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Abstract

We give two, new upper bounds for oblivious permutation routing on
the mesh networks: Let N be the total number of processors in each
mesh. One is an O(N0.75) algorithm on the two-dimensional,

√
N ×√

N
mesh with constant queue-size. This is the first algorithm which improves
substantially the trivial O(N) bound for oblivious routing in the mesh
networks with constant queue-size. The other is a 1.16

√
N + o(

√
N) algo-

rithm on the three-dimensional, N1/3 ×N1/3 ×N1/3 mesh with unlimited
queue-size. This algorithm allows at most three bends in the path of each
packet. If the number of bends is restricted to minimal, i.e., at most two,
then the bound jumps to Ω(N2/3) as was shown in ESA’97.
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1 Introduction

An algorithm for packet routing has to determine each packet’s path through
a network by using various information, such as source addresses, destinations,
and the configuration of the network. So far a great deal of effort has been
devoted to the design of efficient routing algorithms and there is a large amount
of literature even if we focus our attention on deterministic, permutation routing,
in which the destinations of packets are all different. The efficiency of a routing
algorithm is generally measured by its running time and its queue-size of each
processor, where the former is the total number of communication time-units
the algorithm requires to route all packets to their destinations, and the latter
is the maximum number of packets the processor temporally can hold at the
same time during routing.

A very popular strategy for permutation routing is oblivious routing, in
which the path of each packet is completely determined by its initial and final
positions and is not affected by other packets it encounters. Hence, it is hard
to avoid path-congestion in the worst case and it often takes much more time
than it looks. Several lower-bounds which are rather surprising are known on
the running time of oblivious permutation routing on standard mesh networks,
each of which has N processors connected via point-to-point connections: For
example: (i) An Ω(N) lower bound is known for oblivious permutation routing
on any k-dimensional, constant queue-size mesh network including N proces-
sors, where k may be any constant [8]. (Note that an O(N) upper bound can
be achieved for permutation routing even on one-dimensional meshes (linear
arrays) including N processors, i.e., increasing dimensions in meshes does not
work in the worst case.) (ii) An Ω(N2/3) lower bound is known for oblivious
permutation routing on three-dimensional, unbounded queue-size meshes includ-
ing N1/3 × N1/3 × N1/3 processors [5], which is much worse than the O(

√
N)

bound for oblivious permutation routing on two-dimensional, unbounded queue-
size meshes including

√
N × √N processors. (iii) An Ω(

√
N) lower bound for

oblivious permutation routing on any constant-degree, unbounded queue-size,
N processor network [2, 3, 6]. It should be noted, however, that these lower
bound proofs needed some supplementary conditions that might not seem so
serious but are important for the proofs. In this paper, it is shown that the
above lower bounds do not hold any more if those supplementary conditions are
slightly relaxed.

More precisely, Krizanc needed the pure condition other than the oblivious
condition to prove the Ω(N) lower bound in [8]. Roughly speaking, the pure
condition requires that each packet must move if its next position is empty.
Krizanc gave an open question, i.e., whether his linear bound can be improved
by removing the pure condition. In this paper we give a positive answer to
this question: It is shown that there is an O(N0.75) oblivious algorithm for
permutation on 2D,

√
N × √N meshes with constant queue-size, and there

is an O(N5/6) oblivious algorithm on 3D, N1/3 × N1/3 × N1/3 meshes with
constant queue-size. The oblivious condition used in [8] is a little more stronger
than the normal one, called the source-oblivious condition. That is also satisfied
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by our new algorithm, i.e., we remove only the pure condition in this paper.
Note that this Ω(N) lower bound is quite tough; it still holds even without the
oblivious condition; the destination-exchangeable strategy also implies the same
lower bound if the queue-size is bounded above by some constant [4]. Our new
bound can be extended to the case of general queue-size k, namely, it is shown
that there is an O(N0.75/

√
k) algorithm for 2D,

√
N × √N meshes of queue-

size k, and there is an O(N5/6/
√

k) algorithm for 3D, N1/3 × N1/3 × N1/3

meshes of queue-size k, while an Ω(N/k(8k)5k) lower bound was previously
known for any constant degree, k-queue-size network including N processors
under the pure condition [8]. For 2D meshes, if we set k =

√
N , then that is

equivalent to unbounded queue-size. Our bound for this specific value of k is
O(N0.75/N0.25) = O(

√
N), which matches the lower bound of [2, 3, 6].

Our second result concerns with 3D meshes: In [5] an important exception
was proved against the well-known superiority of the 3D meshes over the 2D
ones; oblivious permutation routing requires Ω(N2/3) steps over the 3D meshes
including N processors under the following (not unusual, see the next para-
graph) condition: The path must be shortest and be as straight as possible. In
other words, each packet has to follow a path including at most two bends in
the 3D case. [5] suggested that this lower bound may still hold even if the con-
dition is removed; i.e., three-dimensional oblivious routing may be essentially
inefficient. Fortunately this concern for 3D meshes was needless; we prove in
this paper that any permutation can be routed over the 3D meshes including
N processors in 1.16

√
N + o(

√
N) steps by relaxing the condition a little bit:

If we only allow the path of every packet to make one more bend, then the
running time of the algorithm decreases from Ω(N2/3) to Θ(

√
N). This upper

bound is optimal within constant factor by [6] and does not change if we add
the shortest-path condition.

