
Journal of Graph Algorithms and Applications
http://jgaa.info/

vol. 6, no. 3, pp. 313–351 (2002)

A Framework for the Static and Interactive

Visualization of Statecharts

Rodolfo Castelló

School of Engineering and Computer Science
ITESM Campus Chihuahua
http://www.chi.itesm.mx/
rodolfo.castello@itesm.mx

Rym Mili Ioannis G. Tollis

Department of Computer Science
The University of Texas at Dallas

http://www.utdallas.edu/
rmili@utdallas.edu tollis@utdallas.edu

Abstract

We present a framework for the automatic generation of layouts of stat-
echart diagrams. Statecharts [16] are widely used for the requirements
specification of reactive systems. Our framework is based on several tech-
niques that include hierarchical drawing, labeling, and floorplanning, de-
signed to work in a cooperative environment. Therefore, the resulting
drawings enjoy several important properties: they emphasize the natural
hierarchical decomposition of states into substates; they have a low num-
ber of edge crossings; they have good aspect ratio; and require a small
area. We also present techniques for interactive operations. We have im-
plemented our framework and obtained drawings for several statechart
examples.

Communicated by Michael Kaufmann: submitted April 2001; revised January 2002.

Research supported in part by Sandia National Labs and by the Texas Advanced

Research Program under grant number 009741-040.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 314

1 Introduction

The representation and visualization of software requirements specification is
very important in software engineering. Statecharts [16] is a graphical notation
widely used for the requirements specification of reactive systems. Because of
their hierarchical property, statecharts are prime candidates for visualization.
Nice and intuitive drawings of statecharts would be invaluable aids to software
engineers who would like to check the correctness of their design visually. In
this paper, we study the problem of visualizing statecharts and present an algo-
rithmic framework for producing clear and intuitive drawings. Our framework
is based on several techniques that includes hierarchical drawing, labeling, and
floorplanning, designed to work in a cooperative environment. Therefore, the
resulting drawings enjoy several important properties: they emphasize the nat-
ural hierarchical decomposition of states into substates; they have a low number
of edge crossings; they have good aspect ratio; and require a small area.

There are several visualization tools for the specification and design of re-
active systems available in the market [17, 27, 29, 36]. These tools are helpful
in organizing a designer’s thoughts. However, they are mostly sophisticated
graphical editors, and therefore, are severely inadequate for the modeling of
complex reactive systems. For example, the Rational Rose (year 1999) tool [30]
provides a feature to layout UML [5] statechart diagrams. Figure 1 shows an
example of a statechart after the Rational Rose layout feature is applied. We
notice that transition labels overlap; transition edges overlap with state boxes;
and there is a large number of unnecessary edge bends and edge crossings. Fig-
ure 9 in Section 4 shows a drawing of the same diagram using our algorithmic
framework.

A comprehensive approach to hierarchical drawings of directed graphs is
described in Sugiyama et al. [35]. Several extensions and variations of this
approach have been introduced in the literature. A comprehensive survey is
given in [1]. A first extension that takes into consideration cycles and dummy
nodes for large edges (i.e., edges that span more that one level) was introduced
by Rowe et al. [31]. Gansner et al. [14, 15] provide a technique to draw directed
graphs using a simplex-based algorithm that assigns vertices to layers; at the
same time, they provide an extension to the basic algorithm of Sugiyama et al.
by drawing edge-bends as curves. A divide-and conquer approach is described
by Messinger et al. [24] to improve the layout-time performance for large graphs
consisting of several hundreds of vertices. More recently, a combination of the
algorithm of [35] with incremental-orthogonal drawing techniques was proposed
by Seemann [33] to automatically generate a layout of UML class diagrams.
In [18], Harel and Yashchin discuss an algorithm for drawing edgeless hi-graph
like structures. The problem of drawing clustered graphs without crossings was
studied in [10, 11]. Most of the research addressing the labeling problem has
focused on labeling features of geographical and technical maps, which have
fixed geometry [20, 21]. Labeling is typically partitioned into smaller tasks:
(a) labeling points, also known as the Node Label Placement (NLP) problem,
and (b) labeling lines, also known as the Edge Label Placement (ELP) problem.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 315

Figure 1: A statechart example generated by Rational Rose (drawing rotated
90 degrees due space limitations).

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 316

A survey of algorithms for the labeling problem including simulated annealing
techniques are presented in [8]. Approximation algorithms for restricted ver-
sions of the NLP problem are presented in [9, 13, 37]. Most of the research on
the ELP Problem has been done on labeling graphs with fixed geometry, such
as geographical and technical maps [21]. Kakoulis and Tollis [20] present an al-
gorithm for the ELP problem that can be applied to hierarchical drawings with
fixed geometry. Gansner et al. [14] utilize a simple approach to solve the ELP
problem for hierarchical drawings: they assign labels to the middle position of
edge lines. However, they assume that edge labels are small and do not consider
the possibility of overlap with other drawing components.

Here, we present a framework for the static and interactive visualization of
statechart diagrams. The framework uses techniques for hierarchical drawing,
labeling, and floorplanning. We also present algorithms for interactive oper-
ations (such as insertions and deletions) that preserve the mental map of the
drawings. Our algorithm for hierarchical drawings is a variant of the algorithm
by Sugiyama et al. [35] that is adapted to statecharts. In our work, we have
developed edge labeling techniques to address the problem of graph drawings
with flexible geometry. Finally, we apply floorplanning techniques in order to
reduce the area and improve the aspect ratio of the statechart drawings. Our
floorplanning techniques are inspired by the ones used for the area minimization
of (a) VLSI layouts [23, 34] and (b) inclusion drawings of trees [12].

We have also incorporated our implementation into a complete system for
visualizing software requirements [7]. Several drawings of statechart examples
are included in the Appendix.

