) →
(X(w) − 3, Y (w), Z(v) + T ′) → (X(w) − 3, Y (w), Z(w))

• T → B (5 bends):
(X(v), Y (v), Z(v) + T ′) → (X(v), Y (v) + 2, Z(v) + T ′) →
(X(w) − 2, Y (v) + 2, Z(v) + T ′) → (X(w) − 2, Y (w), Z(v) + T ′) →
(X(w), Y (w), Z(v) + T ′)

• T → T (7 bends):
(X(v), Y (v), Z(v) + T ′) → (X(v), Y (v) + 2, Z(v) + T ′) →
(X(w) − 2, Y (v) + 2, Z(v) + T ′) → (X(w) − 2, Y (w) + 4, Z(v) + T ′) →
(X(w), Y (w) + 4, Z(v) + T ′) → (X(w), Y (w) + 4, Z(w) + T ′) →
(X(w), Y (w), Z(w) + T ′)

• B → N (6 bends):
(X(v), Y (v), Z(v) + B′) → (X(v) + 2, Y (v), Z(v) + B′) →
(X(v) + 2, Y (w) + 2, Z(v) + B′) → (X(w), Y (w) + 2, Z(v) + B′) →
(X(w), Y (w) + 3, Z(v) + B′) → (X(w), Y (w) + 3, Z(w))

• B → S (6 bends):
(X(v), Y (v), Z(v) + B′) → (X(v) + 2, Y (v), Z(v) + B′) →
(X(v) + 2, Y (w) − 2, Z(v) + B′) → (X(w), Y (w) − 2, Z(v) + B′) →
(X(w), Y (w) − 3, Z(v) + B′) → (X(w), Y (w) − 3, Z(w))

• B → E (6 bends):
(X(v), Y (v), Z(v) + B′) → (X(v), Y (v) − 2, Z(v) + B′) →
(X(w) + 2, Y (v) − 2, Z(v) + B′) → (X(w) + 2, Y (w), Z(v) + B′) →
(X(w) + 3, Y (w), Z(v) + B′) → (X(w) + 3, Y (w), Z(w))

• B → W (6 bends):
(X(v), Y (v), Z(v) + B′) → (X(v), Y (v) − 2, Z(v) + B′) →
(X(w) − 2, Y (v) − 2, Z(v) + B′) → (X(w) − 2, Y (w), Z(v) + B′) →
(X(w) − 3, Y (w), Z(v) + B′) → (X(w) − 3, Y (w), Z(w))

• B → T (7 bends):
(X(v), Y (v), Z(v) + B′) → (X(v), Y (v) − 2, Z(v) + B′) →
(X(w) − 2, Y (v) − 2, Z(v) + B′) → (X(w) − 2, Y (w) − 4, Z(v) + B′) →
(X(w), Y (w) − 4, Z(v) + B′) → (X(w), Y (w) − 4, Z(w) + T ′) →
(X(w), Y (w), Z(w) + T ′)

• B → B (5 bends):
(X(v), Y (v), Z(v) + B′) → (X(v), Y (v) − 2, Z(v) + B′) →
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(X(w) − 2, Y (v) − 2, Z(v) + B′) → (X(w) − 2, Y (w), Z(v) + B′) →
(X(w), Y (w), Z(v) + B′)

D Appendix: Routings - Directed model

There are 72 port-to-port routings from a vertex v to vertex w in a directed
drawing. Each of the following specifications represents 2 routings depending
on whether v is above or below w on the staircase. In each case, the initial and
terminating points of the route are (X(v), Y (v) = 0, Z(v)) and (X(w), Y (w) =
0, Z(w)) respectively and each edge contains exactly 6 bends.