For oblivious routing, there is a general lower bound, i.e.,
√

N / d for degree-
d networks of any type [6]. This is tight for the hypercube including N pro-
cessors, namely, Θ(

√
N/ logN) is both upper and lower bounds for oblivious

routing over the hypercube [6]. This is also tight within constant factor for
the 2D mesh including N processors, where 2

√
N − 2 steps is an upper bound

and also is a lower bound (without any supplementary condition) [1, 9, 10, 11].
Thus, tight bounds are known for two extremes, for the 2D mesh and for the
log N -dimensional mesh (= the hypercube). Furthermore, both upper bounds
can be achieved rather easily, i.e., by using the most rigid, dimension-order path
strategy [12, 2, 6]. However, for the 3D meshes, even the substantially weaker
condition, i.e., the minimum-bending condition, provides the much worse bound
as mentioned before [5]. Our second result now extends the family of meshes
for which optimal oblivious routing is known. If randomization is allowed, then
the bound decreases to O(N1/3) [7, 13] for 3D meshes including N processors.
A similar bound also holds for deterministic routing but for random permuta-
tions [9], including our new algorithm.
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Figure 1: (a) 2D mesh (b) Processor

2 Models and Problems

Two-dimensional meshes are illustrated in Figure 1-(a). The following defini-
tions on the two-dimensional (2D for short) mesh can be naturally extended to
the three-dimensional (3D for short) mesh illustrated in Figure 2. A position
is denoted by (i, j), 1 ≤ i, j ≤ √N and a processor whose position is (i, j) is
denoted by Pi,j , i.e., the total number of processors is N . A connection between
the neighboring processors is called a (communication) link. A packet is denoted
by [i, j], which shows that the destination of the packet is (i, j). (A real packet
includes more information besides its destination such as its original position
and body data, but they are not important within this paper and are omitted.)
So we have N different packets in total. An instance of permutation routing
consists of a sequence σ1σ2 · · ·σN of packets that is a permutation of the N
packets [1, 1], [1, 2], · · · , [√N,

√
N ], where σ1 is originally placed in P1,1, σ2 in

P1,2 and so on.
Each processor has four input and four output queues (see Figure 1-(b)).

Each queue can hold up to k packets at the same time. The one-step com-
putation consists of the following two steps: (i) Suppose that l (≥ 0) packets
remain, or there are k − l spaces, in an output queue Q of processor Pi. Then
Pi selects at most k − l packets from its input queues, and moves them to Q.
(ii) Let Pi and Pi+1 be neighboring processors (i.e., Pi’s right output queue Qi

be connected to Pi+1’s left input queue Qi+1). Then if the input queue Qi+1

has space, then Pi selects at most one packet (at most one packet can flow on
each link in each time-step) from Qi and send it to Qi+1. Note that Pi makes
several decisions due to a specific algorithm in both steps (i) and (ii). When
making these decisions, Pi can use any information such as the information of
the packets now held in its queues. Other kind of information, such as how
many packets have moved horizontally in the recent t time-slots, can also be
used. Note that it may happen that a packet does not go out of its source until
a specific time in routing. In this paper, we assume that such an inactive packet
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Figure 2: 3D mesh

is not included in the queue-size.
If we fix an algorithm and an instance, then the path R of each packet

is determined, which is a sequence of processors, P1(= source), P2, · · · , Pj(=
destination). R is said to be b-bend if R changes its direction at b positions.
A routing algorithm, A , is said to be b-bend if the path of every packet is at
most b-bend. A is said to be oblivious if the path of each packet is completely
determined by its source and destination. Furthermore, A is said to be source-
oblivious if the moving direction of each packet only depends on its current
position and destination (regardless of its source position). A is said to be
minimal if the path of every packet is the shortest one. A is said to be pure if a
packet never stays at the current position when it is possible for the packet to
advance.

The most rigid and typical oblivious scheme for routing on meshes (and hy-
percubes) is the so called dimension-order algorithm. In the two-dimensional
case, a packet first moves horizontally to its destination column and then moves
vertically to its destination row. If the queue-size is unbounded, then the
dimension-order algorithm can route any permutation in 2

√
N − 2 steps on 2D

meshes including N processors [9, 12]. However, if the queue-size is bounded
above by some constant, then we have to pay great attention to algorithm’s
behavior, especially to the queuing discipline. As an example, let us consider
the following oblivious routing algorithm, say, A0, for k = 1, which is based
on the dimension-order strategy, i.e., all packets move horizontally first and
then make turns at most once at the crossings of source rows and destination
columns. (i) Suppose that the top output queue of processor Pi is empty. Then
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Pi selects one packet whose destination is upward on this column. If there are
more than one such packet, then the priority is given in the order of the left,
right and bottom input queues. (Namely, if there is a packet that makes a turn
in this processor, then it has a higher priority than a straight-moving packet.)
Similarly for the bottom, left and right output queues, i.e., a turning packet
has a priority if competition occurs. (ii) If an input queue is empty, then it is
always filled by a packet from its neighboring output queue. Thus each queue of
the processor never overflows under A0. It is not hard to see that A0 completes
routing within roughly c

√
N steps for many “usual” instances. Unfortunately,

it is not always true.
Consider the following instance: Packets in the lower-left one-fourth plane

are to move to the upper-right plane, and vice versa. The other packets in the
lower-right and upper-left planes do not move at all. One can see that A0 begins
with moving (or shifting) packets in the lower-left plane to the right. Suppose
that the flow of those packets looks like the following illustration: Here a shows a
packet whose destination is on the rightmost column, b on the second rightmost
column and so on. Note that the uppermost row includes a long sequence of
a’s. The second row includes five a’s and a long b’s, the third row includes five
a’s, five b ’s and long c’s and so on. We call such a sequence of packets which
have the same destination column a lump of packets.

|←−−−−−−−−−−−−−ε
√

N −−−−−−−−−−−−−→|
· · · v v u a a a a · · · a a a a a

|←−−−−−−−−−−−−ε
√

N −−−−−−−−−−−−→|
· · · v v u b b b · · · b b b b b a a a a a
· · · c c c · · · c c c c c b b b b b a a a a a
· · · d d d · · · d d d d d c c c c c b b b b b a a a a a