2 Statecharts

This graphical notation was developed by Harel [16] to specify the behavior of
reactive systems. Statecharts are extended finite state machines. They provide
mechanisms to represent hierarchical decomposition, concurrency and synchro-
nization. In the statechart notation transitions (i.e., edges in a finite state
machine) can be defined as function of a stimulus, and the truth-value of a
condition. Output events can be attached optionally to the triggering event.
Transition labels have the form E[C]/A, where E is the event that triggers the
transition, C is a condition that guards the transition from being taken unless
it is true, and A is an action that is executed when the transition is taken.
Statecharts use the concept of superstate to overcome the exponential blow-up
of states encountered in traditional finite state machines. They support the
repeated decomposition of states into substates through the OR or the AND
decompositions. The OR decomposition reflects the hierarchical structure of
state machines and is represented by encapsulation (see Figure 2). The AND
decomposition reflects concurrency of independent state machines and is repre-
sented by splitting a box with lines.

In our approach, a statechart is treated as a graph. Nodes 1 in the graph
1In the remainder of this paper we will use the words node and object interchangeably.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 317

Figure 2: State encapsulation.

correspond to states, and arcs correspond to transitions between states. A
node includes the following information: its name; its width and height; the
coordinates of its point of origin; a pointer to its parent; the list of its children;
its decomposition type (e.g., AND, OR or leaf); the list of incoming arcs; the
list of outgoing arcs; a list of attributes; and finally its aliases.

The underlying structure of a statechart is an AND/OR tree that we call
decomposition tree. The root of a decomposition tree corresponds to the system
state; leaves correspond to atomic states. Each object in the tree can be decom-
posed through the AND or OR decomposition. In the remainder of the paper,
we assume that relevant information is extracted from a textual description of
requirements, and stored in a decomposition tree.

3 Automatic Layout of Statecharts

In this section we describe our framework for the visualization of statecharts.
The main algorithm that is the foundation of the framework proceeds as follows:

1. The decomposition tree T is traversed in order to determine the dimensions
and point of origin of the drawing of every node, in a recursive manner.

2. If a node v is a leaf then a simple drawing procedure is called that produces
a labeled rectangle. It returns the point of origin and the dimensions of
the rectangle.

3. If v is an AND node then a recursive algorithm constructs the drawings
of every child node of v and places the drawings next to each other.

4. If v is an OR node then a recursive algorithm:

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 318

• first constructs the drawings of every child of v;

• then, it assigns each child to a specific layer. For the sake of sim-
plicity, we generate our drawings horizontally, from left to right. A
similar approach can be used to generate vertical drawings.

The procedure that draws leaves is trivial: Each leaf is drawn as a rectangle
that is wide enough to accommodate its label. The algorithms for drawing the
AND and OR nodes are more complicated and one can choose among many
choices. We have chosen to draw (a) AND nodes using techniques similar to
floorplans [22, 34, 38], or inclusion drawings [12], and (b) OR nodes using a mod-
ified version of Sugiyama’s algorithm [35] for producing a hierarchical drawing.
Our framework will work even if other implementors of a similar system decide
to substitute their favorite technique/algorithm for any of the steps. In the next
subsections, we will describe the algorithms that we chose for our implementa-
tion.

3.1 Drawing AND Nodes

An AND node reflects concurrency of independent state machines. The simplest
approach to draw an AND node is to place the drawings of its children vertically
next to each other. Then the height of the AND node is equal to the maximum
height of its children’s rectangles and its width is equal to the sum of the widths
of its children’s rectangles. This approach is very simple and thus very desirable.
However, it is not very efficient in terms of area. The size of each node depends
on the recursive drawings of the substate nodes that are nested in it. Hence,
it is possible that certain AND nodes of the decomposition tree are very large
in one dimension or the other. This implies that an unfortunate combination
of two subnode rectangles, one with large height and one with large width, will
result in a drawing of the AND node that occupies a very large area (which is
mostly empty). This is clearly undesirable. Additionally, the aspect ratio of the
drawing, another important aesthetic criterion, is not controllable. We tackle
this problem by applying a technique similar to (a) floorplanning, a technique
used for the minimization of area of VLSI chip [22, 34, 38], and (b) the technique
for minimizing the area of drawing trees in the inclusion convention [12].

Floorplanning partitions a floor rectangle into floorplans using line segments
called slices. Each slice is given as either a vertical or a horizontal slice. Floor-
plans are combined in such a way that the enclosing rectangle covers a minimum
area (see Figure 3). A floorplan is slicing whenever the floorplan is an atomic
rectangle 2 or there exists a slice that divides the rectangle into two. The floor-
planning problem has an efficient solution when the floorplan is slicing [23, 34].
However, the slices in our problem are not fixed as either vertical or horizon-
tal. This has to be decided by some algorithm. From this point of view, our
problem is also similar to the tree drawing problem mentioned above. For the

2one that can not be further decomposed.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 319

1

23

4

5

6

Figure 3: A slicing floorplan.

inclusion convention each non-leaf node is a rectangle that contains the rectan-
gles of its subtrees. The problem of optimizing the area by choosing vertical
and horizontal slices is NP-hard in general, see for example [12]. If the tree is
binary and the sizes of the leaf nodes are restricted, then a dynamic program-
ming type algorithm can be used to minimize the area of an inclusion drawing
of the tree in about quadratic time [12]. Unfortunately, our trees are general
and the size of the rectangles representing the subtrees depends heavily on the
graph represented by the statechart. This is clearly the case for OR nodes.