• N → S:
(X(v), 2, Z(v)) → (X(v), 2, Z(v) − 1) → (X(w) − 1, 2, Z(v)− 1) →
(X(w) − 1,−1, Z(v)− 1) → (X(w) − 1,−1, Z(w)) → (X(w),−1, Z(w))

• N → N :
(X(v), 2, Z(v)) → (X(v), 2, Z(v) − 1) → (X(w) + 1, 2, Z(v)− 1) →
(X(w) + 1, 1, Z(v)− 1) → (X(w) + 1, 1, Z(w)) → (X(w), 1, Z(w))

• N → E:
(X(v), 2, Z(v)) → (X(v), 2, Z(v) − 1) → (X(w) + 2, 2, Z(v)− 1) →
(X(w) + 2,−1, Z(v)− 1) → (X(w) + 2,−1, Z(w)) → (X(w) + 2, 0, Z(w))

• N → W :
(X(v), 2, Z(v)) → (X(v), 2, Z(v) − 1) → (X(w) − 2, 2, Z(v)− 1) →
(X(w) − 2, 1, Z(v)− 1) → (X(w) − 2, 1, Z(w)) → (X(w) − 2, 0, Z(w))

• N → T :
(X(v), 2, Z(v)) → (X(v), 2, Z(v) − 1) → (X(w) − 3, 2, Z(v)− 1) →
(X(w) − 3, 0, Z(v)− 1) → (X(w) − 3, 0, Z(w) + 1) → (X(w), 0, Z(w) + 1)

• N → B:
(X(v), 2, Z(v)) → (X(v), 2, Z(v) − 1) → (X(w) + 3, 2, Z(v)− 1) →
(X(w) + 3, 0, Z(v)− 1) → (X(w) + 3, 0, Z(w)− 1) → (X(w), 0, Z(w) − 1)

• S → S:
(X(v),−2, Z(v)) → (X(v),−2, Z(v) + 1) → (X(w) − 1,−2, Z(v) + 1) →
(X(w) − 1,−1, Z(v) + 1) → (X(w) − 1,−1, Z(w)) → (X(w),−1, Z(w))

• S → N :
(X(v),−2, Z(v)) → (X(v),−2, Z(v) + 1) → (X(w) + 1,−2, Z(v) + 1) →
(X(w) + 1, 1, Z(v) + 1) → (X(w) + 1, 1, Z(w)) → (X(w), 1, Z(w))

• S → E:
(X(v),−2, Z(v)) → (X(v),−2, Z(v) + 1) → (X(w) + 2,−2, Z(v) + 1) →
(X(w) + 2,−1, Z(v) + 1) → (X(w) + 2,−1, Z(w)) → (X(w) + 2, 0, Z(w))
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• S → W :
(X(v),−2, Z(v)) → (X(v),−2, Z(v) + 1) → (X(w) − 2,−2, Z(v) + 1) →
(X(w) − 2, 1, Z(v) + 1) → (X(w) − 2, 1, Z(w)) → (X(w) − 2, 0, Z(w))

• S → T :
(X(v),−2, Z(v)) → (X(v),−2, Z(v) + 1) → (X(w) − 3,−2, Z(v) + 1) →
(X(w) − 3, 0, Z(v) + 1) → (X(w) − 3, 0, Z(w) + 1) → (X(w), 0, Z(w) + 1)

• S → B:
(X(v),−2, Z(v)) → (X(v),−2, Z(v) + 1) → (X(w) + 3,−2, Z(v) + 1) →
(X(w) + 3, 0, Z(v) + 1) → (X(w) + 3, 0, Z(w)− 1) → (X(w), 0, Z(w) − 1)

• E → N :
(X(v) + 2, 0, Z(v)) → (X(v) + 2,−3, Z(v)) → (X(w) + 1,−3, Z(v)) →
(X(w) + 1, 1, Z(v)) → (X(w) + 1, 1, Z(w)) → (X(w), 1, Z(w))

• E → S:
(X(v) + 2, 0, Z(v)) → (X(v) + 2,−3, Z(v)) → (X(w) − 1,−3, Z(v)) →
(X(w) − 1,−1, Z(v)) → (X(w) − 1,−1, Z(w)) → (X(w),−1, Z(w))