...
· · · e e e e e d d d d d c c c c c b b b b b a a a a a

↑

ε
√

N

↓

Now the lump of a’s reaches the rightmost column. One can see that the a’s
in the uppermost row can move into the vertical line smoothly and the following
packets can reach to their bending position smoothly also: Thus nothing hap-
pens against the uppermost row. However, the packet stream in the second row
will encounter two different kinds of “blocking:” (1) The sequence of five a’s in
the second row is blocked at the upper-right corner and cannot move upward
since the ε

√
N a’s in the uppermost row have privileges. (2) One can verify

that the last (leftmost) a of these five a’s stops at the left queue of the second
rightmost processor, which blocks the next sequence of b’s, namely, they cannot
enter the second rightmost column even if it is empty (see Figure 3). Thus,
we need ε

√
N steps before the long b’s start moving. After they start moving,

those b’s in turn block the five b’s on the third row and below. This argument
can continue until the ε

√
Nth row, which means we need at least (ε

√
N)2 steps

only to move those packets.
One might think that this congestion is due to the rule of giving a higher

priority to the packets that turn to the top from the left. This is not necessarily
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Figure 3: Blocking

true. Although details are omitted, we can create “adversaries” that imply a
similar congestion against other resolution rules such as giving a priority to
straight-moving packets. In the next section we will see how we can avoid this
kind of bad blocking.

3 2D Oblivious Routing

3.1 Basic Ideas

Recall that the naive algorithm A0 given in the previous section requires Ω(N)
steps in the worst case. One can see that in the above example, serious delays
do occur around at the crossings of source rows and destination columns, called
the critical zone, and this inefficiency mainly comes from the co-existence of
long and short lumps of packets; namely, short lumps of packets move ahead
and prevent subsequent long lumps of packets from advancing. However, as
shown in Lemma 3 later, the same algorithm runs quickly if there are only long
lumps of packets in every row. On the other hand, if we have only short lumps
of packets in every row, then we can also handle them efficiently (see Lemma 4).
In the following, a lump of packets is said to be long if it includes at least d
packets which have the same destination column for some positive integer d,
which will be fixed later; otherwise, it is said to be short. So our basic strategy
is quite simple: Before entering packets into their critical zone, (1) we first
sort the sequence of packets in every row so that packets having nearer column
destinations will go first (i.e., the packets move in nearest-first order), and then
(2) count the size of each lump of packets which have the same destination
column. As shown later, the operation (2) results in the sequence of the packets
being changed into the reverse order. Note that it is only the purpose of these
nearest-first and farthest-first orderings to count the number of packets going
to the same column by grouping them. (3) We let only long lumps of packets
go to the critical zone in farthest-first order. (4) The remaining short lumps
of packets go afterwards but this time we adopt the so-called shuffled order as
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the sequence of packets. For example, consider the following sorted sequence of
packets:

d2 d1 c3 c2 c1 b2 b1 a3 a2 a1

Then, the shuffle order sequence looks like the following illustration:

c3 a3 d2 c2 b2 a2 d1 c1 b1 a1

where a’s have the farthest column destination, b’s the second farthest, and so
on as before. Namely, each of the rightmost four packets a1, b1, c1 and d1 comes
from the right end of each lump, each of the next four packets a2, b2, c2 and d2

comes from the second right end of each lump and the remaining two packets
are placed on the left end of the shuffle order sequence.

Recall that our main purpose of the sorting operation (1) is to gather packets
heading for the same destination column, which makes it possible to execute the
subsequent operations efficiently. Thus the key to implementing those ideas lies
in designing an algorithm which can change any sequence of packets on each row
to the sorted sequence according to the destination column without violating
the oblivious condition:

Lemma 1 Let x = x1x2 · · ·xn be a sequence of n packets and xs = xs1xs2 · · ·xsn

be a sorted sequence of x such that xsn is the nearest packet among those n pack-
ets, and xsn−1 is the second nearest packet, and so on. Suppose that a linear
array of 2n processors, P1 through P2n, is available and the sequence x of n
packets is initially placed on the n processors of the left half of the linear array.
Namely, P1 through Pn hold x1 through xn in this order initially. Then there
is an oblivious algorithm which runs in 2n− 1 steps and needs queue-size k = 2
such that the sorted sequence xs is finally placed on the right half of the linear
array, i.e., Pn+1 through P2n finally hold xs1 through xsn in this order.

Proof: The basic idea of the following oblivious algorithm is very similar to the
idea implemented to adaptive routing in [4]: (i) We first move those n packets
to the right in nearest-first order. That means the leftmost processor Pn+1 of
the right-half linear array receives packets in nearest-first order, i.e., Pn+1 first
receives the nearest packet xsn , next the second nearest packet xsn−1 and so on.
(ii) Then we keep moving each packet up to its correct position. Here is a more
detailed description:

(i) For 1 ≤ i ≤ n, each Pi selects a packet which should go to the nearer
column out of the packets it currently holds in its queue (an arbitrary one if all
packets Pi holds have the same destination column), and moves it to the right
at each step. However, Pi starts this action at the ith step and does nothing
until then. If Pi has no packet, then it does nothing again.

(ii) For 1 ≤ i ≤ n, each Pn+i simply shifts its packet sent from Pn+i−1 to the
right at each step. Then Pn+i eventually receives its correct packet xsi exactly
at the (2n− 1)th step.