Although one could apply either (a) the general slicing floorplanning tech-
nique for drawing the AND nodes [34], or (b) a modification of an inclusion
drawing algorithm, none of them could give us any performance guarantees.
Also, due to the special representation of statecharts, and the fact that the
size of any OR node can be arbitrarily large we have decided to use some sim-
ple heuristics that can be applied to statecharts. To this effect, we define the
following drawing criteria for statecharts:

• Leaves are used to represent atomic states whose size depends solely on
their labels. Since labels are usually written horizontally (for readability
purposes), we will draw leaves horizontally.

• The AND decomposition reflects concurrency, and is represented by split-
ting an AND-state rectangle into a number of concurrent substates. As
discussed before, due to the recursive nature of each (sub)state, the di-
mensions of the various substates could be incompatible if placed next to
each other. Thus we choose to slice AND-state rectangles either horizon-
tally or vertically, in order to reduce the total area and control the aspect
ratio.

• OR states can be drawn in a hierarchical fashion using either a horizontal
or a vertical layering depending on the slicing type of the parent node (i.e.,
horizontal / vertical slicing). This is discussed in the next subsection.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 320

OR Horizontal Layering

A1

A2 A3 A4

A5

AB
A

OR Horizontal Layering

B1

B2 B3 B4

B5

B

AB

A

A1 A2 A3 A4 A5

B

B1 B2 B3 B4 B5

(b)

OR

AND

OR

(a)

OR Vertical Layering

A1

A2

A3

A4

A5

AB
A

(c)

OR Vertical Layering

B1

B2

B3

B4

B5

B

Figure 4: AND-OR combination: (a) AND/OR decomposition tree, (b) AND
vertical slicing with OR horizontal layering, (c) AND horizontal slicing with OR
vertical layering.

Our goal is to generate drawings that use the horizontal and vertical dimen-
sions in a uniform way, in order to obtain drawings with small area and good
aspect ratio. To this effect we define several heuristics: The AND/OR heuristic
applies to the case where the parent is an AND node and the children are OR
nodes (see Figure 4(a)). There are two cases:

1. The parent node (AND) is sliced vertically. Then the children nodes (OR)
will be drawn on horizontal layers (see Figure 4(b)). In this case, the height
of the parent object is the height of the highest child node; and the total
width of the parent is the sum of the children’s widths.

2. The parent node (AND) is sliced horizontally. Then the children nodes
(OR) are drawn on vertical layers (see Figure 4(c)). In this case the height
of the parent node is the sum of children’s heights; and the width of the
parent node is the width of the widest child.

Clearly, the above algorithm for drawing AND nodes (excluding the drawing
of OR nodes) has linear time-complexity with respect to the number of substates
in such a node. Heuristics that handle the other cases (OR/AND, AND/AND,
and OR/OR) are defined similarly. An extensive discussion of all cases appears
in [6].

Finally, it is possible to further improve the area and aspect ratio of the
resulting parent drawing at the expense of reducing the readability of the draw-
ing. This can be done by allowing the drawings of the children of a node to have
different orientations. For example most of them can be placed vertically, while
the tallest one will be placed horizontally, in order to reduce the total height
and hence the area requirement, if this is deemed appropriate. Several other
similar heuristics can be implemented. The end result will be a drawing which

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 321

A

B

A-C

A-B

D
D-C

C

B1

B2 B3

B1-B2
B1-B3

C1

C2

C2-C1C1-C2
B3-C2

Figure 5: Inter-level transitions.

will be a general slicing floorplan, see Figure 3. However such a drawing of a
statechart diagram may be unacceptable for several applications.

3.2 Drawing OR Nodes

An OR node reflects the decomposition of states into substates. The substates
of an OR node are drawn as rectangles. The drawing (and hence the dimensions
of the enclosing rectangle) of an OR node is obtained by recursively performing
a hierarchical drawing algorithm [2] on the node and each of its substates.

In the statechart notation [16], it is possible for transitions to cross super-
state boundaries. We call these special edges inter-level transitions. For ex-
ample, in Figure 5, we notice that transition B3-C2 crosses the boundaries of
parent state B. In our approach, inter-level transitions are treated as follows:
a) we define the final state of the transition as a GOTO node and place it in
the parent state box; b) we label the GOTO node ”GOTO final-state-name”
and we process it as a regular OR-node (see Figure 6). We believe that this
approach improves the readability of the drawings.

The algorithm that constructs the drawing of an OR node has the follow-
ing steps: (i) substates are drawn recursively; and (ii) substates are assigned
to layers by using a modified version of Sugiyama’s algorithm [35] (procedure
realDimensionHierarchyDrawing).

Procedure realDimensionHierarchyDrawing (see Figure 7) consists of two
steps:

1. We construct a hierarchy of substates by treating each substate as a point
by calling procedure hierarchyDrawing, which proceeds as follows:

(a) We assign the node that corresponds to the initial state to the first

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 322

A

B

A-C

A-B

D D-C C

B1

B2 B3

B1-B2 B1-B3

C1

C2

C2-C1C1-C2

B3-C2

GOTO
C2

Figure 6: Goto State.

realDimensionHierarchyDrawing(ObjectList o.children)
Begin

hierarchyDrawing(o.children);
hierarchy.height = 0;
hierarchy.width = 0;
for i = 1 to depth(hierarchyDrawing of o.children) do
begin do

1. layer[i].largestWidth = largest width among the objects in layer[i];

2. if (layer[i+1] ≤ depth(hierarchyDrawing of o.children)) then add
layer[i].largestWidth as an offset to the origin x of every object in
layer[i+1];

3. layer[i].height = summation of each object’s height at layer[i];

4. if (hierarchy.height < layer[i].height) then hierarchy.height =
layer[i].height;

5. hierarchy.width = hierarchy.width + layer[i].largestWidth;

6. Increase the origin y of each object in layer[i] in order to deal with the
height of each object and avoid overlapping;

end do;

End

Figure 7: Procedure that generates the final hierarchy of an OR node.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 323

layer.