• E → E:
(X(v) + 2, 0, Z(v)) → (X(v) + 2,−3, Z(v)) → (X(w) + 2,−3, Z(v)) →
(X(w) + 2,−1, Z(v)) → (X(w) + 2,−1, Z(w)) → (X(w) + 2, 0, Z(w))

• E → W :
(X(v) + 2, 0, Z(v)) → (X(v) + 2,−3, Z(v)) → (X(w) − 2,−3, Z(v)) →
(X(w) − 2, 1, Z(v)) → (X(w) − 2, 1, Z(w)) → (X(w) − 2, 0, Z(w))

• E → T :
(X(v) + 2, 0, Z(v)) → (X(v) + 2,−3, Z(v)) → (X(w) − 3,−3, Z(v)) →
(X(w) − 3, 0, Z(v)) → (X(w) − 3, 0, Z(w) + 1) → (X(w), 0, Z(w) + 1)

• E → B:
(X(v) + 2, 0, Z(v)) → (X(v) + 2,−3, Z(v)) → (X(w) + 3,−3, Z(v)) →
(X(w) + 3, 0, Z(v)) → (X(w) + 3, 0, Z(w) − 1) → (X(w), 0, Z(w) − 1)

• W → N :
(X(v) − 2, 0, Z(v)) → (X(v) − 2, 3, Z(v)) → (X(w) + 1, 3, Z(v)) →
(X(w) + 1, 1, Z(v)) → (X(w) + 1, 1, Z(w)) → (X(w), 1, Z(w))

• W → S:
(X(v) − 2, 0, Z(v)) → (X(v) − 2, 3, Z(v)) → (X(w) − 1, 3, Z(v)) →
(X(w) − 1,−1, Z(v)) → (X(w) − 1,−1, Z(w)) → (X(w),−1, Z(w))

• W → E:
(X(v) − 2, 0, Z(v)) → (X(v) − 2, 3, Z(v)) → (X(w) + 2, 3, Z(v)) →
(X(w) + 2,−1, Z(v)) → (X(w) + 2,−1, Z(w)) → (X(w) + 2, 0, Z(w))

• W → W :
(X(v) − 2, 0, Z(v)) → (X(v) − 2, 3, Z(v)) → (X(w) − 2, 3, Z(v)) →
(X(w) − 2, 1, Z(v)) → (X(w) − 2, 1, Z(w)) → (X(w) − 2, 0, Z(w))
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• W → T :
(X(v) − 2, 0, Z(v)) → (X(v) − 2, 3, Z(v)) → (X(w) − 3, 3, Z(v)) →
(X(w) − 3, 0, Z(v)) → (X(w) − 3, 0, Z(w) + 1) → (X(w), 0, Z(w) + 1)

• W → B:
(X(v) − 2, 0, Z(v)) → (X(v) − 2, 3, Z(v)) → (X(w) + 3, 3, Z(v)) →
(X(w) + 3, 0, Z(v)) → (X(w) + 3, 0, Z(w) − 1) → (X(w), 0, Z(w) − 1)

• T → N :
(X(v), 0, Z(v) + 1) → (X(v), +2, Z(v) + 1) → (X(w) + 1, 2, Z(v) + 1) →
(X(w) + 1, 1, Z(v) + 1) → (X(w) + 1, 1, Z(w)) → (X(w), 1, Z(w))

• T → S:
(X(v), 0, Z(v) + 1) → (X(v), 2, Z(v) + 1) → (X(w) − 1, 2, Z(v) + 1) →
(X(w) − 1,−1, Z(v) + 1) → (X(w) − 1,−1, Z(w)) → (X(w),−1, Z(w))

• T → E:
(X(v), 0, Z(v) + 1) → (X(v), 2, Z(v) + 1) → (X(w) + 2, 2, Z(v) + 1) →
(X(w) + 2,−1, Z(v) + 1) → (X(w) + 2,−1, Z(w)) → (X(w) + 2, 0, Z(w))