Take a look at the following example:

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

initial positions a c b a c c a a b a
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which shows that the sequence of 10 packets are now included in the left half,
P1 through P10, of a linear array of 20 processors. Note that a should go to the
farthest column, b the second farthest and so on as before. At the first step,
only the leftmost packet, a in this example, moves to the right and P2 now holds
a and c in its input queue (recall that k = 2). In the second step, c is selected
among a and c since c should go out earlier than a, and it goes to P3. In the
third step, P2 sends the remaining packet a to the right, and at the same time,
P3 sends c out since the destination column of c is nearer than b. For example,
after the eighth step, the positions change as follows:

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

after the 8th step b a a b a
a a c c c

In the next step, P10, P9, P8, P7 and P6 receive c, c, c, b and a from P9, P8, P7,
P6 and P5, respectively. In the next (10th) step, the packet c first goes out of
the left half of the linear array and so on. The proof that the sorting operation
works is based on the following claim, which can be shown by induction on m.

Claim 1 For any 2 ≤ m ≤ n + 1, the following statement is true: At the
(m− 1)th step Pm receives the nearest packet among the packets initially placed
on P1 through Pm−1, at the mth step Pm receives the second nearest among those
packets, and so on. Finally, at the (2m − 3)th step, Pm receives the (m − 1)th
nearest (i.e., farthest) packet.

Proof: See [4]. 2

By Claim 1, Pn+1, the leftmost processor of the right half array, can receive
the jth nearest packet xsn−j+1 exactly at the (n + j − 1)th step for 1 ≤ j ≤ n.
In other words, Pn+1 can receive the ith farthest packet xsi exactly at the
(2n − i)th step for 1 ≤ i ≤ n. Furthermore, the ith farthest packet xsi has to
move rightward, and eventually, xsi arrives at its final position Pn+i exactly at
the (2n− 1)th step since each Pn+i simply shifts each of the packets sent from
Pn+i−1 to the right and xsi requires (i− 1) steps to travel from Pn+1 to Pn+i.

2

Note that the row routing algorithm in Lemma 1 works in linear time of n,
but in order to obtain the sorted sequence of n packets we have to prepare a
long path of (at least) 2n processors before entering the sequences into their
critical zone.

3.2 Algorithms

Theorem 1 There is an oblivious routing algorithm on the two-dimensional,√
N×√N mesh of queue-size k (2 ≤ k ≤ c

√
N for some constant c) which runs

in O(N0.75/
√

k) steps.
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Figure 4: 36 subplanes

Proof: The whole plane is divided into 36 subplanes, SP1,1 through SP6,6 as
shown in Figure 4. For simplicity, the total number of processors in 2D meshes
is hereafter denoted by not N but 36n2, i.e., each subplane consists of n × n
processors. (1) The entire algorithm is divided into 36× 36 phases. In the first
phase only packets whose sources and destinations are both in SP1,1 move (i.e.,
they may be only a small portion of the n2 packets in SP1,1). In the second
phase only packets from SP1,1 to SP1,2 move, and so on. (2) Suppose that it is
now the phase where packets from SP2,2 to SP5,2 move. Then the paths of those
packets are not shortest to make sorted sequences of the packets, but as shown
by arrows in Figure 4: They first move rightward to SP2,6, then downward
to SP5,6, and finally move leftward back to SP5,2. Thus, the paths of the
packets are denoted by the following sequence of subplanes, SP2,2, SP2,3, · · ·,
SP2,6, SP3,6, · · ·, SP5,6, SP5,5, · · ·, SP5,2. The general rule of path selection
in each phase will be given soon. (3) These paths consist of three different
zones, the (parallel) shifting zone, the sorting zone and the critical zone. In
the above example, the sorting zone is composed of three consecutive subplanes
SP2,3, SP2,4 and SP2,5, the critical zone is SP2,6 and the parallel shifting zone
includes all the remaining portions.

We first describe the purpose of three different zones: First of all, before
entering packets into the sorting zone, they move without changing their rel-
ative positions, i.e., they move in parallel just like a formation flight. In the
above example again, packets initially placed on the top row in the source sub-
plane SP2,2 move through the top row without changing their order to the next
subplane SP2,3 of the sorting zone, packets on the second row in SP2,2 move
rightward through the second row without changing their order to SP2,3, and
so on. The sorting zone needs three consecutive subplanes where the flow of
packets on each row is changed, i.e., from an arbitrary order to the farthest-first
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order. More precisely, packets on each row in SP2,3 of the sorting zone once
move rightward to the next subplane SP2,4 while sorting their order into the
nearest-first order by using the row routing algorithm in Lemma 1. Further-
more, the packets move from SP2,4 to the next subplane SP2,5, while changing
their order into the reverse order (i.e., farthest-first order) to calculate the size
of each lump of packets, by using a new (but simple) idea described later. The
critical zone is the most important zone where each packet enters its correct
column position, but relatively within the subplane. Namely, if the destination
of the packet is on the leftmost column in the final destination subplane SP5,2,
then the packet temporally enters the leftmost column in the critical zone SP2,6,
if the destination is on the second leftmost column in SP5,2, then the packet
temporally enters the second leftmost column in SP2,6, and so on. Finally, all
the packets move through the shifting zone towards their final positions without
changing their relative positions.

Recall that our goal is to reduce path-congestion in the critical zone with a
help of the sorting zone. To prepare the sorting zone before entering packets
into the critical zone, the path of each packet from SP2,2 to SP5,2 takes such
a long way. In general our oblivious routing algorithm has to determine the
path independently for each of the 362 phases. Here is the rule: If the starting
subplane is in the left side of the whole plane (as SP2,2), then the packets are
moved to the right end in the first stage of the algorithm, which allows us to
prepare the sorting zone. If the starting subplane is on the right side, then the
packets are moved to the left end in the first stage. If the starting and ending
subplanes are on the same row, then the path goes like the one given by the
dotted line in Figure 4. It should be noted that this path design is obviously
source-oblivious in each time-step, but is not in the whole time-steps. To make
it source-oblivious in the whole steps is not hard, see the remark at the end of
this section.

