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Abstract

This paper describes a system for Graph dRawing with Intelligent
Placement, GRIP. The system is designed for drawing large graphs and
uses a novel multi-dimensional force-directed method together with fast
energy function minimization. The algorithm underlying the system em-
ploys a simple recursive coarsening scheme. Rather than being placed at
random, vertices are placed intelligently, several at a time, at locations
close to their final positions. The running time and space complexity of
the system are near linear. The implementation is in C using OpenGL
for 3D viewing. The GRIP system allows for drawing graphs with tens of
thousands of vertices in under one minute on a mid-range PC. To the best
of the authors’ knowledge, GRIP surpasses the fastest previous algorithms.
However, speed is not achieved at the expense of quality as the resulting
drawings are quite aesthetically pleasing.
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1 Introduction

Let G be a graph G = (V, E), where V is a set of vertices and E a set of
edges, where |V | = n and |E| = m. We would like to display G in two or three
dimensions so as to show clearly the underlying relationships. This problem is
generally known as the graph drawing problem. In a graph drawing we typically
use points to represent the vertices and straight-line segments to represent the
edges. The quality of the drawings produced by such algorithms is measured
by a set of aesthetic criteria such as:

• minimizing the number of edge crossings

• displaying graph symmetries

• distributing the vertices evenly

• uniform edge length.

A large class of graph drawing algorithms (including ours) is based on the
force-directed placement technique. The spring embedder of Eades [8] is one
of the earliest examples and uses a physical model from Newtonian mechanics.
In this model vertices are physical objects (steel rings) and edges are springs
connecting them. An initial random placement of the vertices is repeatedly
refined until a configuration with low energy has been obtained. The functions
modeling the forces in these computations are typically simplified in order to
speed up the computation. In Eades’ spring embedder, there are two types
of forces: attractive and repulsive. Attractive forces exist between vertices
connected by edges and are defined by the log of the distance between them,

c1 log
distR2(u, v)

c2
,

where c1 and c2 are constants and distR2(u, v) is the distance between vertices
u and v in the drawing. Similarly, repulsive forces exist between all pairs of
vertices and are defined by the distance between the vertices,

c3

dist2
R2(u, v)

,

where c3 is a constant.
Kamada and Kawai [15, 16] use a similar approach but specify explicitly the

function for the total energy of the graph:∑
1≤u<v≤n

cuv(distR2(u, v)− distG(u, v))2,

where cuv is a constant associated with the spring between vertices u and v,
and distG(u, v) is the length of the shortest path between u and v in G. This
algorithm also begins with a random placement of all the vertices. The energy
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is minimized by applying a Newton-Raphson method for moving one vertex at
a time.

Fruchterman and Reingold [10] present a modification of the spring embedder
which yields a faster algorithm. In their method the attractive forces are defined
by

dist2
R2(u, v)
k

,

where k is the optimum distance between two vertices, defined as k =
√

(area
n ).

The repulsive forces are defined as

k2

distR2(u, v)
.

Davidson and Harel [7] introduce techniques from simulated annealing to
the graph drawing process while adding more terms to the energy function to
control the distance between vertices and edges. Frick et al. [9] present further
improvements. Recently, Bruß and Frick [3] and Cruz and Twarog [6] describe
several extensions of the drawing algorithms from 2D to 3D.

Most of the above algorithms concentrate on drawing small graphs, typically
with 10-50 vertices and produce nice drawing in reasonable time. However,
these techniques fail when directly applied to larger graphs. Direct application
of these techniques to larger graphs (e.g. graphs with tens of thousands of
vertices) fail due to the local nature of the optimization methods used, and the
space and time complexity of these techniques. One of the first algorithms to
tackle graphs with thousands of vertices is that of Hadany and Harel [12] which
uses a multi-scale technique to produce a sequence of approximations to the
final layout. The main idea in this approach is to create a hierarchy of graphs,
in which each consecutive layer is a coarser version of the previous one. The
hierarchy of graphs is created by taking into account the cluster number, the
degree number, and the homotopic number.

