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Abstract

In network communication systems, frequently messages are routed
along a minimum diameter spanning tree (MDST) of the network, to
minimize the maximum delay in delivering a message. When a transient
edge failure occurs, it is important to choose a temporary replacement
edge which minimizes the diameter of a new spanning tree. Such an
optimal replacement is called a best swap. As a natural extension, the all-
best-swaps (ABS) problem is the problem of finding a best swap for every
edge of the MDST. Given a weighted graph G = (V, E), where |V | = n
and |E| = m, we solve the ABS problem in O(n

√
m) time and O(m)

space, thus improving previous bounds for m = o(n2). We also show that
the diameter of the tree resulting from a best swap is at most 5/2 as long
as the diameter of a MDST recomputed from scratch.
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1 Introduction

For communication networks, it is important to remain operational even if indi-
vidual network components fail. In the past few years, the ability of a network
to survive a failure (its survivability) has been studied intensely (an excellent
survey paper on survivable networks is [5]). From the practical side, this has
largely been a consequence of the replacement of metal wire meshes by fiber op-
tic networks: Their extremely high bandwidth makes it economically attractive
to make networks as sparse as possible. A sparse network, however, is less likely
to survive a link (or node) failure than a mesh with a multitude of connections
that can be used as detours. Therefore, it is important for sparse networks to
also take survivability into account from the very beginning.

In the extreme, a sparse network might coincide with a spanning tree of
some underlying weighted graph G of n nodes and m edges. Such a spanning
tree generally minimizes some objective function defined according to some net-
work functionality that one wants to optimize. A typical example is that of the
minimum spanning tree (MST), i.e., a spanning tree whose total weight is mini-
mum among all the spanning trees of G. For tree-like communication networks,
however, even a single link failure will affect the service. Notice that these fail-
ures should be considered temporary (or transient), since usually the disrupted
link will be restored reasonably quickly. Hence, it makes sense to guarantee the
network functionality during this short recovering time by simply reconnecting
the two disconnected components through a single replacement link. The emer-
gency network thus obtained will not be, in general, a best possible spanning
tree (according to the chosen objective function) of the graph G now deprived
of the failed link. However, it offers the considerable advantage of being readily
operative at a low cost, since it will reuse almost all of both the physical net-
work and the communication protocol previous to the failure. The alternative
of rebuilding a new optimal spanning tree, which might possibly be totally dif-
ferent from the previous one, would indeed be excessive and disproportionate,
considering its short life.

On the theoretical side, this scenario gave rise to an interesting family of
problems on graphs. The fundamental question we want to answer to is the
following: Given a weighted, undirected and 2-edge connected graph G = (V, E),
and a spanning tree T = (V, ET ) of G which minimizes some objective function
φ(G, T ), and given an edge e ∈ ET , find an edge e′ ∈ E such that the swap tree
Te/e′ obtained by swapping e with e′ is a spanning tree of G − e = (V, E \ {e}),
and φ(G − e, Te/e′) is minimum over all the possible swap trees. Such an edge
e′ will be referred to in the following as a best swap edge for e with respect to
φ. To make things more concrete, let us go back to the sample case where T is
a MST of G. Here, it is easy to see that a best swap edge is simply an edge of
minimum weight connecting the two subtrees of T induced by the removal of an
edge. Incidentally, in this particular case, the swap tree associated with a best
swap edge, exhibits the property of being a MST of G − e. Another popular
example arises when T is a single source shortest paths tree (SPT) rooted at a
given node r ∈ V . In this case, the objective function minimized by T is the
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sum of the lengths of all the paths emanating from r, and it is not hard to see
that a swap tree Te/e′ does not coincide, in general, with a SPT rooted in r of
G − e.

Concerning the algorithmic perspective, we observe that, from a network
management point of view, it is desirable to know in advance, for each edge in
the network, its respective best swap edge, since we can expect that sooner or
later each edge will fail. This approach entails at least two advantages: First,
as a failure happens, we are prepared to switch immediately to the emergency
network; second, and perhaps most important, we can evaluate in advance the
vitality of an edge, by measuring the degradation of the network functionality
(as conveyed by the chosen optimization function) as soon as we switch to the
emergency network. An all-best-swaps (ABS) problem is therefore the problem
of finding a best swap edge–with respect to a given optimization function– for
every edge in the network. In the past, the ABS problem has been solved both
when the network is a MST and a SPT. In the first case, the fastest solution
known to date is an O(m) time algorithm [2], while in the second case, an O(n2)
time algorithm has been presented in [9].

However, in several applications, the used spanning tree is neither an MST
nor a SPT. Rather, many network architectures look for minimizing the diameter
of the spanning tree, that is the length of the longest path in the tree between
any two nodes, so that the maximum propagation delay in the network will
be as low as possible. A tree exhibiting minimum diameter among all possible
spanning trees is named a minimum diameter spanning tree (MDST). A best
swap edge for a failing edge of a MDST is a swap edge that keeps the diameter
of the swap tree as low as possible among all possible swap trees, and the ABS
problem for a MDST is defined accordingly.