(b) We apply a depth-first search to identify those edges that form graph-
cycles; then we temporarily remove them.

(c) Once the cycles are removed, we assign every node v to a specific
layer which is determined by the length of a longest path from the
start node to v. At this stage, every node is assigned an x coordinate.

(d) We add dummy vertices to deal with edges whose initial and final
states are not in adjacent layers.

(e) Finally, we apply a node ordering procedure whose purpose is to
minimize edge crossings within each layer. This ordering provides
the y coordinate for each node.

2. We incorporate into the hierarchy the dimensions (i.e., height and width)
of each node in the drawing, as described in Figure 7. The resulting hier-
archy is used to determine the height and width of the parent object/state,
as well as the coordinates of the origin of the object’s rectangle.

As described, the above algorithm produces drawings that are directed from
top to bottom and their nodes are placed on horizontal layers. It is easy to
modify it in order to produce drawings that are directed from left to right and
their nodes are placed on vertical layers. Most of the steps of the algorithm
have linear time-complexity with respect to the number of edges of the graph.
The last step of procedure hierarchyDrawing attempts to beautify the obtained
drawing by reducing the number of edge crossings. Our approach is based on
the general layer by layer sweep paradigm [2]. The time-complexity of this step
of the algorithm depends on the number of vertices that exist on each layer. If
layer L contains |L| nodes, then the time required by the algorithm is O(|L|2).
Clearly, the total time for this step depends upon the distribution of nodes into
layers. Note that any algorithm used in any step of the above framework can
be replaced by another algorithm (chosen by another designer) as long as it
achieves results that are acceptable for the next step.

3.3 Final Drawing

The final drawing of the statechart represented by the decomposition tree is
computed by performing the following steps:

1. Each non-leaf node of the decomposition tree is equipped with two (width,
height) pairs as follows:

OR node: (vertical layering width, vertical layering height), and (hori-
zontal layering width, horizontal layering height).

AND node: (vertical slicing width, vertical slicing height), and (horizon-
tal slicing width, horizontal slicing height)

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 324

2. The horizontal/vertical drawing dimensions are computed in a recursive
manner, by traversing the decomposition tree in a top-down fashion:
for all nodei ∈ decomposition tree do

begin for

if (nodei.decompositionType ==AND) or (nodei.decompositionType ==OR) then

Determine the dimensions for both, the vertical drawing and the horizontal

drawing.

else

Determine the dimensions as a LEAF.

end for

3. The root node of the decomposition tree will decide which is the best
width/height pair:
if (root.horizontal width * root.horizontal height < root.vertical width * root.vertical height)

then

generate drawing with root as horizontal layering (slicing)

else

generate drawing with root as vertical layering (slicing)

4. We generate the drawing by traversing the decomposition tree top down
once more, assigning the correct layering/slicing option to every node.

As described, the above algorithm keeps only two possible rectangles for
each internal node of the tree: a horizontal and a vertical drawing of the graph
corresponding to the tree node. Hence, once the children-node drawings are
obtained, it takes time proportional to the number of children to compute the
two possible drawings (vertical and horizontal) generated by our algorithm for
the parent node. Of course, at the expense of extra computation time one can
allow a higher number of possible drawings (rectangles) to be computed for
each internal node, and several more level combinations during the recursive
drawing of AND nodes can be computed. However, the number cannot be
allowed to grow arbitrarily. In other words, if we allow all possible drawings
and combinations of rectangles, for the children of each node, then there will be
exponentially many combinations. Recall that the problem of optimizing the
area of inclusion drawings of trees (which is a special case of our problem) by
choosing vertical and horizontal slices is NP-hard in general [12].

4 Labeling

In the labeling literature, it is common to distinguish between node label place-
ment (NLP) and edge label placement (ELP). In the Statecharts [16] notation,
NLP depends primarily on the node type. Hence, the label placement for nodes
in statecharts is rather simple: if a node is a leaf, then the label size will deter-
mine the node size. If a node is an AND or an OR, then the label is placed in
the top left corner of the enclosing rectangle.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 325

Now we discuss our solution to the ELP problem for statecharts. In car-
tography, the placement of an edge label must satisfy the following criteria
[19, 20, 39]:

1. A label cannot overlap with any other graphical component except with
its associated edge.

2. The placement of a label has to ensure that it is identified with just one
edge in the drawing. Therefore it must be very close to its associated edge.

3. Each label must be placed in the best possible position among all accept-
able positions.

In the statecharts notation, an edge label consists of three components:
event, condition and action (see Figure 8(a)). In order to satisfy the labeling
criteria discussed above we have defined the following steps:

1. We fix the maximum length of the label to a constant, and we write
the transition’s three components (i.e., events, conditions and actions) on
three separate lines (see Figure 8(b)). If the size of a component is greater
than the maximum length of the label, then we write it on several lines
(see Figure 8(c)).

2. At the beginning of the execution of the drawing algorithm (see Section
3), we assign labels to sublayers (see Figure 8(d)).

3. We traverse the hierarchy from left to right, considering two adjacent
layers L1 and L2 at a time (see Figure 8(d)). For each vertex a in L1, we
identify the set of edges Ea between a and the vertices in L2. We order
Ea in such a way that potential label crossings are removed.

The time complexity of this step is linear with respect to the number of
edges in the graph.

Figure 9 shows the statechart diagram after we applied an implementation
of our drawing framework to the diagram of Figure 1. We observe that both,
the horizontal and vertical dimensions, grow in a uniform manner; edges do
not overlap with any other drawing component; every edge crossing has been
removed; and the number of edge bends has been reduced considerably.