Several new algorithms for drawing large graphs were presented at the 8th
Symposium on Graph Drawing. Harel and Koren [13] present a multi-scale
scheme that computes a simpler graph hierarchy. Walshaw [20] describes a
similar multilevel algorithm. The n-body simulation method of Quigley and
Eades [19] uses the Barnes-Hut [1] hierarchical space decomposition method.
A method similar to our intelligent placement is described in the context of
incremental drawing by Cohen in [4].

In the remainder of this paper we focus on the GRIP system which is based
on a multi-dimensional force-directed technique.

2 The GRIP System

The GRIP system is based on the algorithm of Gajer, Goodrich, and Kobourov [11].
GRIP follows a number of force-directed drawing tools [3, 7, 9, 10, 13, 15] but
employs several novel ideas first introduced in [11]: intelligent placement of ver-
tices, drawing in higher dimensions, a fast energy minimization function, and a
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Figure 1: An overview of the algorithm. Given a graph G, the algorithm proceeds in
three stages. In the first stage we create a maximal independent set (MIS) filtration. In
the second and third stages we use the filtration sets Vk, Vk−1, . . . , V0 to repeatedly add
more vertices and refine the drawing.

simple vertex filtration. Carefully put together, these techniques allow GRIP to
draw graphs with tens of thousands of vertices in under one minute. While [11]
contains the main methodology this paper focuses on the actual system, imple-
mentation, examples and experiments.

An overview of the system and its three main stages is given in Fig. 1 and
the main algorithm is summarized in Fig. 2. Starting with a graph G = (V, E),
we first create a maximal independent set (MIS) or a random filtration V : V =
V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅ of the set V of vertices of G, so that k = O(log n), and
|Vk| = 3. A filtration V of V is called a maximal independent set filtration if
V1 is a maximal independent set of G, and each Vi is a maximal subset of Vi−1

so that the graph distance between any pair of its elements is at least 2i−1 + 1.
Recall that the graph distance between a pair of vertices is defined as the length
of the shortest path between them in the original graph G. Note that the length
of a maximal independent set filtration is log δ(G), where δ(G) is the diameter
of the graph. Since δ(G) = O(n), the depth of the filtration is also O(log n).
Similarly, the expected depth of the random filtration is O(log n). We ensure
that the last set has exactly three elements by modifying the last one or two
sets in the filtration.

Once we have obtained the desired vertex filtration, we proceed to the initial
placement and refinement stages. First, we generate an initial embedding of Vk.
The vertices of Vk are placed in R

n using their graph distances. More precisely,
since |Vk| = 3, we find a triangle with sides equal to the graph distances between
the three vertices and place the vertices at the endpoints the triangle. Then,
we add the vertices of Vk−1 that are not in Vk, placing them initially at the
positions determined by their graph distances to a subset of the elements of
Vk. The positions of the vertices in Vk−1 are modified using a force-directed
layout method. This process of adding new vertices and refining their positions
is repeated for Vk−2, . . . , V1, V0. The refined positions of the elements of V0

constitute the final layout of the vertices of G. Note that we draw only the
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Main Algorithm
create a filtration V : V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅
for i = k to 0 do

for each v ∈ Vi − Vi+1 do
find vertex neighborhood Ni(v), Ni−1(v), . . . , N0(v)
find initial position pos[v] of v

repeat rounds times
for each v ∈ Vi do

compute local temperature heat[v]
disp[v]← heat[v] · −→FNi(v)

for each v ∈ Vi do
pos[v]← pos[v] + disp[v]

add all edges e ∈ E

Figure 2: After creating the vertex filtration and setting up the scheduling function the
algorithm processes each filtration set, starting with the smallest one. Here pos[v] is a point
in Rn corresponding to vertex v and rounds is a small constant. In the refinement stage
heat[v] is scaling factor for the displacement vector disp[v], which in turn is computed
over a restriction Ni(v) of the vertices of G.

vertices of G up to this point. Only when all the vertices have been placed
and their positions refined do we draw the edges of G as straight line segments
connecting their endpoints.