In this paper we present an efficient solution precisely for this latter problem.
Our approach makes use of some of the techniques presented in [8], in which the
authors consider the related problem of computing a best swap edge in a fully
dynamic context, where the original MDST evolves due to repeated insertions
and deletions of edges in the graph. The solution presented in [8] computes a
best swap in O(n) time per update, using O(m) space and preprocessing time.
For the edge deletion case, that is of interest for this paper, the authors make
use of a topology tree and a 2-dimensional topology tree [3], augmented with
some extra information. This requires O(m) time and space for initialization,
and allows to compute the length of the diameter of any tree obtained as a
consequence of a swap in O(n) time. Hence, the approach in [8] is more general
than what is needed for solving the ABS problem, and if we use it for solving the
ABS problem, we spend O(n2) time and O(m) space and preprocessing time. We
get these bounds by computing a best swap in O(n) time for each deleted edge.
Recently, Alstrup et al. [1] improved the runtime for computing a best swap in
an incremental context (i.e., when no deletions are allowed) to O(log2 n). In
the same paper, the authors claim that it is possible to maintain the diameters
of trees in a dynamic forest under link and cut operations in O(log n) time and
O(n) space and preprocessing time. Using this and some of the results contained
in [8], the ABS problem can be solved in the following way: we sequentially
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remove each edge in the MDST; when an edge e is removed, we initially compute
in O(

√
m) time a set of O(

√
m) selected edges, among which a best swap is

contained [8]; hence, to compute a best swap, we sequentially insert each of
these selected edges, compute in O(log n) the new diameter and then remove it;
finally, we re-insert e and move to the next edge in the MDST. Therefore, the
obtained runtime is O(n

√
m log n), with O(m) space and preprocessing time.

Our solution solves the ABS problem for a MDST in O(n
√

m) time and
O(m) space, thus strictly improving previous bounds for m = o(n2). This can
be done by adapting the well-known path halving compression technique [10]
for answering in O(1) amortized time (over a total of Θ(n

√
m) queries) the

following query: Given a rooted tree T and a pair of nodes y and v in T such
that v belongs to the subtree of T rooted at y, what is the length of a longest
simple undirected path in T , starting at v and staying within the subtree of T
rooted at y? Furthermore, we compare the diameter of Te/e′ against that of a
real MDST of G−e. Somewhat surprisingly, the ratio between them stays within
a small constant factor in the worst case, that is 5/2. Therefore, swapping can
be viewed as both efficient and effective at the same time.

The paper is organized as follows: in Section 2 we define the problem more
precisely and we propose the algorithm for solving it. In Section 3, we present
the adaptation of the path halving compression technique which allows to effi-
ciently solve the ABS problem. In Section 4, we compare the diameter of the
tree obtained as a consequence of a best swap of a failing edge e as opposed to
the diameter of a real new MDST. Finally, in Section 5, we present conclusions
and list some open problems.

2 Solving the ABS problem

2.1 Problem statement

For basic definitions of graph terminologies, we refer to [6]. Let T = (V, ET ) be
a spanning tree of a 2-edge connected, undirected graph G = (V, E), of n nodes
and m edges, and with a nonnegative real length |e| associated with each edge
e ∈ E. Let D(T ) = 〈d1, d2, . . . , dk〉 denote a diameter path of T , that is a path
whose length |D(T )| is maximum in T . We call |D(T )| the diameter of T . For
simplicity, we will use the term diameter also for denoting the diameter path,
whenever no confusion arises. T is said to be a minimum diameter spanning
tree (MDST) of G if it has minimum diameter among all the spanning trees
of G. If e ∈ ET is a tree edge, a replacement edge (or swap edge) for e is an
edge f ∈ E \ ET such that Te/f = (V, (ET \ {e}) ∪ {f}) is a spanning tree of
G − e = (V, E \ {e}). Let Re denote the set of replacement edges for e. A best
swap edge for e with respect to the diameter is an edge e′ ∈ Re such that

|D(Te/e′ )| = min
f∈Re

{|D(Te/f )|}.

The all-best-swaps (ABS) problem for a MDST is the problem of finding a
best swap edge with respect to the diameter for every edge e ∈ ET .
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2.2 The algorithm

To solve the ABS problem efficiently, we will exploit relationships among the
original MDST T and the replacing ones. Let us denote the length of the path in
T between any two nodes v, v′ as d(v, v′). Let dc, with 1 ≤ c ≤ k, be the center
of the diameter path, that is the node in D(T ) for which |d(d1, dc) − d(dc, dk)|
is minimum. Let us denote by M this minimum. Notice that, in general,
this node is not unique, since it might exist a sequence of edges of length 0 in
D(T ), say (di, di+1), (di+1, di+2), . . . , (di+j−1, di+j), such that M = |d(d1, dh)−
d(dh, dk)|, h = i, . . . , i+j, or it might exist an edge (di, di+1) in D(T ) of positive
length and such that d(d1, di) = d(di+1, dk). In the former case, to break the tie,
we set dc = di+j , while in the latter case we set dc = di+1. Let T̂ denote a source
directed tree obtained by rooting T in dc and orienting the edges towards the
leaves. Following [8], we maintain a topology tree and a 2-dimensional topology
tree [3, 4], augmented with some extra-information, to efficiently retrieve only
O(

√
m) selected edges among the O(m) replacement edges, whenever an edge e

in T is deleted. In fact, among the selected edges, a best swap is contained (for
a proof of it, see [8]).