5 Interactive Operations in Statecharts

The framework presented in this paper describes algorithms that produce draw-
ings of static statecharts. The techniques try to optimize various aesthetics,
such as bends, crossings, area, etc. This implies that even when a minor mod-
ification is performed on a drawing (e.g., addition of a node or a transition),
the layout algorithms will re-order the nodes in such a way that these aesthetic
criteria are met. Hence, the structure of the resulting drawing could be very

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 326

Event
[Condition]
/ Action

State
A

State
B

Event [Condition] / Action

Event
[Condition#1 AND
 Condition#2 AND
 Condition#3]
/ Action

State
A

State
B

Edge Label Length

(a) (b)

(c)

State
A

State
B

Event: A - B
[Condition: A - B]
/ Action: A - B

State
A

State
C

State
D

Event: A - C
[Condition: A - C]
/ Action: A - C

Event: A - D
[Condition: A - D]
/ Action: A - D

State
B

L1 Edge-Label
SubLayer 1-2

L2

(d)

Figure 8: Edge label placement in statecharts: (a) label on a single line, (b) one
label component per line, (c) label with fixed length, (d) edge label placement.

Figure 9: Same statechart diagram as in Figure 1, generated automatically by
our drawing algorithm.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 327

different from the original one. In this section, we discuss a technique that can
be used to preserve the mental map (i.e., the structure) of statecharts. This is
important since the designer/specifier may find mistakes/omissions and hence
may need to delete and/or insert states and/or transitions without loosing the
mental map.

5.1 Previous Work

Misue et. al. [25] present three models for mental map maintenance, based on
the position of the nodes in the diagram: the orthogonal ordering; the proxim-
ity relations; and the topology. They provide two layout adjustment techniques
that preserve the mental map. The first technique aims at making nodes dis-
joint during the modification of the original diagram. The second technique is
oriented towards displaying certain parts of the diagram like a view.

North [26] presents a heuristic for hierarchical layouts of directed graphs that
incorporates position and order node stability. This heuristic moves nodes be-
tween adjacent ranks based on median sort. Seemann [33] combines hierarchical
with orthogonal techniques for the incremental layout of UML class diagrams.
Ryall et. al. [32] present a constraint-based approach to layout small graphs.
These constraints are enforced by a generalized spring algorithm. Several tech-
niques for the preservation of the mental map in orthogonal drawings have been
proposed [3, 4, 28]. Papakostas and Tollis [28] discuss a systematic approach
that applies to interactive orthogonal graph drawings of vertices of degree at
most 4. They describe the following scenarios:

1. Full-control scenario. When a new vertex is inserted in the current draw-
ing, the user has full control over the vertex location. The edges can also
be routed by the user.

2. Draw-from-scratch scenario. At the user’s request, the new graph is re-
drawn using any known technique. This scenario has two main disad-
vantages: first, it is slow; and second, it does not preserve the mental
map.

3. Relative-coordinates scenario. This approach preserves the general shape
of the current drawing by proportionally changing the coordinates of ver-
tices and/or bends. An insertion of a new vertex results in the insertion
of new rows and/or columns.

4. No-change scenario. The insertion of a new vertex/edge does not modify
the coordinates of existing vertices, bends, and edges in the new drawing.

5.2 Our Approach

In this section we describe techniques for interactive operations in a statechart
that preserve the mental map. Our approach is based on the relative coordinate
and no-change scenarios:

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 328

Figure 10: Statechart diagram.

• The delete operation allows to delete nodes and edges. The simplest way
to implement the delete operation is to follow the no-change scenario. In
other words, the node and/or edge are simply removed from the drawing
without changing the coordinates of the rest of the nodes and edges.

• The insert operation allows to insert nodes and edges. Here we use the
relative-coordinates scenario. We apply a layout algorithm that preserves
the relative position of the selected states (nodes). The main drawing
features of the algorithm that are affected by the insert operation are: (1)
the placement on layers of the substates of an OR decomposition, and (2)
the position of these substates inside the layers.

Let us consider the first feature, i.e., the placement of OR-substates on layers.
When a new transition (edge) is added to the drawing, the insert operation works
as follows:

1. Verify that the layout algorithm has been applied.

2. Select the set of states that need to preserve their mental map.

3. Add a new transition to the diagram.

4. Keep the direction of the transitions.

5. Do not identify new cycles, that is, disable the depth-first search algorithm.

6. Determine the direction of the new transition using the current layer as-
signments of its initial and final states.

7. If the transition is between two states in the same layer, then stop the
interactive insert operation and apply the normal layout algorithm.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 329

Figure 11: Modified statechart diagram without mental map preservation.

Figure 12: Modified statechart diagram with mental map preservation.

Figure 10 shows a statechart drawing generated by our layout algorithm.
If we add a transition from 1g to 1c and apply again our layout algorithm,
we notice (see Figure 11) that the drawing has completely changed. Now, if
we select states 1b, 1c, 1e and 1f to be preserved and apply again the layout
algorithm, we notice (see Figure 12) that the four states are kept in their original
layers while the new transition 1g − 1c is drawn backwards.

When a new state (node) is added to the drawing, insert operation for the
placement of substates on layers works as follows:

1. Verify that the layout algorithm has been applied.

2. Select the set of states that need to preserve their mental map.

3. Add a new state:

4. Keep the direction of the transitions.

5. Do not identify new cycles, that is, disable the depth-first search algorithm.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 330

Figure 13: Adding a new state to a statechart diagram with mental map preser-
vation: case (a).

6. Determine the new layers by applying the following criteria:

(a) If the new state shifts the position of one selected state, then shift the
position of the entire selected group. Figure 13 shows the drawing
of Figure 10 after the insertion of state new. We notice that states
1b, 1c, 1e and 1d are shifted one layer to the right, and their relative
position is unchanged.