3 Building MIS Filtrations

A straightforward algorithm for finding a maximal independent set filtration of
a graph G is to compute the distances between all the pairs of vertices of G
and then use this information to produce a maximal independent set filtration.
A problem with the all-pairs shortest path algorithm is its running time of
is Ω(nm) and storage complexity of Ω(n2), e.g., see [5]. When dealing with
graphs with tens of thousand of vertices, both the running time and the space
complexity of the all-pairs shortest path algorithms pose serious problems.

Our solution is based on the observation that to construct a maximal in-
dependent set filtration we do not need the distances between all the pairs of
vertices. Indeed, we only need the distances between the vertices in the filtra-
tion sets. Moreover, the information that has been used to construct Vi is not
needed to construct Vi+1. Therefore, we have adopted the following “create then
destroy” strategy for construction of MIS filtrations. Suppose we have already
constructed set Vi. The next set in the filtration, Vi+1 is going to contain a
proper subset of the vertices in Vi. More precisely, to create Vi+1, we build for
each vertex of Vi a breadth-first search (BFS) tree up to depth 2i, but store in
it only elements of Vi. We need to keep track of these vertices as they should
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not be copied to Vi+1. Note that this is all we need to build Vi+1.
In the process of creating Vi+1 we may need to build many BFS trees, but

we destroy them immediately once they have been used, so that by the time
we enter the next phase (of building Vi+2), all memory has been freed. Note
that as i decreases, the number of vertices for which we have to perform a BFS
calculation increases, but at the same time the depth to which we have to build
these BFS trees decreases as well. The storage required for this strategy is

max
i

∑
v∈Vi

|bfs2i(v, Vi)|,

where |bfs2i(v, Vi)| is the number of elements of Vi that belong to the BFS tree
of v of depth 2i. The time complexity for this strategy in the case of bounded
degree graph G is

Θ
( k∑

i=0

∑
v∈Vi

|bfs2i(v)|
)

,

where |bfs2i(v)| is the number of vertices in the BFS tree of depth 2i for vertex
v. Clearly, if we build a complete BFS tree for each vertex of G, then the running
time and space complexity of this procedure, even in the bounded degree case,
would be O(n2). For the above MIS filtration construction procedure however,
our tests indicate that the running time is near linear as we only construct
partial BFS trees and destroy them right away. In all of our experiments, the
time spent creating the MIS filtration was less than 3% of the total running
time, see Fig 11 and Fig 12.

We store a MIS filtration of a graph of n vertices in an array misFiltration
of size n so that the first |Vk| entries in the misFiltration array are the elements
of Vk. The first |Vk−1| entries in the array are the elements of Vk−1. Similarly,
the first |Vi| entries in the array are the elements of Vi. To keep track of where
one set ends and another one begins we store the indices indicating the borders
of different level sets of the filtration in a separate array misBorder of size
log δ(G), see Fig. 3. Thus the space complexity for storing a MIS filtration is
n + log δ(G). The same method can be applied to any filtration.

In GRIP we have also implemented a random filtration. The random filtration
is similar to MIS filtrations and k-centers filtrations of Harel and Koren [13],
except that the vertices are filtered out at random. We assign each vertex in
Vi a 1/2 probability of propagation to Vi+1, for i = 0, 1, . . . , k − 1. Random
filtrations take O(n) time to create, as opposed to the O(n2) time required by
MIS and k-centers filtrations. Random filtrations have expected depth O(log n)
as opposed to O(log δ(G)) for MIS filtrations. While for most graphs we tested
the random filtration produces drawings similar to those created using MIS
filtrations, for sparse graphs the performance deteriorates.
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Figure 3: G is a cycle on 12 vertices and the filtrations sets are V0 =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, V1 = {1, 3, 5, 7, 9, 11}, and V2 = {1, 5, 9}. Note how
the filtration is stored in the misFiltration array and how the misBorder array is used
to identify the borders of the filtration sets. The first entry, 3, in the misBorder array
identifies the first three elements of the misFiltration array as V2. The second entry, 6,
identifies the first 6 elements of the misFiltration array as V1 and the third entry, 12,
identifies the first 12 elements of the array as V0.