The general outline of our algorithm is the following:

Algorithm ABS(G, T );
Input: A weighted, 2-edge connected graph G = (V, E) and a MDST T = (V, ET ) of G.
Output: ∀e = (x, y) ∈ ET , a swap edge e′ : |D(Te/e′ )| = min

f∈Re

{|D(Te/f )|}.
Step 0: Perform preliminary computations.

Step 1: For each edge e ∈ T̂ as considered by any postorder visit do {
Step 2: Delete e; update the topology and the 2-dim topology tree.

Step 3: Compute the set of selected replacement edges Se ⊆ Re.

Step 4: For each edge f ∈ Se, compute |D(Te/f )| and select a best swap.

Step 5: Insert e and update the topology and the 2-dimensional topology tree.}

Step 0 requires O(m) time and space, as we show next. Notice that in Step
1 we consider all the O(n) edges of the tree, in the order they are generated by a
postorder tree visit (this order is needed for a correct path halving compression,
as is shown in Section 3). Steps 2, 3 and 5 can be accomplished in O(

√
m)

time, and |Se| = O(
√

m) [8]. Concerning Step 4, we will show that |D(Te/f )|
can be computed in O(1) amortized time. This can be done using the path
halving compression technique that will be presented and analyzed in detail in
Section 3. This technique, given a rooted tree T̂ and a pair of nodes u and
v in T̂ such that u belongs to the subtree of T̂ rooted at v, allows to find in
O(log(1+Q/n) n) amortized time per query (over a total of Q queries) the length
Findpath(u, v) of a longest simple undirected path starting from u and staying
within the subtree rooted at v. Since for solving the ABS problem we will prove
that Q = Θ(n

√
m), Findpath(u, v) can be computed in O(1) amortized time.

Thus, Step 4 costs O(
√

m) amortized time, and the global time for solving the
ABS problem is O(n

√
m), using O(m) space.
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2.3 Preliminary computations

Let LD = 〈d1, . . . , dc−1, dc〉 and RD = 〈dc, dc+1, . . . , , , dk〉. W.l.o.g., let us
assume |LD| ≥ |RD|. Let Nl (Nr) denote the subset of nodes of T̂ rooted in
dc−1 (dc+1), and let Nc denote the nodes of T̂ neither in Nl nor in Nr. Figure 1
depicts this notation.

T̂

1

1

3

5

2

1

3 1

1

3

3

1

5

3

Nl Nc Nr

LD

dc−1

RD

5
dc+11

dk

d1

dc

Figure 1: The oriented minimum diameter spanning tree.

We start by marking any node v ∈ T̂ with its nearest ancestor on D(T ), that
is the first node of D(T ) we encounter on the path in T̂ from v to dc. Notice
that if v is on the diameter, then it is marked with itself. After, we associate
with each node v ∈ T̂ its distance from dc, and the lengths h1(v) and h2(v),
with h1(v) ≥ h2(v), of the two longest directed paths in T̂ emanating from v
and making use of two different subtrees of v (notice that if v is a leaf, then
we set h1(v) = h2(v) = 0, while if there is only one subtree rooted at v, then
we set h2(v) = 0). Moreover, we also store with v the node a(v) adjacent to
v and belonging to the path of length h1(v) (notice that if h1(v) = 0, then we
set a(v) = v). With the root, we also associate a further value, say h3(dc),
corresponding to the length of a longest path in T̂ starting from dc and not
using dc−1 and dc+1 (notice that if such a path does not exist, then we set
h3(dc) = 0). After, we associate with each node dj ∈ LD (dj ∈ RD) a further
value, say λ(dj), containing the length of a longest path in T̂ starting from dc

and containing neither dc+1 (dc−1) nor the edge (dj , dj−1) ((dj , dj+1)). Note
that since dc belongs to both LD and RD, λ(dc) coincides with h3(dc). We
express λ(dj) recursively as follows:

λ(dc) = h3(dc)

λ(dj) = max(λ(dj+1), d(dc, dj) + h2(dj)) for j = c − 1, . . . , 1

λ(dj) = max(λ(dj−1), d(dc, dj) + h2(dj)) for j = c + 1, . . . , k.

Next, we associate with each node dj ∈ LD (dj ∈ RD) a further value, say
µ(dj), containing the length of a longest path in T starting from d1 (dk) and
staying within the subtree of T̂ rooted at dj . We express µ(dj) recursively as
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follows:

µ(d1) = µ(dk) = 0

µ(dj) = max(µ(dj−1), d(d1, dj) + h2(dj)) for j = 2, . . . , c − 1

µ(dj) = max(µ(dj+1), d(dk, dj) + h2(dj)) for j = k − 1, . . . , c + 1.

We also associate with each node dj on the diameter a further value, say ρ(dj),
containing the nearest node along the diameter of the path stored in µ(dj) (this
can be done during the computation of µ(dj)). It is easy to see that all the
above computations cost O(n) time.