• T → W :
(X(v), 0, Z(v) + 1) → (X(v), 2, Z(v) + 1) → (X(w) − 2, 2, Z(v) + 1) →
(X(w) − 2,−1, Z(v) + 1) → (X(w) − 2,−1, Z(w)) → (X(w) − 2, 0, Z(w))

• T → B:
(X(v), 0, Z(v) + 1) → (X(v), 2, Z(v) + 1) → (X(w) + 3, 2, Z(v) + 1) →
(X(w) + 3, 0, Z(v) + 1) → (X(w) + 3, 0, Z(w)− 1) → (X(w), 0, Z(w) − 1)

• T → T :
(X(v), 0, Z(v) + 1) → (X(v), 2, Z(v) + 1) → (X(w) − 3, 2, Z(v) + 1) →
(X(w) − 3, 0, Z(v) + 1) → (X(w) − 3, 0, Z(w) + 1) → (X(w), 0, Z(w) + 1)

• B → N :
(X(v), 0, Z(v)−1) → (X(v),−2, Z(v)−1) → (X(w)+1,−2, Z(v)−1) →
(X(w) + 1, 1, Z(v)− 1) → (X(w) + 1, 1, Z(w)) → (X(w), 1, Z(w))

• B → S:
(X(v), 0, Z(v)−1) → (X(v),−2, Z(v)−1) → (X(w)−1,−2, Z(v)−1) →
(X(w) − 1,−1, Z(v)− 1) → (X(w) − 1,−1, Z(w)) → (X(w),−1, Z(w))

• B → E:
(X(v), 0, Z(v)− 1) → (X(v),−2, Z(v)− 1) → (X(w) + 2,−2, Z(v)− 1) →
(X(w) + 2,−1, Z(v)− 1) → (X(w) + 2,−1, Z(w)) → (X(w) + 2, 0, Z(w))

• B → W :
(X(v), 0, Z(v)−1) → (X(v),−2, Z(v)−1) → (X(w)−2,−2, Z(v)−1) →
(X(w) − 2,−1, Z(v)− 1) → (X(w) − 2,−1, Z(w)) → (X(w) − 2, 0, Z(w))

• B → B:
(X(v), 0, Z(v)−1) → (X(v),−2, Z(v)−1) → (X(w)+3,−2, Z(v)−1) →
(X(w) + 3, 0, Z(v)− 1) → (X(w) + 3, 0, Z(w)− 1) → (X(w), 0, Z(w) − 1)
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• B → T :
(X(v), 0, Z(v)−1) → (X(v),−2, Z(v)−1) → (X(w)−3,−2, Z(v)−1) →
(X(w) − 3, 0, Z(v)− 1) → (X(w) − 3, 0, Z(w) + 1) → (X(w), 0, Z(w) + 1)

E Appendix: Routings - 5 Bend Staircase model

The 36 possible port-to-port routings from a vertex v to vertex w will now be
enumerated. In each case, the initial and terminating points of the route are
(X(v), Y (v) = 0, Z(v)) and (X(w), Y (w) = 0, Z(w)) respectively. We use K(v)
and L(v) to denote the underlayers associated with vertex v: if v is the ith
vertex, then K(v) = −2(n − i) − 2 and L(v) = −2(n − i) − 3, where n is the
number of vertices in the staircase. All edge routes contain 5 bends except Top
to Bottom, East to Bottom, North to Bottom, South to Bottom and Bottom to
Bottom which have 4 bends.

• N → S:
(X(v), 2, Z(v)) → (X(v) + 1, 2, Z(v)) → (X(v) + 1, 2, Z(w)) →
(X(v) + 1,−1, Z(w)) → (X(w),−1, Z(w))

• N → N :
(X(v), 1, Z(v)) → (X(v), 1, Z(v) + 1) → (X(w), 1, Z(v) + 1) →
(X(w), +2, Z(v) + 1) → (X(w), +2, Z(w))

• N → E:
(X(v), 1, Z(v)) → (X(v), 1, Z(v) + 1) → (X(w) + 2, 1, Z(v) + 1) →
(X(w) + 2, 0, Z(v) + 1) → (X(w) + 2, 0, Z(w))