4 Initial Placement and Refinement

The second and third phases of the algorithm are the placement and refinement
stages, respectively. In the ith placement stage, the vertices of set Vi are intelli-
gently placed in R

n. In the ith refinement stage, a local force-directed method
is used to obtain better positions for the vertices of Vi. After the placement and
refinement stages for Vi have been completed, the process is repeated for Vi−1,
Vi−2, all the way to V1.

Recall that there are exactly three vertices in Vk. We compute their pairwise
graph distances and place them at the endpoints of a triangle with sides of
lengths equal to these distances. Consider the general placement case. Suppose
the refinement and placement stages for Vi have been completed and we want
to begin the placement phase for Vi−1. All the vertices in Vi are also in Vi−1,
since Vi−1 ⊃ Vi as defined by the construction of the filtration. Thus we are
only concerned with the placement of the vertices in Vi−1 that are not in Vi.
The idea behind the intelligent placement is that every vertex t is placed “close”
to its optimal position as determined by the graph distances from t to several
already placed vertices. The intuition is that if we can place the vertices close
to their optimal positions from the very beginning, then the refinement stages
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Figure 4: Drawing of the vertices in the filtration sets. Here V : V0 ⊃ V1 ⊃ V2 ⊃ V3 ⊃ V4.
The sizes of the sets are 231, 60, 21, 6, 3, respectively. The process begins with a placement
for V4, followed by V3, etc. Note that edges are drawn only when all the vertices are placed.

need only a few iterations of a local force-directed method to reach a minimal
energy state.

After experimenting with several initial placement strategies we decided to
use two simple strategies in GRIP. The first strategy, “simple barycenter” be-
gins by setting pos[t], the initial position for a new vertex t, to the barycenter
(pos[u]+pos[v]+pos[w])/3 of u, v, and w, the three vertices closest to t that are
already placed. This is followed by a force-directed modification of the position
vector of t with the energy function E calculated only at the three points u, v, w.
This makes the procedure very fast, and in our tests it produced good results,
see Fig. 4.

The second strategy “three closest neighbors” uses the positions of the three
closest already placed neighbors to determine the location of new vertex t. We
begin by finding t’s three closest neighbors u, v, w ∈ Vi. Since u, v and w have
already been placed we can obtain a suitable place for t by solving the following
system of equations for u, v, w, and t


(x− xu)2 + (y − yu)2 = distG(u, t)2

(x− xv)2 + (y − yv)2 = distG(v, t)2

(x− xw)2 + (y − yw)2 = distG(w, t)2,

where pos[u] = (xu, yu), pos[v] = (xv, yv), pos[w] = (xw , yw), pos[t] = (x, y).
Since this system of equations is over-determined and may not have any solu-
tions, we solve the following three pairs of equations instead{

distR2(u, t) = distG(u, t)
distR2(v, t) = distG(v, t){
distR2(v, t) = distG(v, t)
distR2(w, t) = distG(w, t){
distR2(u, t) = distG(u, t)
distR2(w, t) = distG(w, t).

Solving these three systems of quadratic equations, we obtain up to six different
solutions. We choose the three closest to each other, call them t+1 , t+2 , t+3 , and
place t are their barycenter: pos[t] = (t+1 + t+2 + t+3 )/3.
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Refinement of Vi

repeat rounds(i) times
for each v ∈ Vi do

if i > 0 then
disp[v]← −→F KK(v)

else
disp[v]← −→F FR(v)

heat [v]← updateLocalTemp(v)

disp[v]← heat[v] · disp[v]
‖disp[v]‖

for each v ∈ Vi do
pos[v]← pos[v] + disp[v]

Figure 5: Pseudocode of the refinement phase of the algorithm.