Finally, we convert G into a graph G′ = (V ′, E′) with maximum node degree
3, in the following way [6]: for each node v ∈ V of degree δ(v) > 3, having
nodes w1, . . . , wδ(v) adjacent to it, replace v with nodes v1, . . . , vδ(v); then, add
dashed edges (vi, vi+1), i = 1, . . . , δ(v) − 1, each of length 0, and replace edges
(v, wi), i = 1, . . . , δ(v), with edges (vi, wi) of corresponding lengths. As a result
of this transformation, the graph keeps its original edges, and has an additional
O(m) edges of length 0. It is not hard to see that |V ′| ≤ 2m and |E′| ≤ 3m, and
therefore a MDST T ′ of G′ can be derived from a MDST T of G in O(m) time
in the following way: we keep in T ′ all the edges in T , and for each node v ∈ V
we add the edges (vi, vi+1), i = 1, . . . , δ(v) − 1, of length 0. Then, we associate
with T ′ a topology tree and a 2-dimensional topology tree [3, 4], both augmented
with some extra-information useful for solving our problem [8]. A topology tree
Γ associated with T ′ is a hierarchical representation of G′ based on T ′, while a
2-dimensional topology tree Γ′ associated with Γ is a hierarchical representation
of G′ based on Γ. The structures of Γ and Γ′ are quite involved, and we refer the
reader to [3] for an exhaustive description of them. For our scopes, it suffices
to mention that Γ and Γ′, augmented with some extra-information [8], can be
initialized in O(m) time, and allow to find a best swap in a MDST undergoing
to edge failures in O(n) time. However, time needed to update Γ and Γ′ is just
O(

√
m), and since the approach in [8] is more general than what is needed for

solving the ABS problem, we will show that this time is enough for computing
a best swap in our case.

It is easy to see that to a swapping of an edge in T corresponds the same swap
in T ′, and, vice versa, to a swapping of a non-dashed edge in T ′ corresponds
the same swap in T . Therefore, in the following we will refer to the original
spanning tree T , even though our algorithm makes use of the topology tree and
the 2-dimensional topology tree associated with T ′.

Summarizing, preliminary computations have an overall cost of O(m) time
and use O(m) space.

2.4 Computing |D(Te/f)| in O(1) amortized time

In the rest of the paper, two paths will be considered adjacent if they share the
root dc only. When the edge e = (x, y) is removed, T̂ is split into two subtrees,
say Tx and Ty, containing x and y, respectively, which will be later connected
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by means of a replacement edge f = (u, v). As a consequence

|D(Te/f )| = max{|D(Tx)|, |D(Ty)|, |Pf |} (1)

where |Pf | is the length of a longest path in Te/f passing through f . Notice
that (1) holds for any (possibly not MDST) spanning tree T of G, any edge e
in T , and any swap edge f of e. Figure 2 shows the notations used.

T̂

RD

1

1

3

5

2

1

3

1

3

1

Tx

Ty

5

5

3

1

1
2

LD
3

dc

dk

d1

v

x

y

u

Figure 2: Edge e = (x, y) is replaced by edge f = (u, v).

We now analyze different cases that can arise in solving the ABS problem.
For the sake of clarity, we perform a different analysis depending on whether
the removed edge is located on the diameter or not.

Case 1: The removed edge is not on the diameter
Assume the edge e = (x, y) is removed, where x is the parent of y in T̂ , and
e 6∈ D(T ). In this case, neither LD nor RD are affected. Trivially, D(Tx) =
D(T ). Moreover, |D(Ty)| ≤ |D(T )|, since a path in Ty is a path in T as well. It
then remains to compute |Pf |, for any selected replacement edge f ∈ Se. Let
f = (u, v), where u ∈ Tx and v ∈ Ty. It is clear that

|Pf | = |Lu| + |f | + |Lv|
where Lu is a longest path in Tx starting from u and Lv is a longest path
in Ty starting from v. Since v is a descendant of y in T̂ , by using the path
halving compression technique |Lv| = Findpath(v, y) can be computed in O(1)
amortized time, as we will see in Section 3, while |f | is clearly available in O(1)
time. It remains to compute |Lu|. The following claim is easy to prove:

Lemma 2.1 At least one of the longest paths in Tx starting from u contains
dc.

Proof: Suppose, for the sake of contradiction, that none of the longest paths
in Tx starting from u contains dc. Let us restrict our attention to any one of
such longest paths, say Pu. We will show that such a path can be modified
into another path at least as long as Pu and passing through dc, from which
the claim will follow. Let w be the node in Pu nearest to dc, and let z be the
ending node of Pu other than u. Three cases are possible:
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1. w ∈ Nl: let q ∈ LD be the node on D(T ) nearest to w (if w is on the
diameter, then q coincides with w). It is trivial to see that in this case,
being q 6= dc since w ∈ Nl, it must be

d(q, z) ≤ d(q, dk)

since otherwise d(d1, q) + d(q, z) > d(d1, q) + d(q, dk) = |D(T )|. Being
d(q, z) = d(q, w) + d(w, z), it then follows that Pu can be modified into
the path Pu

′ = 〈u, . . . , w, . . . , q, . . . , dk〉 containing dc and such that

|Pu
′| = d(u, w) + d(w, q) + d(q, dk) ≥ d(u, w) + d(q, dk) ≥

≥ d(u, w) + d(q, z) ≥ d(u, w) + d(w, z) = |Pu|
that is a contradiction (see Figure 3a).