(b) If the new state is positioned in between selected states of the group,
then keep the new state in its position, and shift the selected states
positioned on subsequent layers to the right. Figure 14 shows the
drawing of Figure 10 after the insertion of a new state. We notice
that the selected group of states is divided in two parts. However,
the relative position of the selected states within layers is preserved.
For example, both 1b and 1c are placed on the same layer, at position
1 and 2 respectively. The same applies to nodes 1e and 1f .

The second feature that is affected by the preservation of the mental map,
is the placement of states on the same layers. Specifically, our edge crossing
reduction algorithm (see [6] for details) is modified as follows: the selected group
of states on a specific layer is treated as a single state; the edge crossing reduction
algorithm shifts the complete group as needed, and inserts invisible nodes when
necessary.

We consider three cases that we illustrate through Figures 15 and 16.

1. Case 1. If the edge crossing reduction algorithm determines that state x
is best placed below b (Figure 15(b)):

(a) Insert an invisible state in x’s position.

(b) Shift down all states below state b, e.g., states y and z.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 331

Figure 14: Adding a new state to a statechart diagram with mental map preser-
vation: case (b).

x
L1

a

b

y

z

o
L2

c

d

p

q

(a)

L1

a

b

x

y

o
L2

c

d

p

q

(b)

z

Original
Drawing Case 1

L1

y

a

b

z

o
L2

c

d

p

(c)
Case 2

x

q

invisible
state

mental
map set

invisible
state

Figure 15: Edge crossing reduction for mental map preservation: cases 1 and 2.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 332

x
L1

a

b

y

z

o
L2

c

d

q

p

(a)

Original
Drawing

L1

y

a

b

z

o
L2

c

d

p

(b)
Case 3

x

q

invisible
state

mental
map set

Figure 16: Edge crossing reduction for mental map preservation: case 3.

(c) Place x below b.

2. Case 2. If the edge crossing reduction algorithm determines that state y
is best placed above a (see Figure 15(c)):

(a) In layer L1 shift down the position of the selected states, e.g., a and
b.

(b) Place y above a.

(c) For all the states in other layers that include part of the selection
(e.g., layer L2):

i. Shift down the position of the states in such a way that the
original structure of the selection is preserved (e.g., states c, d, p,
and q are shifted down).

ii. Insert invisible states to fill the empty positions (e.g., above state
c).

3. Case 3. In Figure 16(a), if the edge crossing reduction algorithm deter-
mines that state y is best placed above a and the position above a is
occupied by an invisible state:

(a) Move y to the position occupied by the invisible state.

(b) Shift up the position of every state below the original position of y
(e.g., z).

(c) Delete the invisible state (see Figure 16(b)).

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 333

Figure 17: Statechart diagram before edge-crossing with layer mental map.

Figure 17 shows a statechart drawing generated by our layout algorithm
before the reduction of the edge crossings. In this diagram, we have selected
states 1B, 1C, 1F , and 1G to preserve the mental map. Figure 18 shows the
same statechart drawing of Figure 17 after the reduction of the edge crossings
while preserving the mental map. This diagram shows the three invisible states
that were added as a result of the required shifts generated by our algorithm.

The preservation of the mental map has disadvantages: some edge crossings
may not be removed; improper edges may be inserted; and the insertion of
invisible states may increase the total drawing area. Hence, the mental map
feature is offered as an option to the user.

6 Conclusions and Experimental Results

In this paper we presented an algorithmic framework for the automatic genera-
tion of layouts of statechart diagrams. Our framework is based on hierarchical
drawing, labeling, and floorplanning techniques. The design of the framework is
modular and thus any algorithm used for any step can be replaced with an im-
proved algorithm thus resulting in an improved tool. Furthermore, we presented
techniques for performing interactive operations (insertions and deletions) in the
statechart while preserving the mental map of the drawing. Since the resulting
drawings improve considerably the readability of the diagrams, they constitute
an invaluable tool to the specifier who will shift his/her focus from organizing
the mental or physical structure of the requirements to its analysis.

We implemented a tool, called Vista, using the algorithms described in this
paper, and ran the tool on two different sets of statechart examples. First, we
created four statechart examples which we used as input for Rational Rose 1999,
and Vista. Our results are summarized in Table 1 and the respective drawings
are included in the Appendix.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 334

Figure 18: Statechart diagram after edge-crossing with layer mental map.

Aesthetic Example 1 Example 2 Example 3 Example 4
Criteria Rational ViSta Rational ViSta Rational ViSta Rational ViSta

Edges 2 0 6 0 13 0 4 0
Crossings

Edge 2 5 7 3 20 8 14 7
Bends

Edge Label 10 0 10 0 25 0 17 0
Overlap

State-Edge 4 0 0 0 0 0 0 0
Overlap

Table 1: Comparison of statecharts drawn by our algorithms

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 335

Aesthetic Example 5 Example 6 Example 7 Example 8 Example 9 Figure 9
Criteria

Edges 0 0 0 0 9 0
Crossings

Edge 19 18 18 32 23 7
Bends
Width 875 1,029 861 1,632 992 1077
Height 1,259 1,722 1,593 1,424 1423 683
W/H 0.695 0.5975 0.54 1.44 0.697 1.57
Ratio

Area in 1,102,884 1,771,938 1,371,573 2,323,968 1,411,616 735,591
pixels

Table 2: Comparison of statecharts drawn by our algorithms

Secondly, we include drawings of five additional statecharts drawn by Vista
in the Appendix. These statecharts show different attributes of Vista and cannot
be automatically drawn by Rational Rose 1999. The statistics of these drawings
are summarized in Table 2. We notice that, after the application of the tool,
the drawings have: (1) few edge-crossings; (2) a low number of edge bends; (3)
small area; and (4) a good aspect ratio.