While the refinement is calculated using a force-directed method, it is im-
portant to note that the forces are calculated locally, see Fig. 5. For each level
of the filtration Vi, we perform rounds(i) updates of the vertex positions, where
rounds(i) is a scheduling function which can be specified at the beginning of the
execution. Typically, 5 ≤ rounds(i) ≤ 30. At all levels of the filtration except
the last one, the displacement vector disp[v] of v is set to a local Kamada-Kawai
force vector,

−→
F KK(v) =

∑
u∈Ni(v)

(
distRn(u, v)

distG(u, v) · edgeLength2 − 1
)

(pos[u]− pos[v]).

In the last level of the filtration, V0 = V all the vertices have been placed. In
order to speed up computation, we set the displacement vector for the last level
to a local Fruchterman-Reingold force vector,

−→
F FR(v) =

∑
u∈Adj(v)

distRn(u, v)2

edgeLength2 (pos[u]− pos[v]) +

+
∑

u∈Ni(v)

s
edgeLength2

distRn(u, v)2
(pos[v]− pos[u]),

Here, distRn(u, v) is the Euclidean distance between pos[u] and pos[v], and
distG(u, v) is the graph distance between u and v. In the above equations,
edgeLength is the unit edge length, Adj(v) is the set of vertices adjacent to v,
and s is a small scaling factor which is set to 0.05 in our program. Note that
for a vertex v ∈ G the force calculation is performed over a restriction Ni(v) of
the vertices of G. Each vertex neighborhood Ni(v) contains a constant number
of vertices closest to v which belong to Vi. Thus only a constant number of
vertices which are near vertex v are used to refine v’s position. This is why we
call this type of force calculation local.
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updateLocalTemp(v)
if ‖disp[v]‖ 6= 0 and ‖oldDisp[v]‖ 6= 0 then

cos[v] =
disp[v] ∗ oldDisp[v]
‖disp[v]‖ ∗ ‖oldDisp[v]‖

r = 0.15, s = 3
if oldCos[v] ∗ cos[v] > 0 then

heat[v] = heat[v] + (cos[v] ∗ r ∗ s)
else

heat[v] = heat[v] + (cos[v] ∗ r)
oldCos[v] = cos[v]

Figure 6: Pseudocode of the local temperature calculation.

The local temperature heat[v] of v is a scaling factor of the displacement
vector for vertex v, similar to that of Fruchterman and Reingold [10] and Frick
et al [9]. The algorithm for determining the local temperature is in Fig. 6. To
speed up the calculation, we maintain two auxiliary arrays oldDisp and oldCos,
where oldDisp[v] is the previous displacement vector for v, and oldCos[v] is
the previous value of the cosine of the angle between oldDisp[v] and disp[v].
When a displacement vector of v is calculated for the first time, heat[v] is set to a
default value edgeLength/6. The local temperature helps speed up convergence
by distinguishing between oscillating vertices and vertices that continue moving
in one directions. There are three cases for determining the local temperature :

1. if either oldDisp[v] or disp[v] is a zero vector, then the value of heat[v]
does not change;

2. if v is oscillating around some stationary point we add to it a factor (cos[v]∗
r ∗ s);

3. in all other cases we add a factor of (cos[v] ∗ r).

5 Implementation

The GRIP system was originally written in C++ and then re-done in C with
OpenGL, with a Tcl/Tk interface, see Fig. 7. GRIP is available for download at
http:\\www.cs.arizona.edu/~kobourov/GRIP. The system can read in files
and generates several typical classes of graphs parametrized by their number
of vertices, e.g. paths, cycles, square meshes, triangular meshes, and complete
graphs. GRIP also contains generators for complete n-ary trees, random graphs
with parametrized density, and knotted triangular and rectangular meshes. Dif-
ferent types of tori, as well as cylinders and Moebius bends can be generated
with parametrized thickness and length. Finally, Sierpinski graphs in 2 and 3
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Figure 7: The GRIP system: On the top left we have the control window, which lets us
chose the type of graph, the graph parameters, dimension of the drawing, parameters of
the algorithm, and display settings. Graphs can be read from a file, or one of the several
built-in generators can be used. Currently we support generators for trees, paths, cycles,
cylinders, tori, degree 4 meshes, degree 6 meshes, and Sierpinski graphs. Parameters of the
algorithm include attractive/repulsive force ratio and initial and final number of rounds,
among others. The display settings control the interactive display, speed, and color. Within
the OpenGL window the graph can be dragged, rotated, and zoomed.