2. w ∈ Nr: this case is symmetric to the first one.

3. w ∈ Nc: in this case, it must be clearly d(w, z) ≤ d(w, dc)+d(dc, d1), since
otherwise d(dc, d1) + d(dc, w) + d(w, z) > |D(T )|. It then follows that Pu

can be modified into the path Pu
′ = 〈u, . . . , w, . . . , dc, . . . , d1〉, containing

dc and such that

|Pu
′| = d(u, w) + d(w, dc) + d(dc, d1) ≥ d(u, w) + d(w, z) = |Pu|

that is a contradiction (see Figure 3b).

x

v

T̂

RD

y

z

Pu

u

q
LD

w

d1

dk

dc

LD

w

T̂

RD

v

z

Pu

u

y

x

d1

dk

dc

(a) (b)

Figure 3: When edge e = (x, y) is removed, there exists a longest path starting
from u which passes through dc (splines denote paths): (a) w ∈ Nl. (b) w ∈ Nc.

2

From the above analysis and from the fact that LD is one of the longest paths
emanating from dc in T̂ and that RD is one of the longest paths emanating from
dc in T̂ which does not make use of dc−1 it follows that
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|Lu| =
{

d(dc, u) + |RD| if u ∈ Nl;
d(dc, u) + |LD| otherwise. (2)

Therefore, |Lu| is available in O(1) time. Summarizing, |Pf | can be computed
in O(1) amortized time, and

|D(Te/f )| = max(|D(T )|, |Pf |).
Once this value is computed for the O(

√
m) selected edges identified by the

topology tree and the 2-dimensional topology tree, a best replacement edge is
available. Therefore, the case e 6∈ D(T ) can be managed in O(

√
m) amortized

time.

Case 2: The removed edge is on the diameter
We will analyze the case in which e = (di, di−1) ∈ LD is removed, since the
case e ∈ RD is symmetric. When e is removed, T̂ is split into two subtrees, say
Tdi and Tdi−1 , which will be later connected by means of a replacement edge
f = (u, v) ∈ Se. Equation (1) becomes

|D(Te/f )| = max(|D(Tdi)|, |D(Tdi−1)|, |Pf |).
Let us now analyze the value of these three terms.

• |D(Tdi)|: We start by proving the following fact:

Lemma 2.2 At least one of the diameters of Tdi contains dk ∈ RD.

Proof: For the sake of contradiction, suppose that none of the diameters of Tdi

contains dk. Let us restrict our attention to any one of such diameters, say P .
We will show that in Tdi there is a path containing dk and at least as long as P ,
from which the claim will follow. Let w be the node in P nearest to dc. Let P1

and P2 be the two subpaths in which P splits with respect to w, with ending
nodes z1 and z2, respectively, and suppose that z1 precedes z2 in a preorder
traversal of T̂ . Figure 4 shows the notations used.

Three cases are possible:

1. w ∈ Nl: this case is similar to the case 1 of the proof of Lemma 2.1. In
fact, the modified path there built also contains dk, apart from dc.

2. w ∈ Nr: in this case, let q ∈ RD be the node on D(T ) nearest to w (if w
is on the diameter, then q coincides with w). Clearly, any path emanating
from q in T̂ is no longer than d(q, dk). In particular

d(q, dk) ≥ d(q, z2) ≥ d(w, z2).

It follows that P can be modified into the path P ′ = 〈z1, . . . , w, . . . , q, . . . , dk〉
containing dk and such that

|P ′| = d(z1, w) + d(w, q) + d(q, dk) ≥ d(z1, w) + d(w, z2) = |P|
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T̂

RD
q

z1

z2

LD
w

P1 P2

Tdi

Tdi−1

dc

di

di−1

d1
dk

Figure 4: Edge e = (di, di−1) is removed: P = P1 ∪ P2 (splines denote paths).

3. w ∈ Nc: in this case, since z2 descends from dc in T̂ , it must be clearly
d(w, z2) ≤ d(w, dc)+d(dc, dk), since otherwise d(dc, d1)+d(dc, w)+d(w, z) >
|D(T )|. It then follows that P can be modified into the path P ′ =
〈z1, . . . , dc, . . . , dk〉 containing dk and such that

|P ′| = d(z1, w) + d(w, dc) + d(dc, dk) ≥ d(z1, w) + d(w, z2) = |P|

that is a contradiction.

2

From the above result, it follows that a longest path starting from dk and
not using the edge e just removed can be computed in O(1) time as

|D(Tdi)| = max(µ(dc+1), λ(di) + |RD|).
• |D(Tdi−1)|: analogously to the previous case, it can be proved that at least
one of the diameters of Tdi−1 must contain the node d1. Therefore, it will be

|D(Tdi−1)| = µ(di−1)

which can be computed in O(1) time.