• N → W :
(X(v), 1, Z(v)) → (X(v), 1, Z(v) + 1) → (X(w) − 1, 1, Z(v) + 1) →
(X(w) − 1, 0, Z(v) + 1) → (X(w) − 1, 0, Z(w))

• N → T :
(X(v), 2, Z(v)) → (X(v) + 1, 2, Z(v)) → (X(v) + 1, 2, Z(w) + 2) →
(X(v) + 1, 0, Z(w) + 2) → (X(w), 0, Z(w) + 2)

• N → B (4 bends):
(X(v), 1, Z(v)) → (X(v), 1, Z(v) + 1) → (X(w), 1, Z(v) + 1) →
(X(w), 0, Z(v) + 1)

• S → N :
(X(v),−2, Z(v)) → (X(v),−2, K(v)) → (X(w),−2, K(v)) →
(X(w), +2, K(v)) → (X(w), 2, Z(w))

• S → S:
(X(v),−2, Z(v)) → (X(v) − 1,−2, Z(v)) → (X(v) − 1,−2, Z(w)) →
(X(v) − 1,−1, Z(w)) → (X(w),−1, Z(w))
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• S → E:
(X(v),−1, Z(v)) → (X(v),−1, Z(v) + 1) → (X(w) + 2,−1, Z(v) + 1) →
(X(w) + 2, 0, Z(v) + 1) → (X(w) + 2, 0, Z(w))

• S → W :
(X(v),−1, Z(v)) → (X(v),−1, Z(v) + 1) → (X(w) − 1,−1, Z(v) + 1) →
(X(w) − 1, 0, Z(v) + 1) → (X(w) − 1, 0, Z(w))

• S → T :
(X(v),−2, Z(v)) → (X(v) − 1,−2, Z(v)) → (X(v) − 1,−2, Z(w) + 2) →
(X(v) − 1, 0, Z(w) + 2) → (X(w), 0, Z(w) + 2)

• S → B (4 bends):
(X(v),−1, Z(v)) → (X(v),−1, Z(v) + 1) → (X(w),−1, Z(v) + 1) →
(X(w), 0, Z(v) + 1)

• E → N :
(X(v) + 2, 0, Z(v)) → (X(v) + 2, 0, L(v)) → (X(w), 0, L(v)) →
(X(w), 2, L(v)) → (X(w), 2, Z(w))

• E → S:
(X(v) + 1, 0, Z(v)) → (X(v) + 1,−2, Z(v)) → (X(v) + 1,−2, Z(w)) →
(X(v) + 1,−1, Z(w)) → (X(w),−1, Z(w))

• E → E:
(X(v) + 1, 0, Z(v)) → (X(v) + 1,−1, Z(v)) → (X(w) + 2,−1, Z(v)) →
(X(w) + 2, 0, Z(v)) → (X(w) + 2, 0, Z(w))

• E → W :
(X(v) + 1, 0, Z(v)) → (X(v) + 1,−1, Z(v)) → (X(w) − 1,−1, Z(v)) →
(X(w) − 1, 0, Z(v)) → (X(w) − 1, 0, Z(w))

• E → T :
(X(v)+1, 0, Z(v)) → (X(v)+1,−2, Z(v)) → (X(v)+1,−2, Z(w)+2) →
(X(v) + 1, 0, Z(w) + 2) → (X(w), 0, Z(w) + 2)

• E → B (4 bends):
(X(v) + 1, 0, Z(v)) → (X(v) + 1,−1, Z(v)) → (X(w),−1, Z(v)) →
(X(w), 0, Z(v))

• W → N :
(X(v) − 1, 0, Z(v)) → (X(v) − 1, 3, Z(v)) → (X(w), 3, Z(v)) →
(X(w), 2, Z(v)) → (X(w), 2, Z(w))

• W → S:
(X(v) − 1, 0, Z(v)) → (X(v) − 1, 2, Z(v)) → (X(v) − 1, 2, Z(w)) →
(X(v) − 1,−1, Z(w)) → (X(w),−1, Z(w))