Now we give more detailed description of a single phase of the algorithm
Rout[2]. The size of each queue is two (k = 2) for a while, but it is extended to
Rout[k] later. Suppose for exposition that it is now the phase where packets from
a subplane in the left side of the upper half plane to another subplane in the lower
half plane should move. We call those packets active packets on this phase. Also,
suppose that the active packets move first through subplanes PZ 1, · · · ,PZ p as
the parallel shifting zone, then move through subplanes SZ 1,SZ 2 and SZ 3 as the
sorting zone, next move through subplane CZ as the critical zone, and finally
move through PZ ′

1, · · · ,PZ ′
q as the parallel shifting zone again for p ≥ 0 and

q ≥ 0. (By p = 0 (q = 0) we mean that the algorithm needs no shifting subplanes
before the sorting zone (after the critical zone).)

Algorithm: Rout[2]
A single phase of Rout[2] is divided into the following seven stages:

Stage 1: If p = 0, then go to Stage 2. Otherwise, the following is executed
on every row in parallel: All the active packets in PZ 1 are routed horizontally
into SZ 1 without changing their relative positions within every subplane. More



K. Iwama et al., Oblivious Mesh Routing , JGAA, 5(5) 17–38 (2001) 28

precisely, at each step, each processor shifts rightward its packet it currently
holds in its queue. Eventually, all the active packets simultaneously arrive at
their temporal destinations in SZ 1 exactly at the pnth step since it is exactly
pn positions long for every active packet to travel to its temporal destination in
SZ 1.

Stage 2 (Sorting): The following is executed on every row in parallel: The
same algorithm as the one described in the proof of Lemma 1 is executed by
using 2n processors, P1 through P2n, on the row in SZ 1 and SZ 2.

However, the present situation is a little bit different. Now some processor
may have no packet since only active packets on this phase have been routed
here. So, the initial sequence of packets on P1 through Pn may include spaces or
“null packets,” but it does not cause any problem by regarding the null packets
as the farthest (going out latest) packets.

Stage 3 (Counting): The following is executed on every row in parallel:
Suppose that Pn+1 through P3n are 2n processors in the row in SZ 2 and SZ 3.
Then we change the current position of each packet in SZ 2 into the symmetrical
position with respect to the boundary between SZ 2 and SZ 3 as follows: (i) Each
of the processors Pn+1 through P2n in SZ 2 simply shifts every active packet one
position to the right step by step. (ii) Also, at each step, each P2n+i in SZ 3

shifts rightward its packet it currently holds in its queue except for the packet,
say, y2n+i which arrives there exactly at the (2i−1)th step (from the beginning
of this stage) for 1 ≤ i ≤ n. Simultaneously, each P2n+i calculates how many
packets whose destinations are the same column as its packet y2n+i it has sent
to the right. Then, at the (2n−1)th step of this stage, P2n+i stores the number
of the packets plus one (for y2n+i) in N2n+i.

Stage 4 (Moving Long Lumps in Farthest-First Order): The follow-
ing is executed on every row in parallel: If N2n+i ≥ d, then every P2n+i in SZ 3

(1 ≤ i ≤ n) starts to move its active packet to the right at the first step. Then
the packet keeps moving one position to the right at each step. Otherwise, the
processor does not start and remains holding its packet in its queue. However,
if each P2n+j with N2n+j < d receives a packet whose destination is the same
column as its packet y2n+j during this stage, then it starts to move y2n+j to the
right by using the farthest-first contention resolution protocol.

Stage 5 (Moving Short Lumps in Shuffle Order): The following is
executed on every row in parallel: Note that there remain only packets of short
lumps in SZ 3. At the first step, all P2n+i’s such that the values of N2n+i’s are
equal to one start to forward their active packets to the right (if they have the
packets in their queues), and then those packets keep moving rightward. At
the (n + 1)th step, all P2n+i’s with N2n+i = 2 start to move their packets to
the right, at the (2n + 1)th step all P2n+i’s with N2n+i = 3 start to move their
packets to the right, and so on. Namely, n steps are inserted between the first
actions. Finally, at the ((d − 2)n + 1)th step, every P2n+i with N2n+i = d − 1
starts to forward its packet. All the packets keep being forwarded to the right.
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Stage 6 (Critical Zone): Right after the sorting zone, the packets enter
the critical zone. Recall that long lumps enter first in farthest-first order and
then short lumps in shuffle order. Each packet changes the direction from row
to column at the crossing of its correct destination column (relatively in the
subplane). What Rout[2] does in this zone is exactly the same as A0, i.e., it
gives a higher priority to turning packets.

Stage 7 (Shifting Zone): All active packets move in the shifting zone
towards their final goals without changing their relative positions within the
subplane if q ≥ 1. (Otherwise, the packets should have already been routed to
their final positions).

Stage 1 and Stage 2 take pn steps and (2n− 1) steps, respectively, as shown
before. Suppose for example that n = 10 and the sorted sequence of 10 packets
be now placed on processors P11 through P20 in SZ 2 after Stage 2 (see the proof
of Lemma 1 again):

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

a5 a4 a3 a2 a1 b2 b1 c3 c2 c1

One can see that if every packet moves one position to the right step by step
in Stage 3, then c1 arrives at the temporal destination P21 in the first step, c2

arrives at P22 in the third step, c3 arrives at P23 in the fifth step, and so on.
Finally, the leftmost packet a5 arrives at the rightmost processor P30 in the 19th
step of this stage (since 2× 10− 1 = 19):

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

c1 c2 c3 b1 b2 a1 a2 a3 a4 a5

Thus, after Stage 3, the stream of packets is changed into the farthest-first order.
More importantly, each of P21 through P30 now knows how many packets in the
same lump exist on its right side by counting the number of the flowing packets.
For example, P22 knows another c exists in P23, i.e., P22 sets N22 = 2.