• |Pf |: let be f = (u, v), where u ∈ Tdi and v ∈ Tdi−1 , and |Pf | = |Lu|+|f |+|Lv|.
|Lv| = Findpath(v, di−1) can be computed in O(1) amortized time and |f | is
available in O(1) time. It remains to analyze |Lu|. Remember that with the
node u is associated the nearest node q on the diameter from which it descends.
The following three situations are possible for u:

1. u ∈ Nl: in this case, still using the same arguments as for the case 1 of
the proof of Lemma 2.1, it can be easily proved that at least one of the
longest paths in Tdi starting from u must contain dc, and then |Lu| can
be obtained in O(1) time as

|Lu| = d(dc, u) + |RD|.
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2. u ∈ Nr: In this case, still using the same arguments as for the case 2 of
the proof of Lemma 2.2, it can be proved that at least one of the longest
paths in Tdi starting from u must contain q. Therefore, it follows that
|Lu| can be obtained in O(1) time as (note that the following is equivalent
to compute Findpath(u, dc))

|Lu| = max
(

d(u, q) + d
(
q, ρ(dc+1)

)
+ µ(dc+1) − d

(
dk, ρ(dc+1)

)
,

d(u, dk), d(u, dc) + λ(di)
)

.

3. u ∈ Nc: in this case, it is easy to see that at least one of the longest paths in
Tdi starting from u must contain dc. In fact, for the sake of contradiction,
suppose that none of the longest paths in Tdi starting from u contains
dc. Let us restrict our attention to any one of such longest paths, say Pu.
Let w be the node in Pu nearest to dc, and let z be the ending node of
Pu other than u. Clearly, d(w, z) ≤ d(dc, dk), and therefore Pu can be
modified into the path Pu

′ = 〈u, . . . , w, . . . , dc, . . . , dk〉, containing dc and
such that

|Pu
′| = d(u, w) + d(w, dc) + d(dc, dk) ≥ d(u, w) + d(w, z) = |Pu|

that is a contradiction. Given that Lu contains dc, it remains to compute
the length of a longest path starting from dc and not containing u, and this
can be done by looking at |RD| and at λ(di) (note that if λ(di) is exactly
the length of a path passing through u, then it follows that |RD| ≥ λ(di)).
Thus, |Lu| can be computed in O(1) time as

|Lu| = max(d(dc, u) + |RD|, d(dc, u) + λ(di)).

Summarizing, the case e ∈ LD can be managed in O(1) amortized time for
any of the O(

√
m) selected edges. Since the case e ∈ RD is symmetric to the

previous one, it can be managed with the same amortized runtime. Repeating
the above for all the n − 1 edges of T we therefore have the following:

Theorem 2.1 The ABS problem for a minimum diameter spanning tree T of a
graph G with n nodes and m edges can be solved in O(n

√
m) time, using O(m)

space.

3 Constructing and using compressed paths

In this section we use an adaptation of the well-known path halving compres-
sion technique to prove that a Findpath(v, y) operation can be satisfied in O(1)
amortized time, as required to solve efficiently the ABS problem.
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We start creating a virtual forest F of trees. Initially, F is composed of n
singletons, one for each node v ∈ V . With each node v in F the following values
are associated: h1(v), h2(v), a(v), as defined in Section 2.3, and up(v), which
will contain an estimation of the length of a longest path emanating from v and
ascending towards dc in T̂ , now considering the edges of the path from dc to
v as directed from v towards dc. At the beginning, up(v) = 0, ∀v ∈ F . The
following instructions manipulate F :

• Link(u, v): combine the trees with roots u and v into a single tree rooted
in u, adding the edge e = (u, v) of length |e|;

• Eval(v): Return the length of a longest path starting from v in the tree
containing it and apply a suited path halving compression technique.

Note that Eval(v) assumes that a pointer to element v is obtained in constant
time. The sequence of Link() operations in F is determined by the sequence of
edge removals from T̂ . Remember that we sequentially consider all the edges
e ∈ ET in postorder fashion. When the edge e = (x, y) is (temporarily) removed,
we perform a sequence of Link(y, zi) in F , where zi, i = 1, . . . , k are all the sons
of y in T̂ . Figure 5 illustrates the situation.

x

z1 z2 zk

y

Figure 5: Edge e = (x, y) is deleted and k Link() operations are applied.

This means that for any given node v ∈ V , whenever a Findpath(v, y) in T̂
occurs, the node y is exactly the root of v in F . In fact, remember that we
only ask Findpath(v, y) on nodes descending from the currently removed edge.
This observation is crucial for the correctness of the method. We implement
a Findpath(v, y) operation in T̂ by means of an Eval(v) operation in F , that
examines all the nodes along the path from v to the root y of the tree containing
it and compresses such a path. The compression technique used is an adapta-
tion of the path halving technique [10], which will guarantee the associativity of
Eval(v). Let us describe how the path halving works. Given a pair of nodes
v1, v2 ∈ V , with v1 ancestor of v2 (v1 ≺ v2) in T̂ , we define the following function

h(v1, v2) =
{

h2(v1) if a(v1) ≺ v2 or a(v1) = v2;
h1(v1) otherwise.
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It is easy to see that h(v1, v2) can be computed in O(1) time, for any v1, v2 ∈ V ,
after O(n) time of preprocessing of T̂ . Assume an Eval(v) operation occurs and
this is the first time an Eval() operation takes place. For the sake of simplicity,
let us focus on a path of three nodes 〈y, u, v〉, with y ≺ u ≺ v in T̂ and such
that |(u, v)| = α and |(y, u)| = β. We have

Eval(v) = max
(
h1(v), up(v), α+h(u, v), α+up(u), α+β+h(y, v), α+β+up(y)

)
.