A limitation of our technique is related to the optimization of the drawing
area obtained by our current floorplanning. The approach works well if the
parent AND state is composed by a few children. If the AND state has a lot
of children (as shown in Figure 19.a, which is obtained before applying our
floorplanning technique) our algorithm will produce a drawing that will still use
one dimension more that the other (see Figure 19.b). More research is needed
in this direction.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 336

(a) Original Drawing (b) Drawing after floorplanning

Figure 19: Statechart that shows the limitations of our tool.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 337

References

[1] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for
drawing graphs: an annotated bibliography. Comput. Geom. Theory Appl.,
(4):235–282, 1994.

[2] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[3] T. Biedl and M. Kaufman. Area-efficient static and incremental graph
drawings. In Proceedings of the 5th. Annual European Symposium on Al-
gorithms, volume 1284, pages 37–52. Springer-Verlag, 1997.

[4] T. C. Biedl, B. P. Madden, and I. G. Tollis. The three-phase method:
A unified approach to orthogonal graph drawing. In G. D. Battista, edi-
tor, Graph Drawing (Proceedings GD’97), pages 391–402. Springer-Verlag,
1997. Lecture Notes in Computer Science 1353.

[5] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

[6] R. Castelló. From Informal Specification to Formalization: An Automated
Visualization Approach. PhD thesis, The University of Texas at Dallas.,
2000.

[7] R. Castelló, R. Mili, and I. G. Tollis. Vista: A tool suite for the visualization
of statecharts. to appear on Journal of Systems and Software., (0), 2002.

[8] J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms
for Point Feature Label Placement. ACM Trans. on Graphics, 14(3):203–
232, July 1995.

[9] S. Doddi, M. V. Marathe, A. Mirzaian, B. M. Moret, and B. Zhu. Map La-
beling and Its Generalizations. In Proc. 8th ACM-SIAM Sympos. Discrete
Algorithms, pages 148–157, 1997.

[10] P. Eades and Q.-W. Feng. Drawing clustered graphs on an orthogonal
grid. In G. D. Battista, editor, Graph Drawing (Proceedings GD’97), pages
146–157. Springer-Verlag, 1997. Lecture Notes in Computer Science 1353.

[11] P. Eades, Q.-W. Feng, and X. Lin. Straight-line drawing algorithms for hi-
erarchical graphs and clustered graphs. In S. North, editor, Graph Drawing
(Proceedings GD’96), pages 113–128. Springer-Verlag, 1997. Lecture Notes
in Computer Science 1190.

[12] P. Eades, T. Lin, and X. Lin. Two three drawing conventions. International
Journal of Computational Geometry and Applications., 3(2):133–153, 1993.

[13] M. Formann and F. Wagner. A packing problem with applications to let-
tering of maps. In Proc. 7th Annual ACM Sympos. Comput. Geom., pages
281–288, 1991.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 338

[14] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique
for drawing directed graphs. IEEE Transactions on Software Engineering,
19(32):214–230, March 1993.

[15] E. R. Gansner, S. C. North, and K. P. Vo. Dag—a program that draws
directed graphs. Software Practice and Experience, 18(11):1047–1062,
November 1988.

[16] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, June 1987.

[17] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot. Statemate: A working environ-
ment for the development of complex reactive systems. IEEE Transactions
on Software Engineering, 16(4):403–414, May 1990.

[18] D. Harel and G. Yashchin. An algorithm for blob hierarchy layout. In
Proceedings of International Conference on Advanced Visual Interfaces,
AVI’2000, Palermo, Italy, May 1990.

[19] E. Imhof. Positioning names on maps. The American Cartographer,
2(2):128–144, 1975.

[20] K. G. Kakoulis and I. G. Tollis. An algorithm for labeling edges of hier-
archical drawings. In G. D. Battista, editor, Graph Drawing (Proceedings
GD’97), pages 169–180. Springer-Verlag, 1997. Lecture Notes in Computer
Science 1353.

[21] K. G. Kakoulis and I. G. Tollis. On the edge label placement problem.
In S. North, editor, Graph Drawing (Proceedings GD’96), pages 241–256.
Springer-Verlag, 1997. Lecture Notes in Computer Science 1190.

[22] E. S. Kuh and T. Ohtsuki. Recent advances in VLSI layout. Proceedings
of the IEEE, 78(2):237–263, 1990.

[23] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John
Wiley & Sons, 1990.

[24] E. B. Messinger, L. A. Rowe, and R. R. Henry. A divide-an-conquer al-
gorithm for the automatic layout of large graphs. IEEE Transactions on
Systems, Man, and Cybernetics, 21(1):1–11, February 1991.

[25] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the
mental map. Journal of Visual Languages and Computing, 6(2):183–210,
1995.

[26] S. C. North. Incremental layout in dynadag. In F. J. Brandenburg, edi-
tor, Graph Drawing (Proceedings GD’95), pages 409–418. Springer-Verlag,
1996. Lecture Notes in Computer Science 1027.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 339

[27] R. O’Donnel, B. Waldt, and J. Bergstrand. Automatic code for embedded
systems based on formal methods. Available from Telelogic over the In-
ternet. http://www.Telelogic.se/solution/techpap.asp. Accessed on April
1999.

[28] A. Papakostas and I. G. Tollis. Interactive orthogonal graph drawing. IEEE
Transactions on Computers, 47(11):1297–1309, 1998.

[29] J. Peterson. Overcoming the crisis in real-time software de-
velopment. Available from Objectime over the Internet.
http://www.Objectime.on.ca/otl/technical/crisis.pdf. Accessed on April
1999.