Suppose for a while that d = 4, i.e., a lump is defined to be long if it includes
four or more packets and only the lump of a’s is long in the above example. At
the first step of Stage 4, P26 and P27 start to move a1 and a2 to the right,
respectively, since N26 = 5 and N27 = 4. Since P28, P29 and P30 eventually
receive a1 (or a2) from the left, they move their packets, a3, a4 and a5 to the
right. Thus all a’s are routed rightward. In similar ways, all the packets of long
lumps move forward. Note that, for example, P21 who does not know whether
the lump of c’s is long (since N21 = 3) does not initiate the move of its packet,
and thus this short lump remains in SZ 3.

In Stage 5, ROUT[2] works as follows: At the first step of Stage 5, P25 and
P23 start to forward b2 and c3, respectively, to the right since N25 = N23 = 1.
Then, at the (n + 1)th step, b1 and c2 start to move since N24 = N22 = 2,
and finally c1 starts to move at the (2n + 1)th step since N21 = 3. Namely, we
change the farthest-first sequence to the following shuffle order sequence (which
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may include spaces between some two packets):

c1 c2 b1 c3 b2

Now we shall investigate the time complexity of Rout[2]. The following
discussions are only about what happens in the critical zone since the time
needed for the sorting and shifting zones is linear in n. Suppose that a packet
σ is now in the left input queue of a processor Pi, where σ is to enter the
destination column by making a turn. Then it is said that σ is ready to turn.
We first show a simple but important lemma, which our following argument
depends on.

Lemma 2 Suppose that the rightmost packet of a lump L of packets is now
ready to turn into its destination column. Then all the packets in L go out of
the critical zone at most 3n steps regardless of the behavior of other packets.

Proof: Suppose that the last (leftmost) packet α which is in the same lump L
cannot move on. Then there must be a packet, β, which is ready to turn into
the same column in some upper position of α and move on in the next time-step.
Let us call such a packet β, a blocking packet against α. Note that β cannot
be a blocking packet against α any longer in the next step. Thus, in each step
from now on, the following (i) or (ii) must occur: (i) The leftmost packet α in L
moves one position. (ii) One blocking packet against α disappears. Since there
are at most n packets that are to turn into a single column, (ii) can occur at
most n times. (i) can occur at most 2n times also since we have at most 2n
processors on the path of each packet in the critical zone. 2

Recall that a lump is said to be long if it includes at least d packets for some
positive constant d; otherwise, it is said to be short.

Lemma 3 All the long lumps can go through the critical zone within O(n2/d)
steps.

Proof: The following argument holds for any row: Let Li be a lump of packets
in some row such that packets of Li head for a farther column than packets of
Lj for i < j. Since packets of long lumps move in the farthest-first order, they
flow in the following form of lumps:

· · · L3 · · ·L2 · · ·L1

Since each long lump has at least d packets, there are at most n/d different
lumps in each row. Now the rightmost packet of L1 must be ready to turn
within 2n steps. By Lemma 2, then, those packets in L1 must go out of the
critical zone within the next 2n steps, i.e., within 4n steps in total. After L1

goes out of the critical zone, L2 must go out within 4n steps and so on. Thus
4n× n/d = 4n2/d is the maximum amount of steps all the long lumps need to
go out. 2
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Lemma 4 All the short lumps can go through the critical zone within O(dn)
steps.

Proof: The flow of packets on each row looks as follows:

· · · z1 · · · zl−1 zl y1 · · · yj−1 yj x1 · · · xi−1 xi

Here x1 · · ·xi is a sequence of different packets such that xi is heading for a
farther column than xi−1. Let us call this sequence an ordered string. y1 · · · yj

is the next ordered string (i.e., yj is heading for a farther column than x1) and
so on. One can see that each packet in the first ordered string becomes ready
to turn within 2n steps and must go out of the critical zone within the next
2n steps by Lemma 2 (regardless of possible spaces between some two packets).
After that, the second ordered string must be ready to turn within 2n steps and
then goes out as before. Note that we have only d ordered strings since each
short lump has less than d packets. Hence, 4n×d is the enough number of steps
before all the short lumps go out. 2

Now we are almost done. When moving packets from the sorting zone to
the critical zone, we first move only lumps whose size is at least

√
n. Then

by Lemma 3, the routing for these “long” lumps will finish in O(n
√

n) steps.
After that we move “short” lumps, which will be also finished, by Lemma 4, in
O(n2/

√
n) = O(n

√
n) steps.

Algorithm Rout[2] can be extended to Rout[k] for a general queue-size k:
Suppose from now on that a lump is said to be long if it includes at least kd
packets for some positive constant d; otherwise, it is said to be short. Then we
can obtain similar lemmas, say Lemmas 2’, 3’ and 4’ to Lemmas 2, 3 and 4, re-
spectively for the general queue-size. Lemma 2’ is exactly the same as Lemma 2.
As for Lemma 3’, we replace d by kd. Then the time complexity for Rout[k]
is O(n2/kd). As for Lemma 4’, we also replace d by kd and furthermore each
ordered string x1 · · ·xi−1xi is replaced by X1 · · ·Xi−1Xi. Here Xi−m consists
of k packets of the same destination instead of only one packet for xi−m. Since
our queue-size is k this time, each Xi−m can fit into a single input queue, which
means all the packets in Xi−m can get ready to turn within 2n steps. Also
note that the number of the ordered strings is at most d. Hence the bound in
Lemma 4, O(nd), does not differ in Lemma 4’, which is a benefit of the large
queue-size.