• W → W :
(X(v) − 1, 0, Z(v)) → (X(v) − 1, 3, Z(v)) → (X(w) − 1, 3, Z(v)) →
(X(w) − 1, 0, Z(v)) → (X(w) − 1, 0, Z(w))
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• W → E:
(X(v) − 1, 0, Z(v)) → (X(v) − 1, 3, Z(v)) → (X(w) + 2, 3, Z(v)) →
(X(w) + 2, 0, Z(v)) → (X(w) + 2, 0, Z(w))

• W → T :
(X(v) − 1, 0, Z(v)) → (X(v) − 1, 2, Z(v)) → (X(v) − 1, 2, Z(w) + 2) →
(X(v) − 1, 0, Z(w) + 2) → (X(w), 0, Z(w) + 2)

• W → B:
(X(v) − 1, 0, Z(v)) → (X(v) − 1, 3, Z(v)) → (X(w) + 1, 3, Z(v)) →
(X(w) + 1, 0, Z(v)) → (X(w), 0, Z(v))

• T → N :
(X(v), 0, Z(v) + 2) → (X(v), +1, Z(v) + 2) → (X(w), 1, Z(v) + 2) →
(X(w), 2, Z(v) + 2) → (X(w), 2, Z(w))

• T → S:
(X(v), 0, Z(v) + 2) → (X(v), 4, Z(v) + 2) → (X(v), 4, Z(w)) →
(X(v),−1, Z(w)) → (X(w),−1, Z(w))

• T → E:
(X(v), 0, Z(v) + 2) → (X(v), +1, Z(v) + 2) → (X(w) + 2, 1, Z(v) + 2) →
(X(w) + 2, 0, Z(v) + 2) → (X(w) + 2, 0, Z(w))

• T → W :
(X(v), 0, Z(v) + 2) → (X(v), 1, Z(v) + 2) → (X(w) − 1, 1, Z(v) + 2) →
(X(w) − 1, 0, Z(v) + 2) → (X(w) − 1, 0, Z(w))

• T → B (4 bends):
(X(v), 0, Z(v) + 2) → (X(v), 1, Z(v) + 2) → (X(w), 1, Z(v) + 2) →
(X(w), 0, Z(v) + 3)

• T → T :
(X(v), 0, Z(v) + 2) → (X(v), +4, Z(v) + 2) → (X(v), 4, Z(w) + 2) →
(X(v), 0, Z(w) + 2) → (X(w), 0, Z(w) + 2)

• B → N :
(X(v), 0, Z(v) − 1) → (X(v), +1, Z(v) − 1) → (X(w), 1, Z(v) − 1) →
(X(w), 2, Z(v) − 1) → (X(w), 2, Z(w))

• B → S:
(X(v), 0, L(v)) → (X(v),−3, L(v)) → (X(v),−3, Z(w)) →
(X(v),−1, Z(w)) → (X(w),−1, Z(w))

• B → E:
(X(v), 0, Z(v) − 1) → (X(v), +1, Z(v) − 1) → (X(w) + 2, 1, Z(v) − 1) →
(X(w) + 2, 0, Z(v)− 1) → (X(w) + 2, 0, Z(w))

• B → W :
(X(v), 0, Z(v) − 1) → (X(v), 1, Z(v) − 1) → (X(w) − 1, 1, Z(v)− 1) →
(X(w) − 1, 0, Z(v)− 1) → (X(w) − 1, 0, Z(w))
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• B → T :
(X(v), 0, L(v)) → (X(v),−3, L(v)) → (X(v),−3, Z(w) + 2) →
(X(v), 0, Z(w) + 2) → (X(w), 0, Z(w) + 2)

• B → B (4 bends):
(X(v), 0, Z(v) − 1) → (X(v), 1, Z(v) − 1) → (X(w), 1, Z(v) − 1) →
(X(w), 0, Z(v) − 1)