[30] Rational. Rose java. Downloaded from Rational over the Internet.
http://www.rational.com. Accessed on November 1999.

[31] L. A. Rowe, M. Davis, E. Messinger, and C. Meyer. A bowser for directed
graphs. Software Practice and Experience, 17(1):61–76, January 1987.

[32] K. Ryall, J. Marks, and S. Shieber. An interactive system for drawing
graphs. In S. North, editor, Graph Drawing (Proceedings GD’96), pages
387–393. Springer-Verlag, 1997. Lecture Notes in Computer Science 1190.

[33] J. Seeman. Extending the sugiyama algorithm for drawing UML class
diagrams: Towards automatic layout of object-oriented software diagrams.
In G. D. Battista, editor, Graph Drawing (Proceedings GD’97), pages 415–
424. Springer-Verlag, 1997. Lecture Notes in Computer Science 1353.

[34] L. Stockmeyer. Optimal orientations of cells in slicing floorplan designs.
Information and Control, (57):91–101, 1983.

[35] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man,
and Cybernetics, 11(2):109–125, February 1981.

[36] A. S. Tools. Real-time studio: The rational alternative.
Available from Artisan Software Tools over the Internet.
http://www.artisansw.com/rtdialogue/pdfs/rational.pdf. Accessed on
April 1999.

[37] F. Wagner and A. Wolff. Map labeling heuristics: Provably good and
practically useful. In Proc. 11th Annual. ACM Sympos. Comput. Geom.,
pages 109–118, 1995.

[38] S. Wimer, I. Koren, and I. Cederbaum. Floorplans, planar graphs and
layout. IEEE Transactions on Circuits and Systems, pages 267–278, 1988.

[39] P. Yoeli. The logic of automated map lettering. The Cartographic Journal,
9(2):99–108, 1972.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 340

Appendix

In this Appendix we show drawings of four example statecharts that were used
in table 1. These drawings were automatically generated by Rational Rose and
Vista.

A

B C

C31

C32C33

C34
C35

EF

G
C to E(Condition CE)

C to G(Condition CG)

H

G to E(Condition GE)H to F(Condition HF)

I

G to I(Condition GI)

C1

C2

C1 to C2(Condition C1C2) C3

C1 to C3(Condition C1C3)

C4 C5
C6

C2 to C4(Condition C2C4)
C2 to C5(Condition C2C5)

C3 to C4(Condition C3C4)

C2 to C6(Condition C2C6)

C31

C32

C31 to C33

C33

C31 to C32

C34
C35

C32 to C34

C33 to C35

D

D to F(Condition DF)

A to B(Condition AB)
A to C(Condition AC)

A to D(Condition AD)

B to H(Condition BH)

Figure 20: Example 1 generated by Rational Rose.

We also show drawings (Figures 28,29,30,31,32) of five example statecharts
that were used in table 2. These drawings were automatically generated by our
implementation of the framework presented in this paper.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 341

Figure 21: Example 1 generated by ViSta.

A

B C D

E F G H

A to B(Condition AB)A to C(Condition AC)
A to D(Condition AD)

B to E(Condition BE)
B to F(Condition BF)
C to F(Condition CF)

C to H(Condition CH)

D to F(Condition DF)
D to G(Condition DG)

H to A(Condition HA)

I J K

E to I(Condition EI)
G to J(Condition GJ)

F to A(Condition FA)

F to K(Condition FK)
H to K(Condition HK)

K to A(Condition KA)

Figure 22: Example 2 generated by Rational Rose.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 342

Figure 23: Example 2 generated by ViSta.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 343

A

B C

E F H

I K

A to B(Condition AB)
A to C(Condition AC)

K to A(Condition KA)B to E(Condition BE)
B to F(Condition BF)

H to A(Condition HA)

H to K(Condition HK)

H to C(Condition HC)

L

M N

L to N(Condition LN)L to M(Condition LM) I to N(Condtion IN)
K to N(Condition KN)

N to A(Condition NA)
B to I(Condtion BI)I to B(Condition IB)

F to A(Condition FA)

F to K(Condition FK)

F to N(Condition FN)

F to I(Condtion FI)

C to F(Condition CF)
C to H(Condition CH)

C to K(Condition CK)

E to I(Condition EI)

E to B(Condition EB)

E to L(Condition EL)

Figure 24: Example 3 generated by Rational Rose.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 344

Figure 25: Example 3 generated by ViSta.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 345

F

A

B C

E H

H3

H7

I K

A to B(Condition AB)A to C(Condition AC)

B to E(Condition BE) C to F(Condition CF)

F to A(Condition FA)

C to H(Condition CH)

H to A(Condition HA)

E to I(Condition EI) F to K(Condition FK)

H to K(Condition HK)

L

I to L(Condition IL)

L to A(Condition LA)

K to A(Condition KA)

K to L(Condition KL)

H1

H2
H3

H4

H1 to H2(Condition H1H2)H1 to H3(Condition H1h3)H1 to H4(Condition H1H4)

H5 H6

H7

H8

H9

H2 to H5(Condition H2H5) H3 to H6(Condition H3H6)

H5 to H7(Condition H5H7)

H6 to H8(Condition H6H8)

H7 to H8(Condition H7H8)

H8 to H9(Condition H8H()

H4 to H5(Condition H4H5)

H4 to H7(Condition H4H7)

Figure 26: Example 4 generated by Rational Rose.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 346

Figure 27: Example 4 generated by ViSta.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 347

Figure 28: Example 5.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 348

Figure 29: Example 6.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 349

Figure 30: Example 7.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 350

Figure 31: Example 8.

R. Castelló et al., Visualization of Statecharts, JGAA, 6(3) 313–351 (2002) 351

Figure 32: Example 9.