If we set d =
√

n/k, then both O(n2/kd) and O(nd) become O(n1.5/
√

k).
2

Remark. Recall that the current movement of packets is not source-oblivious
in the whole time-steps, which can be modified as follows: Suppose that the
goal subplane is in the left-lower of the whole plane. Then all the packets but in
the rightmost subplanes move upward first. Then they move to the right in the
uppermost subplanes, and then go downward in the rightmost subplanes (here
we place the sorting zone), and finally go to the left. (Exceptionally, packets in
the rightmost-lower subplanes move to the left first and then follow the same
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path as above.) Thus there is only one direction set in each subplane, i.e., we
can design a source-oblivious algorithm. However, here is one important point:
Packets originally placed near the destination in this path cannot go through
the sorting zone. Hence, we allow them once to go through the destinations and
then join the standard path after that.

Remark. Extension to 3D case. Let the side-length of a 3D mesh be n (see
Figure 2). Our algorithm consists of n sequential phases. In the first phase, only
n2 packets placed on the top horizontal plane are routed to their final positions.
In the second phase, only n2 packets placed on the second horizontal plane
move, and so on. Here is an outline of each phase: (1) Each packet σ first moves
up/down temporarily to the wth horizontal yz-plane if the destination of σ is on
the wth vertical xy-plane. (2) The same algorithm as Rout[k] is performed on
every horizontal plane in parallel, however, packet [u, v, w] is routed temporarily
to position (w, v, u). (3) Every packet moves along z-dimension to its correct
z-coordinate and finally moves along x-dimension to its destination. Hence each
phase can be performed in O(n1.5/

√
k) steps (2 ≤ k ≤ cn for some constant c)

as follows: We need at most n−1 steps to move each of the n2 packets placed on
some horizontal plane up to its correct horizontal one, and we need O(n1.5/

√
k)

steps to move the packets in one horizontal plane. It is not hard to move each
packet from the horizontal to the vertical planes in O(n) steps. Since there are
n sequential phases, the total routing time is O(n · n1.5/

√
k) = O(n2.5/

√
k) (or

O(N5/6/
√

k) for 2 ≤ k ≤ cN1/3). Although details are omitted, the similar
ideas may provide us some o(N/

√
k) upper bounds for oblivious routing on

higher dimensional, constant queue-size meshes including N processors, e.g., an
O(N7/8/

√
k) upper bound for 4D meshes, an O(N9/10/

√
k) upper bound for

5D meshes, and so on.

4 3D Oblivious Routing

For oblivious routing on any d-degree network, Kaklamanis et al. [6] proved
an Ω(

√
N/d) lower bound. It is known [6, 9, 12] that this bound is tight for the

hypercube and the 2D meshes. However, in the case of 3D meshes, it was not
known whether the lower bound is indeed tight. Here is our answer:

Theorem 2 There exists a deterministic, oblivious routing algorithm on the
three-dimensional, N1/3 × N1/3 × N1/3 mesh that routes any permutation in
1.16
√

N + o(
√

N) steps.

Remark. Theorem 2 holds for minimal and 3-bend routing. However, if we
impose the 2-bend condition, then any oblivious routing algorithm requires
Ω(N2/3) steps [5]. Recall that in the case of 2D meshes, dimension-order rout-
ing, which is even more rigid than the 1-bend routing, can achieve the tight
O(
√

N) bound. Thus there is a big gap between 2D and 3D meshes in the
difficulty of oblivious routing.



K. Iwama et al., Oblivious Mesh Routing , JGAA, 5(5) 17–38 (2001) 33

x-slice[1]

critical positions

n

n

x-slice[2]

x-slice[   n ]
Stage 1

Stage 3
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Figure 5: Slices, subplanes, critical positions

Proof: Let the total number of processors in 3D meshes be hereafter n3, not N .
We first present a deterministic, but non-minimal oblivious routing algorithm
on the 3D mesh that routes any permutation in O(n

√
n) (= O(

√
N)) steps.

At the end of this section, we will describe how to strengthen the algorithm
to route every packet along its shortest path. See Figure 2 again. The three
dimensions are denoted by x-dimension, y-dimension and z-dimension. xi-plane
(1 ≤ i ≤ n) means the two-dimensional plane determined by x = i. Similarly
for yj-plane and zk-plane. For example, the x1-plane on the 3D mesh is the top,
horizontal plane in Figure 2, which includes n2 positions (1, 1, 1), · · · , (1, n, 1),
(1, 1, 2), · · · , (1, n, n). Let xiyj-segment (1 ≤ i, j ≤ n) denote the linear array
determined by x = i and y = j, which consists of n processors (i, j, 1) through
(i, j, n). Similarly for yjzk-segment and zkxi-segment.

The whole n × n × n 3D mesh is partitioned into several submeshes. See
Figure 5. x-slice[1] consists of the top

√
n planes, the x1-plane through the

x√
n-plane. Similarly x-slice[2] consists of the next

√
n planes. Each plane is

divided into
√

n×√n groups, called subplanes. zk-subplane[i, j] on the zk-plane
(1 ≤ k ≤ n) is the ith

√
n × √n 2D submesh from the top and jth from the

left. Then
√

n processors on the jth row from the top of each zk-subplane[i, j]
are called critical positions, which play on an important role in the following
algorithms. Note that the number of critical positions on a single zkxi-segment
is exactly

√
n.