The compression takes place as part of this operation, and replaces the edge
(u, v) with an edge (y, v) of length α + β and the label up(v) of v with

up(v) = max
(
up(v), α + h(u, v), α + up(u)

)
.

After the compression we hence have

Eval(v) = max
(
h1(v), max

(
up(v), α + h(u, v), α + up(u)

)
,

α + β + h(y, v), α + β + up(y)
)

exactly as before the compression. Therefore, we can conclude that Eval(v)
compresses paths while correctly maintaining longest path information. Figure 6
illustrates the path halving procedure.

h1(u)

α

β

h1(u)

y

v

u

y

u⇒ βv
α + β

Figure 6: Path halving: Edge (y, v) of length α + β replaces edge (u, v) of
length α. Note that v continues to take care of the path associated with h1(u),
if needed, since this value is now stored in up(v).

In the general case, let 〈v0 = v, v1, . . . , vk = y〉 be the path from v to the
root y of the tree containing v in F , having edges ei = (vi, vi+1), i = 0, . . . , k−1.
We have

Eval(v) = max
i=1,...,k


h1(v), up(v), h(vi, v) +

i−1∑
j=0

|ej |, up(vi) +
i−1∑
j=0

|ej|

 . (3)

W.l.o.g., let k be even. The path halving technique makes every other node
along the path (except the last and the next to last) point to its grandfather,
i.e., replaces the edge (vi, vi+1), i = 0, 2, . . . , k − 2, with the edge (vi, vi+2) of
length |ei| + |ei+1| and sets



E. Nardelli et al., All Best Swaps of a MDST , JGAA, 5(5) 39–57 (2001) 53

up(vi) = max
(
up(vi), |ei|+ h(vi+1, vi), |ei|+ up(vi+1)

)
, i = 0, 2, . . . , k − 2. (4)

Hence, after the halving, the path from v to y is 〈v0 = v, v2, . . . , vk−2, vk =
y〉, with edges e′i = (vi, vi+2), i = 0, 2, . . . , k−2, of length |ei|+ |ei+1|. Therefore,
after the halving, we have

Eval(v) = max
i=1,...,k/2


h1(v), up(v), h(v2i, v) +

2i−1∑
j=0

|ej |, up(v2i) +
2i−1∑
j=0

|ej |



which, from (4), is equivalent to (3). Therefore, it turns out that Eval(v) be-
fore and after the halving is invariant. Remembering the order the edges are
removed, it is clear that the compression of the paths works correctly (i.e., the
compression incrementally proceeds towards the upper levels of T̂ , according to
the edge removals). Therefore, we conclude that Findpath(v, y) is equivalent to
Eval(v).

Since naive linking in F must be applied to preserve paths of T̂ , a sequence
of Q ≥ n Eval(v) queries in F can be satisfied in O

(
Q log(1+Q/n) n

)
time [10].

Therefore, to establish that a single query can be satisfied in O(1) amortized
time, it remains to prove that Q = Ω(n1+ε) for some constant ε > 0. We now
show that Q = Θ(n

√
m), i.e., ε ≥ 1/2.

Let us distinguish the edges of T in basic edges (i.e., edges joining two nodes
contained within the same basic cluster [8] and therefore associated with a node
at level 0 in the corresponding topology tree) and spanning edges (i.e., edges
joining two clusters at the same level j ≥ 0 of the topology tree). If an edge
removed from T is a basic edge, then we have |Se| = Θ(

√
m). On the other

hand, if an edge removed from T is a spanning edge and joins two clusters
corresponding to nodes at level j in the topology tree, 0 ≤ j ≤ dlog

√
me − 1,

then we have |Se| = Θ(
√

m/2j). For each edge in Se a Findpath() query is
issued. Hence the minimum overall number of queries is obtained when as
many as possible of the n−1 failing edges of T are spanning edges at the highest
possible level in the topology tree. Since there will be Θ(

√
m/2j+1) spanning

edges for nodes at level j of the topology tree, i.e., a total of Θ(
√

m) spanning
edges, it follows that the minimum number of queries is posed when Θ(

√
m)

edges of T are spanning and the remaining Θ(n−√
m) are basic. Therefore, we

have

Q = Ω


(n −√

m)
√

m +
dlog√

me−1∑
j=0

√
m

2j+1

√
m

2j


 = Ω(n

√
m)

and since Q = O(n
√

m), it follows Q = Θ(n
√

m), which implies ε ≥ 1/2.
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4 Swapping versus recomputing from scratch

In this section, we will show that even though swapping a failing edge in the best
possible way does in general not yield a new MDST, it will not give a tree whose
diameter differs all that much from a minimum one. Thus, swapping is quick and
not too dirty. Let TG−e be a MDST of G−e and let σe = |D(Te/e′ )|/|D(TG−e)|,
where, as usual, e′ is a best swap edge for e.