Figure 8: GRIP can read files in the gml format. This allows for displaying properties
such as direction of edges, self-loops and colors specified for vertices and edges.
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dimensions (Sierpinski triangles and Sierpinski pyramids, respectively) are also
available.

In addition to the set of graphs that GRIP can generate, other graphs can
be read from a file in gml format [14]. This allows the display of options such
as directed edges, different color vertices and edges, self-loops, etc., see Fig. 8.
GRIP can draw graphs directly in 2D or 3D or projected down from higher
dimensions. Drawings produced in higher dimensions and projected down to
2D or 3D usually produce better results. At this time, the projections are done
at random. We are working on incorporating projections based on spectral
analysis similar to [2].

Figures 9-10 show how the MIS filtration method compares to the random
filtration method. In both the final drawing for each level of the filtration
is captured. Note that all but the last drawings show only vertices as the
induced graphs are never computed. For a given filtration level Vi, the vertices
in Vi \ Vi−1 are shown as bigger dots, while those that came down from the
previous level (Vi−1) are shown as small dots. While random filtrations take
a small fraction of the time required to create MIS filtrations in general they
induce more refinement levels. Most drawings produced with random filtrations
and MIS filtrations are similar, see Fig. 9. Random filtrations perform worse
for sparse graphs as the variation in the distances between vertices in the same
level becomes greater, see Fig. 10.

Running times for the MIS creation and for the entire drawing process as
shown in Fig 11 and Fig. 12. Most of the drawings in the following examples
took less than 1 second. The Sierpinski pyramid of order 8 (with 32,770 vertices,
196,608 edges) was the most time consuming: it took 58 seconds on a 500MHz
Pentium III machine.

The parameters discussed in this paper can be changed via GRIP’s interface,
thus allowing for experimentation with different scheduling functions, scaling
parameters, filtrations, etc. There are controls for the drawing dimension and
the drawing speed. The drawings produced by default are three dimensional,
interactive, and use color and shading to aid three dimensional perception. For
faster results, the interactive display can be turned off so that only the final
drawing is shown. The size and colors of the vertices and edges can also be
modified.

6 Examples

In the next few pages we provide several examples of graphs produced by GRIP.
None of the drawings have been additionally modified. We focus mostly on
larger graphs but also provide several “classical” smaller graphs to illustrate
the versatility of the system. Fig. 13 shows drawings of a dodecahedron, C60
(bucky ball), and a 3D cube mesh. Fig. 14 shows 3D drawings of a 4D cube,
5D cube, and 6D cube. Fig. 15 shows binary, 3-ary, and 4-ary trees. Fig. 16
shows several cycles. Fig. 17 shows three “real-world” graphs from the Stanford
GraphBase [17]. Fig. 18 shows regular degree 4 meshes of up to 10,000 vertices.
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Figure 9: Mesh on 225 vertices using MIS filtration (1st column) and random filtration
(2nd and 3rd columns).
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Figure 10: Cycle on 20 vertices using MIS filtration (1st column) and random filtration
(2nd and 3rd columns).

Fig. 19 shows drawings of the same meshes with their endpoints attached (knot-
ted meshes). Fig. 20 shows several cylinders and Fig. 21 shows tori. Fig. 22
shows regular degree 6 meshes and Fig. 23 shows the same meshes with their
endpoints attached (knotted meshes).