The following observation makes clear the reason why the elementary-path
routing or dimension-order routing does not work efficiently: Suppose that n2

packets placed on the z1-plane should move to the x1-plane. Also suppose that
all of those n2 packets first go up to the n processors on a single segment,
P1,1,1 through P1,n,1, and then move along y-dimension. Then most of the n2
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paths probably go through one of the n − 1 links between those n processors,
which requires at least Ω(n2) steps. Apparently we need to eliminate such heavy
traffic on the single segment. The key strategy is as follows: The n2 packets or
paths (which go through a single segment in the worst case) are divided into√

n groups, n
√

n paths each. Then the number of paths which a single segment
has to handle can be reduced to those n

√
n paths from the previous n2 ones,

where critical positions of each subplane play their roles. Here is our algorithm
based on the dimension-order routing (see Figure 5 again):

Algorithm: DO-3-bend

Stage 1: Every packet moves along x-dimension to a critical position which
is located in the same x-slice[i] as its final destination. Namely, all of the packets
go up or down into their correct x-slices.

Stage 2: Every packet placed now on the critical position moves along y-
dimension to its correct y-coordinate, i.e., moves horizontally into its correct
yj-plane.

Stage 3: Every packet moves again along x-dimension to its correct x-
coordinate, i.e., into its correct xiyj-segment.

Stage 4: Every packet moves along z-dimension to its final position.

One can see that the path of each packet is completely determined by its
initial position and destination and that the algorithm can deliver all the packets
for any permutation.

Lemma 5 DO-3-bend can route any permutation in at most 2n
√

n + o(n
√

n)
steps.

Proof: We shall analyze the running time of each stage: (1) Stage 1 requires at
most n steps since every packet can move without delays. (2) Stage 2 requires at
most n

√
n+n steps. The reason is as follows: Recall that the number of critical

positions on a single segment is exactly
√

n. Since each critical position holds
at most n packets after Stage 1, the total number of packets that go through
each zkxi-segment is at most n

√
n. Thus, it takes at most n

√
n steps until those

n
√

n packets move out of the current subplane and it furthermore takes at most
n steps until the packet which finally starts from the subplane arrives at its
next intermediate position. (3) After Stage 2 every packet arrives at its correct
sub-yj-plane of the

√
n × n positions. Thus, the total number of packets that

go through each link along x-dimension is at most n
√

n. Thus it takes at most
n
√

n +
√

n steps until all the packets arrive at their next positions. (4) Since
each processor temporally holds at most n packets, 2n steps are sufficient for all
the packets to arrive at their final positions. As a result, the whole algorithm
requires at most 2n

√
n + o(n

√
n) steps. 2

The above algorithm is based on the dimension-order routing, i.e., all the
packets move in the same direction in each stage. However, by making the
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Figure 6: Three groups, X , Y , Z

packets move in different directions we can route more efficiently. The whole
3D mesh is partitioned into the three groups shown in Figure 6. Then, in the
first stage, the algorithm NDO-3-bend moves all the packets which are initially
placed on the groups marked “X”, “Y” and “Z” along x-dimension, y-dimension
and z-dimension, respectively. In the remaining stages, dimensions are switched
adequately for each group. Note that each subplane can be viewed as a

√
n/3×√

n/3 2D mesh. Now the following lemma holds:

Lemma 6 NDO-3-bend can route any permutation in at most 1.16n
√

n+o(n
√

n)
steps.

Proof: It also takes at most n steps for each packet to arrive at its critical
position in the first stage. Note that there are 3 ×√

n/3 critical positions on a
single zkxi-segment and each critical position holds at most n/3 packets after
the first stage. Then it takes at most n

√
n/3+n steps during the second stage.

In the third and fourth stages, it takes at most n
√

n/3 +
√

n/3 and 2n steps,
respectively. Since 2/

√
3 ≤ 1.16, the lemma holds. 2

2

Finally we add the condition that all of the packets should follow their short-
est routes: Suppose that a packet α which heads for the xt-plane is originally
placed on the xs-plane for s > t. Then, in the first stage, α should go up along
x-dimension to the closest but below critical position to the xt-plane so as to
follow its shortest path. Similarly for s < t. However, as a special case, if
there is no critical position between α’s original and destination planes, then α
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Figure 7: Minimal routing

does not move at all in the first stage. Let us count the total number of packets
which temporally stay at each zkxi-segment (i.e., each horizontal segment) after
the first stage.

√
3n critical positions on a single segment hold at most n

√
n/3

packets, n/3 per critical position, and furthermore, at most n special packets
may stay without moves. Thus it takes at most n

√
n/3+2n steps in the second

stage. For the third stage, at most n
√

n/3 +
√

n/3 steps suffice again. The
reason is as follows: See Figure 7. Suppose that a packet q first moves up verti-
cally to a critical position, A, and then it moves horizontally to a position, B.
Then q’s destination must belong to the upper

√
n/3× n positions of B, which

is painted gray in the figure; otherwise, q must first arrive at the upper critical
position, D. This implies that the number of packets which go through the link
between B and its upper neighbor C is bounded by n

√
n/3. Implementation of

this idea is not hard:

Theorem 3 There exists a deterministic, oblivious, minimal, 3-bend routing
algorithm on the three-dimensional, N1/3 × N1/3 × N1/3 mesh that can route
any permutation in at most 1.16n

√
n + o(n

√
n) steps.

Remark. Each algorithm can be modified so as to satisfy the source-oblivious
condition by increasing the constant factor of its running time slightly.

Remark. It is not hard to show that our algorithm runs for random permuta-
tions in 3n + o(n) steps with high probability. Here is the reason: Since there
are
√

n critical positions on each vertical segment, each critical position receives√
n packets on average in the first stage. Then

√
n × √n = n packets tem-

porally stay on each horizontal segment. In the second stage, those n packets
move horizontally in n steps, and each processor receives one packet on average.
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The third stage requires
√

n steps. Finally, all the packets arrive at their final
positions in n steps.
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