We start by observing that the MDST T must contain at least one path of
length D(T ) which is a shortest path between its two ending nodes [7]. W.l.o.g.,
let us assume that such a path is 〈d1, . . . , dk〉, and therefore 〈dc, . . . , d1〉 and
〈dc, . . . , dk〉 are shortest paths. The following holds:

Theorem 4.1 For any edge e = (x, y) ∈ ET , we have σe ≤ 5/2. The bound is
tight.

Proof: Let f = (u, v) be a replacement edge for e such that f ∈ TG−e and |f |
is minimum. As usual, let Lu be a longest path in Tx starting from u and Lv

be a longest path in Ty starting from v. We have

|D(Te/e′ )| ≤ |D(Te/f )| ≤ max
(
|Lu| + |f | + |Lv|, |D(T )|

)
. (5)

If there exists at least another edge f ′ ∈ Re in TG−e, then σe ≤ 5/2 triv-
ially follows from the fact that |D(TG−e)| ≥ |f | + |f ′| ≥ 2|f |, |D(TG−e)| ≥
|Lu|, |D(TG−e)| ≥ |Lv| and |D(TG−e)| ≥ |D(T )|.

Otherwise, let us assume that f = (u, v) is the only edge in Re belonging to
TG−e. We distinguish two cases: e ∈ D(T ) and e 6∈ D(T ).

1. e = (x, y) ∈ D(T ): W.l.o.g., let e ∈ LD and let x be the parent of y in
T̂ . Let p(v, v′) denote the length of a shortest path in G − e between any
two nodes v, v′. Trivially, |Lu| ≤ |D(Tx)| and |Lv| ≤ |D(Ty)|. Moreover,
in G − e, we have that p(x, dk) = d(x, dk) ≥ |RD| ≥ |D(Tx)|/2. Therefore

max
(
p(u, x), p(u, dk)

)
≥ |D(Tx)|

4
.

Similarly, we have that p(d1, y) = d(d1, y) ≥ |D(Ty)|/2, from which

max
(
p(v, d1), p(v, y)

)
≥ |D(Ty)|

4
.

Hence, in G− e there exists a shortest path passing through f at least as
long as

|f | + |D(Tx)|
4

+
|D(Ty)|

4

and whilst |D(Tx)| ≤ |D(TG−e)| and |D(Ty)| ≤ |D(TG−e)|, (5) can be
rewritten as
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|D(Te/e′)| ≤ max
(
|f | + |D(Tx)|

4
+

|D(Ty)|
4

+
3
4

(
|D(Tx)| + |D(Ty)|

)
,

|D(T )|
)

≤ max
(
|D(TG−e)| + 3

2
· |D(TG−e)|, |D(TG−e)|

)
(6)

from which σe ≤ 5/2 follows. The bound is tight as shown in Figure 7.

y′ `/2 + ε

x′ dk

dc = x

y

`/2

`/2

`/4 + ε

`/2 − ε

`/4

ε

d1

`/4 `/4

y

`/2 − ε

Te/e′

(a)

`/2 − ε

x′

dc

`/2

`/2
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(b)

y

`/4

`/2 + ε
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`/4

`/4 + ε

(c)

`/4`/2 + ε

`/2 − ε

y′
d1 d1

y′

TG−e

Figure 7: (a) The graph G with the MDST T , having |D(T )| = `; non-tree
edges are dashed, and edge e = (x, y) is removed from T ; (b) Te/e′ , with the
swap edge e′ = (x′, y′), having |D(Te/e′)| = 5

2` − ε, ε > 0; (c) TG−e, having
|D(TG−e)| = ` + 2ε.

2. e = (x, y) 6∈ D(T ): W.l.o.g., let x be the parent of y in T̂ . In this case,
D(T ) ∈ Tx, and therefore in G − e there exists a shortest path passing
through f at least as long as

|f | + |D(Tx)|
2

from which (5) can be rewritten as

|D(Te/e′ )| ≤ max
(
|f | + |D(Tx)|

2
+

|D(Tx)|
2

+ |D(Ty)|, |D(T )|
)
≤

≤ max
(
|D(TG−e)| + 1

2
· |D(TG−e)| + |D(TG−e)|, |D(TG−e)|

)
(7)

from which σe ≤ 5/2 follows. Also in this case, the bound is tight as
shown in Figure 8.

2
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Figure 8: (a) The graph G with the MDST T , having |D(T )| = `; non-tree edges
are dashed, and edge e = (dc, y) is removed from T ; (b) Te/e′ , with the swap edge
e′ = (x′, y′), having |D(Te/e′)| = 5

2 `; (c) TG−e, having |D(TG−e)| = `+2ε, ε > 0.

5 Conclusions

In this paper we solved the ABS problem in O(n
√

m) time and O(m) space,
thus strictly improving previous bounds for m = o(n2). We have also shown
that the diameter of the tree obtained as a consequence of a best swap is at
most 5/2 times the diameter of the real new MDST. It might be interesting to
study average values for the above ratio. Another open problem is the case of
managing multiple simultaneous edge replacements. Clearly, it also remains to
find out whether the algorithm we have proposed is optimal. Finally, the case
of transient node failures deserves future study.
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