The Sierpinski triangle (pyramid) is a classic fractal [18]. Several 2D, 3D,
and 4D drawings are shown on Fig. 24 and Fig. 25. Whereas traditionally the
image is defined with fixed vertices and edges, we make ours a fractal graph
with no specific embedding. The Sierpinski pyramid graph is created by a
recursive procedure, parametrized on the order of the recursion. As in the 2-
D case, at each iteration, every pyramid is divided into five congruent smaller
pyramids with the central pyramid removed. In a Sierpinski pyramid of order
k the number of vertices is |Vk| = 4k

2 + 2 and the number of edges is |E| =
6(|V | − 4) + 12 = 3× 4k. Fig. 24(c) shows a Sierpinski pyramid of order 7 with
8,194 vertices and 49,152 edges. Fig. 25 shows a Sierpinski pyramid of order
8 with 32,770 vertices and 196,608 edges. Given the parameter k we generate
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Figure 11: The chart contains the running times for construction of a MIS filtration for
cycles, meshes of degree 4, and meshes of degree 6. As can be expected, the depth of the
filtration is the largest for the sparsest graphs, in this case, the cycles.
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Figure 12: The chart contains the total running time for the three classes of graphs from
Fig 11. Note that the construction of the MIS filtration takes less than 3% of the total
running time.
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the adjacency matrix of a graph which corresponds to the Sierpinski pyramid
of order k. The drawings have been taken directly from the output of GRIP,
without any modifications.

7 Conclusion and Future Work

In the process of writing this program several interesting questions arose. Some
we answered in this paper, others we address in [11] but quite a few still remain:

• How should the type of the graph affect the number of rounds?

• What can we do about dense graphs and graphs with small diameter?
(The MIS filtration is very shallow for such graphs.)

• What filtrations (other than MIS) could produce good results?

• Can the MIS filtration be created in provable subquadratic time, in the
number of vertices and edges of the graph? (Currently, we have a modified
MIS filtration, with similar properties which can be built in linear time.
However, we are not aware of a subquadratic algorithm for the creation
of a standard MIS filtration, as defined in the paper.)
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Figure 13: Small graphs: (a) dodecahedron (20 vertices); (b) C60 – bucky ball (60
vertices); (c) 3D cube mesh (216 vertices).
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Figure 14: Cubes in 3D: (a) a 4D cube (16 vertices); (b) 5D cube (32 vertices); (c) 6D
cube (64 vertices).

Figure 15: Trees: (a) a complete binary tree of depth 9 (511 vertices); (b) complete
3-ary tree of depth 7 (1093 vertices); (c) complete 4-ary tree of depth 6 (1365 vertices).

Figure 16: Cycles of 100, 200, and 400 vertices.
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Figure 17: Graph from “real-world data”, as given by Knuth [17]: (a) miles2, (128
vertices, 368 edges); (b) miles3 (128 vertices, 518 edges) (c) miles4 (256 vertices, 312
edges

Figure 18: Rectangular (degree 4) meshes of 1600, 2500, and 10000 vertices.

Figure 19: Knotted rectangular (degree 4) meshes of 1600, 2500, and 10000 vertices.

Figure 20: Cylinders of 1000, 4000, and 10000 vertices.
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Figure 21: Tori of various length and thickness: 1000, 2500, and 10000 drawn in four
dimensions and projected down to three dimensions.

Figure 22: Triangular (degree 6) meshes of 496, 1035, and 2016 vertices.

Figure 23: Knotted triangular (degree 6) meshes of 496, 1035, and 2016 vertices.

Figure 24: Sierpinski graphs in 2D and 3D (a) 2D Sierpinski of order 7 (1,095 vertices);
(b) 3D Sierpinski of order 6 (2,050 vertices); (c) 3D Sierpinski of order 7 (8,194 vertices).
The last drawing took 15 seconds on a 500Mhz Pentium III machine.
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Figure 25: 4D Sierpinski graph of order 8 on 32,770 vertices and 196,608 edges. The
drawing took 58 seconds on a 500Mhz Pentium III machine.
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